JP2753922B2 - Fixed-point division method - Google Patents

Fixed-point division method

Info

Publication number
JP2753922B2
JP2753922B2 JP4167590A JP16759092A JP2753922B2 JP 2753922 B2 JP2753922 B2 JP 2753922B2 JP 4167590 A JP4167590 A JP 4167590A JP 16759092 A JP16759092 A JP 16759092A JP 2753922 B2 JP2753922 B2 JP 2753922B2
Authority
JP
Japan
Prior art keywords
fixed
point
quotient
dividend
divisor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4167590A
Other languages
Japanese (ja)
Other versions
JPH0612238A (en
Inventor
浩樹 瀧田
徹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4167590A priority Critical patent/JP2753922B2/en
Publication of JPH0612238A publication Critical patent/JPH0612238A/en
Application granted granted Critical
Publication of JP2753922B2 publication Critical patent/JP2753922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固定点小数データフォ
ーマット内において行われる固定小数点除算方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixed-point division method performed in a fixed-point decimal data format.

【0002】[0002]

【従来の技術】従来の固定小数点除算方法としては、特
開昭50−10046 号公報に開示された演算方法が知られて
いる。ここに開示された除算方法は、被除数を分子に、
除数を分母にそれぞれ置き、分子, 分母のそれぞれに同
じ数をかけながら分母を1に近付け、分母が1に近付い
た際の分子の値を近似商として求め、求めた近似商及び
被除数,除数を用いて更に余りを求める方法である。
2. Description of the Related Art As a conventional fixed-point division method, an operation method disclosed in Japanese Patent Application Laid-Open No. 50-10046 is known. The division method disclosed herein uses the dividend as a numerator,
Put the divisors in the denominator respectively, make the denominator close to 1 while multiplying the numerator and denominator by the same number, find the value of the numerator when the denominator approaches 1, as an approximate quotient, and calculate the approximate quotient, dividend, and divisor. This method is used to find the remainder.

【0003】以下、この従来の固定小数点除算方法の具
体例について説明する。ここで、固定点小数データフォ
ーマットを整数部8ビット,小数部4ビットとし、被除
数,除数をそれぞれ2進数表現で1011.011, 10.1とす
る。まず、被除数(1011.011)を分子に、除数(10.1)を分
母に置いて、分子,分母の両方に0.01, 0.001 を順次か
けて分母を1に近付ける。このような計算過程を以下に
示す。
Hereinafter, a specific example of this conventional fixed-point division method will be described. Here, the fixed-point decimal data format is 8 bits for the integer part and 4 bits for the decimal part, and the dividend and divisor are 1011.011 and 10.1, respectively, in binary notation. First, the dividend (1011.011) is set in the numerator and the divisor (10.1) is set in the denominator, and both the numerator and denominator are successively multiplied by 0.01 and 0.001 to bring the denominator close to 1. Such a calculation process will be described below.

【0004】[0004]

【数1】 (Equation 1)

【0005】そして、分母が1に近づいた時の分子の値
(100.01)を近似商として求める。次に、以下に示すよう
に、この近似商と除数との積を被除数から減じて余りを
求める。 近似商×除数=100.01×10.1=1010.101 1011.011−1010.101=0.11 ・・・余り 近似商=100.01 余り=0.11 このようにして得られた近似商及び余りを補正すること
によって、固定小数点除算を実行する。
Then, the value of the numerator when the denominator approaches 1
(100.01) is obtained as an approximate quotient. Next, as shown below, the remainder is obtained by subtracting the product of the approximate quotient and the divisor from the dividend. Approximate quotient × divisor = 100.01 × 10.1 = 1010.101 1011.011−110.101 = 0.11 remainder approximate quotient = 100.01 remainder = 0.11 Fixed-point division is performed by correcting the approximate quotient and the remainder thus obtained.

