JP2748031B2 - Oxygen sensor for prevention of Si poisoning - Google Patents

Oxygen sensor for prevention of Si poisoning

Info

Publication number
JP2748031B2
JP2748031B2 JP1252025A JP25202589A JP2748031B2 JP 2748031 B2 JP2748031 B2 JP 2748031B2 JP 1252025 A JP1252025 A JP 1252025