【0006】[0006]

【発明が解決しようとする課題】上述したような従来の
固定小数点除算方法では、まず、被除数,除数をそれぞ
れ分子,分母に置いて、分子, 分母のそれぞれに同じ数
をかけながら分母を1に近付けることによって近似商を
求め、求めた近似商と除数とを乗算した値を被除数から
減じて余りを求め、近似商と余りとを用いて近似商を補
正して正しい商を得るという一連の処理が必要であるの
で、処理が複雑で長時間を要するという問題がある。
In the above-described conventional fixed-point division method, first, the dividend and the divisor are respectively set in the numerator and the denominator, and the denominator is reduced to 1 while multiplying the numerator and the denominator by the same number. A series of processing to find the approximate quotient by approaching, subtract the value obtained by multiplying the obtained approximate quotient by the divisor from the dividend, find the remainder, and correct the approximate quotient using the approximate quotient and the remainder to obtain the correct quotient Therefore, there is a problem that the processing is complicated and takes a long time.

【0007】本発明は斯かる事情に鑑みてなされたもの
であり、本発明の目的は、被除数のシフト処理と整数除
算とを用いるだけで、固定小数点除算を高速にて行え、
固定小数点の精度未満を切り捨てた商を短時間に得るこ
とができる固定小数点除算方法を提供することにある。
[0007] The present invention has been made in view of such circumstances, and an object of the present invention is to perform fixed-point division at high speed simply by using dividend shift processing and integer division.
An object of the present invention is to provide a fixed-point division method capable of obtaining a quotient obtained by truncating a value less than the fixed-point precision in a short time.

【0008】本発明の他の目的は、固定小数点の精度未
満を切り上げた商、または固定小数点の精度未満を四捨
五入した商を短時間に得ることができる固定小数点除算
方法を提供することにある。
Another object of the present invention is to provide a fixed-point division method capable of obtaining, in a short time, a quotient rounded up to the fixed-point precision or rounded down to a fixed-point precision.

【0009】[0009]

【課題を解決するための手段】本願の第1発明に係る固
定小数点除算方法は、データのサイズがL+2Mビット
以上であってそのLSBからMビットが小数部、Lビッ
トが整数部で表現される固定小数点データである被除
数,除数に対して、まず被除数をMSB側にMビットだ
けシフトし、シフトした被除数と元の除数とを整数デー
タと見なして整数除算を施して、固定小数点の精度未満
を切り捨てた商を得ることを特徴とする。
According to a first aspect of the present invention, there is provided a fixed-point division method, wherein a data size is L + 2M bits.
With respect to the dividend and the divisor, which are fixed-point data in which M bits are represented by a fraction part and L bits are represented by an integer part from the LSB, the dividend is first shifted to the MSB side by M bits, and the shifted dividend and It is characterized in that the original divisor is regarded as integer data and subjected to integer division to obtain a quotient obtained by truncating a value below a fixed-point precision.

【0010】本願の第2発明に係る固定小数点除算方法
は、第1発明において、整数除算の際に余りも求め、求
めた余りの値に応じて商のLSBに1または0を加える
ことにより、固定小数点の精度未満を切り上げた商を得
ることを特徴とする。
The fixed-point division method according to the second invention of the present application is the method according to the first invention, wherein a remainder is obtained at the time of integer division, and 1 or 0 is added to the LSB of the quotient according to the obtained value of the remainder. It is characterized in that a quotient obtained by rounding up below the precision of the fixed point is obtained.

【0011】本願の第3発明に係る固定小数点除算方法
は、第1発明において、整数除算の際に余りも求め、求
めた余りをMSB側に1ビットシフトした値と除数とを
比較した結果に応じて商のLSBに1または0を加える
ことにより、固定小数点の精度未満を四捨五入した商を
得ることを特徴とする。
The fixed-point division method according to the third invention of the present application is the first invention, wherein the remainder is also obtained at the time of integer division, and the value obtained by shifting the obtained remainder by one bit to the MSB side is compared with the divisor. Accordingly, by adding 1 or 0 to the LSB of the quotient, a quotient obtained by rounding off less than the precision of the fixed point is obtained.

【0012】[0012]

【作用】第1発明の固定小数点除算方法では、被除数を
そのMSB側に小数部のビット数分だけシフトさせた
後、被除数と除数とを用いて小数点を無視した整数除算
を行う。もし、被除数のシフト処理を行うことなく、元
の被除数と除数とに対して単に整数除算を施した場合に
は、小数点以下の商が切り捨てられて整数部分のみの商
しか得られない。本発明では、被除数をその小数部のビ
ット数(桁数)分だけシフトさせた後に整数除算を行う
ので、被除数,除数と同じフォーマットの固定小数点の
精度未満を切り捨てた商が得られる。
According to the fixed-point division method of the first invention, after the dividend is shifted to the MSB side by the number of bits of the decimal part, integer division is performed using the dividend and the divisor, ignoring the decimal point. If the original dividend and the divisor are simply subjected to integer division without shifting the dividend, the quotient after the decimal point is truncated and only the quotient of the integer part alone is obtained. In the present invention, since the dividend is shifted by the number of bits (the number of digits) of the fractional part and then the integer division is performed, a quotient obtained by discarding less than the fixed-point precision of the same format as the dividend and the divisor is obtained.

【0013】第2発明または第3発明の固定小数点除算
方法では、整数除算において余りも求め、この求めた余
りに応じて商に処理を施す。このようにすることによ
り、被除数,除数と同じフォーマットにて固定小数点の
精度未満を切り上げた商または固定小数点の精度未満を
四捨五入した商が得られる。
In the fixed-point division method according to the second or third aspect of the present invention, a remainder is obtained in integer division, and a quotient is processed according to the obtained remainder. In this way, a quotient obtained by rounding up the precision of the fixed point or rounding down the precision of the fixed point is obtained in the same format as the dividend and the divisor.

【0014】[0014]

【実施例】以下、本発明をその実施例を示す図面に基づ
いて具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments.

【0015】図1は、本発明に係る固定小数点除算方法
の手順を示すフロチャートである。まず、データのサイ
ズがL+2Mビット以上であってそのLSBからMビッ
トが小数部、Lビットが整数部で表現される固定小数点
データである被除数,除数を入力する(ステップS1)。
次に、被除数をMSB側にMビット(小数部の桁数分)
だけシフトする(ステップS2)。シフトした被除数と元
の除数とを何れも整数と見なす(ステップS3)。そし
て、整数と見なした被除数, 除数を用いて整数除算を行
って商を得る(ステップS4)。
FIG. 1 is a flowchart showing the procedure of the fixed-point division method according to the present invention. First, the size of the data
From the LSB, dividends and divisors, which are fixed-point data in which M bits are represented by a decimal part and L bits are represented by an integer part, are input from the LSB (step S1).
Next, the dividend is set to the MSB side by M bits (for the number of digits of the decimal part).
Shift only (step S2). The shifted dividend and the original divisor are both regarded as integers (step S3). Then, a quotient is obtained by performing integer division using the dividend and the divisor regarded as integers (step S4).

【0016】次に、本発明を用いた除算の具体例につい
て説明する。図2は本発明の具体例を示すデータフロー
図であり、図3は本発明の比較例におけるデータフロー
図である。ここで、データのサイズを16ビットとし、
定点小数データフォーマットを整数部8ビット,小数部
4ビットとし、被除数,除数をそれぞれ2進数表現で10
11.011, 10.1とする。まず、被除数をシフトすることな
く整数除算を行う比較例について、図3を参照して説明
し、次に、図2を参照して本発明例について説明する。
Next, a specific example of division using the present invention will be described. FIG. 2 is a data flow diagram showing a specific example of the present invention, and FIG. 3 is a data flow diagram in a comparative example of the present invention. Here, the data size is 16 bits, the fixed-point decimal data format is 8 bits for the integer part and 4 bits for the decimal part, and the dividend and divisor are each expressed in binary notation.
11.011, 10.1 First, a comparative example in which integer division is performed without shifting the dividend will be described with reference to FIG. 3, and then, an example of the present invention will be described with reference to FIG.

【0017】被除数(00001011.0110),除数(0000001
0.1000)が与えられると、これらの被除数,除数につい
て小数点を無視して被除数の整数データ(00001011011
0), 除数の整数データ(000000101000)を得る。得ら
れた各整数データを用いて整数除算を施して、商(0000
00000100),余り(00000001.0110)を得る。このような比
較例の手順では、商のフォーマットは整数部分のみであ
り、しかも小数点以下を切り捨てた商が得られるだけで
あり、元の被除数,除数と同じ精度のフォーマットの商
は得られない。
The dividend (00001011.0110) and the divisor (0000001
0.1000), the decimal point is ignored for these dividends and divisors, and the integer data of the dividend (00001011011
0), Get integer data of divisor (000000101000). Integer division is performed using each obtained integer data, and the quotient (0000
00000100) and the remainder (000000001.0110). In such a procedure of the comparative example, the format of the quotient is only the integer part, and furthermore, only the quotient obtained by truncating the decimal part is obtained, and the quotient having the same precision as the original dividend and divisor cannot be obtained.

【0018】これに対して、本発明(図2参照)では、
被除数(00001011.0110),除数(00000010.1000)が与え
られると、この被除数をMSB側にM(4)ビット(小
数部の桁数分)だけシフトさせて0で埋めた被除数デー
タ(00001011.01100000)を得る。次に、この被除数デー
タと元の除数とについて小数点を無視して被除数の整数
データ(0000101101100000), 除数の整数データ(0000
00101000)を得る。得られた各整数データを用いて整数
除算を施して、商(00000100.1000), 余り(00000000.0
010)を得る。このような本発明の手順では、与えられた
被除数,除数と同じフォーマットで固定小数点の精度未
満を切り捨てた商を得ることができる。
On the other hand, in the present invention (see FIG. 2),
Given the dividend (00001011.0110) and the divisor (00000010.1000), the dividend is shifted to the MSB side by M (4) bits (the number of digits of the decimal part) to obtain dividend data (00001011.01100000) padded with zeros. Next, with respect to the dividend data and the original divisor, the decimal point is ignored and the dividend integer data (0000101101100000) and the divisor integer data (0000
00101000). Integer division is performed using each of the obtained integer data to obtain a quotient (00000100.1000) and a remainder (00000000.0).
010). According to such a procedure of the present invention, it is possible to obtain a quotient in which the precision less than the fixed point is truncated in the same format as the given dividend and divisor.

【0019】上述の実施例では固定小数点の精度未満を
切り捨てた商を得る例について説明したが、得られた商
に処理を加えることにより、固定小数点の精度未満を切
り上げた商または固定小数点の精度未満を四捨五入した
商を得ることも可能である。以下、これらの各例につい
て説明する。
In the above-described embodiment, an example has been described in which a quotient obtained by rounding down the precision of the fixed point is rounded down. It is also possible to obtain a quotient rounded to the nearest. Hereinafter, each of these examples will be described.

【0020】図4は、本発明の他の実施例(固定小数点
の精度未満を切り上げた商を得る例)の処理手順を示す
フローチャートである。まず、前述の実施例の処理手順
(図1に示すフローチャート)と同様にして、整数除算
の商を求めると共に余りも求める(ステップS11)。そし
て、求めた余りが0であるか否かを判断する(ステップ
S12)。求めた余りが0以外である場合には、求めた商の
LSBに1を加えて(ステップS13)、新しい商を得る
(ステップS14)。求めた余りが0である場合には、何も
加えずに求めた商をそのまま新しい商とする(ステップ
S14)。以上のような処理を施すことにより、与えられた
被除数,除数と同じフォーマットで固定小数点の精度未
満を切り上げた商を得ることができる。
FIG. 4 is a flowchart showing a processing procedure of another embodiment of the present invention (an example of obtaining a quotient obtained by rounding up the precision below the fixed point). First, in the same manner as the processing procedure of the above-described embodiment (the flowchart shown in FIG. 1), the quotient of the integer division and the remainder are obtained (step S11). Then, it is determined whether or not the obtained remainder is 0 (step
S12). If the obtained remainder is other than 0, 1 is added to the LSB of the obtained quotient (step S13) to obtain a new quotient (step S14). If the obtained remainder is 0, the quotient obtained without adding anything is used as a new quotient (step
S14). By performing the above processing, it is possible to obtain a quotient obtained by rounding up the precision below the fixed point in the same format as the given dividend and divisor.

【0021】図5は、本発明の更に他の実施例(固定小
数点の精度未満を四捨五入した商を得る例)の処理手順
を示すフローチャートである。まず、前述の実施例の処
理手順(図1に示すフローチャート)と同様にして、整
数除算の商を求めると共に余りも求める(ステップS2
1)。そして、求めた余りをMSB側に1ビットシフトす
る(ステップS22)。シフトさせた余りと除数との大きさ
を比較する(ステップS23)。シフトさせた余りが除数以
上である場合には、求めた商のLSBに1を加えて(ス
テップS24)、新しい商を得る(ステップS25)。シフトさ
せた余りが除数未満である場合には、何も加えずに求め
た商をそのまま新しい商とする(ステップS25)。以上の
ような処理を施すことにより、与えられた被除数,除数
と同じフォーマットで固定小数点の精度未満を四捨五入
した商を得ることができる。なお、この実施例では、シ
フトさせた余りと除数とが等しいときには、求めた商の
LSBに1を加えることになるが、これは一例であり、
四捨五入の条件に応じて、この処理の条件を変更しても
良いことは勿論である。
FIG. 5 is a flowchart showing a processing procedure of still another embodiment of the present invention (an example of obtaining a quotient obtained by rounding off the precision of a fixed point). First, the quotient of the integer division and the remainder are obtained in the same manner as the processing procedure of the above-described embodiment (the flowchart shown in FIG. 1) (step S2).
1). Then, the obtained remainder is shifted by one bit to the MSB side (step S22). The magnitude of the remainder after the shift and the divisor are compared (step S23). If the remainder after the shift is equal to or greater than the divisor, 1 is added to the LSB of the obtained quotient (step S24) to obtain a new quotient (step S25). If the remainder after the shift is less than the divisor, the quotient obtained without adding anything is used as a new quotient (step S25). By performing the above processing, it is possible to obtain a quotient in which the precision less than the fixed-point precision is rounded off in the same format as the given dividend and divisor. In this embodiment, when the remainder after the shift is equal to the divisor, 1 is added to the LSB of the obtained quotient, but this is an example.
It goes without saying that the condition of this processing may be changed according to the condition of rounding.

【0022】[0022]

【発明の効果】以上のように、第1発明の固定小数点除
算方法では、被除数のシフト処理と整数除算とを用いる
ことにより商を求めるので、固定小数点除算を高速にて
行え、固定小数点の精度未満を切り捨てた商を短時間に
得ることが可能である。
As described above, in the fixed-point division method of the first invention, since the quotient is obtained by using the dividend shift processing and the integer division, the fixed-point division can be performed at a high speed, and the precision of the fixed-point is improved. It is possible to obtain a quotient in which a fraction is rounded off in a short time.

【0023】また、第2発明または第3発明の固定小数
点除算方法では、第1発明と同様にして商を求めると共
に余りも求め、その余りの値に応じて求めた商を処理す
るので、固定小数点の精度未満を切り上げた商または固
定小数点の精度未満を四捨五入した商を高速に得ること
が可能である。
In the fixed-point division method according to the second or third invention, the quotient and the remainder are obtained in the same manner as in the first invention, and the quotient obtained is processed according to the value of the remainder. It is possible to obtain a quotient obtained by rounding up the precision below the decimal point or a quotient obtained by rounding down the precision below the fixed point.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固定小数点除算方法の一実施例の処理
手順を示すフローチャートである。
FIG. 1 is a flowchart showing a processing procedure of an embodiment of a fixed-point division method according to the present invention.

【図2】本発明の固定小数点除算方法の具体例を示すデ
ータフロー図である。
FIG. 2 is a data flow diagram showing a specific example of a fixed-point division method of the present invention.

【図3】本発明の固定小数点除算方法の比較例における
具体例を示すデータフロー図である。
FIG. 3 is a data flow diagram showing a specific example in a comparative example of the fixed-point division method of the present invention.

【図4】本発明の固定小数点除算方法の他の実施例の処
理手順を示すフローチャートである。
FIG. 4 is a flowchart showing a processing procedure of another embodiment of the fixed-point division method of the present invention.

【図5】本発明の固定小数点除算方法の更に他の実施例
の処理手順を示すフローチャートである。
FIG. 5 is a flowchart showing a processing procedure of still another embodiment of the fixed-point division method of the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 整数部及び小数部がビット列で表現され
る被除数と除数とにより除算を行う方法において、前記
被除数をそのMSB側に小数部のビット数分だけシフト
し、シフトした被除数と前記除数とを整数とみなして整
数除算を行って固定小数点の精度未満を切り捨てた商を
得ることを特徴とする固定小数点除算方法。
1. A method for performing division by a dividend and a divisor in which an integer part and a decimal part are represented by a bit string, wherein the dividend is shifted to its MSB side by the number of bits of the decimal part, and the shifted dividend and the divisor are shifted. A fixed-point division method wherein integers are regarded as integers and integer division is performed to obtain a quotient obtained by truncating a value less than a fixed-point precision.
【請求項2】 前記整数除算を行う際に余りも求め、求
めた余りに応じて固定小数点の精度未満を切り捨てた商
を処理して、固定小数点の精度未満を切り上げた商を得
ることを特徴とする請求項1記載の固定小数点除算方
法。
2. The method according to claim 1, further comprising: obtaining a remainder when performing the integer division, processing a quotient obtained by rounding down the precision of the fixed point according to the obtained remainder, and obtaining a quotient obtained by rounding up the precision of the fixed point. The fixed-point division method according to claim 1, wherein
【請求項3】 前記整数除算を行う際に余りも求め、求
めた余りを処理した結果に応じて固定小数点の精度未満
を切り捨てた商を処理して、固定小数点の精度未満を四
捨五入した商を得ることを特徴とする請求項1記載の固
定小数点除算方法。
3. A quotient obtained by rounding off a precision less than a fixed-point precision according to a result obtained by processing the obtained remainder. 2. The method according to claim 1, wherein the division is performed.
JP4167590A 1992-06-25 1992-06-25 Fixed-point division method Expired - Fee Related JP2753922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4167590A JP2753922B2 (en) 1992-06-25 1992-06-25 Fixed-point division method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4167590A JP2753922B2 (en) 1992-06-25 1992-06-25 Fixed-point division method

Publications (2)

Publication Number Publication Date
JPH0612238A JPH0612238A (en) 1994-01-21
JP2753922B2 true JP2753922B2 (en) 1998-05-20

Family

ID=15852583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4167590A Expired - Fee Related JP2753922B2 (en) 1992-06-25 1992-06-25 Fixed-point division method

Country Status (1)

Country Link
JP (1) JP2753922B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524143B2 (en) * 2014-06-26 2016-12-20 Arm Limited Apparatus and method for efficient division performance

Also Published As

Publication number Publication date
JPH0612238A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
US4286256A (en) Method and means for arithmetic coding utilizing a reduced number of operations
JP2608165B2 (en) Method and apparatus for multiplying a real-time two's complement code in a digital signal processing system
JP2502836B2 (en) Preprocessing device for division circuit
JP2001222410A (en) Divider
JP2753922B2 (en) Fixed-point division method
Conway et al. New CRT-based RNS converter using restricted moduli set
JP2645422B2 (en) Floating point processor
JP3415569B2 (en) Decimal data division method and program recording medium therefor
JP2777265B2 (en) High radix square root arithmetic unit
JP3610564B2 (en) Information processing device
JP3323166B2 (en) Interpolation device
JP3539077B2 (en) Division method by parallel operation method
JP4196434B2 (en) Data rounding method and data rounding device
JPH05224888A (en) Multiplication circuit for decimal point position varying data
JP3277497B2 (en) Divider
JP3803653B2 (en) Multiplication processor
JP2870018B2 (en) Product-sum operation circuit
JP2546014B2 (en) Digital signal processor
JP3230349B2 (en) Decimal multiplier
JPH05216629A (en) Divider
JPS60129834A (en) Multiplier and divider
JPH04348424A (en) Integer division system
JPH0683852A (en) Alpha synthesization computing element
JPH0645945A (en) Arithmetic coding method and its decoding method
JPH0553768A (en) Divider

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees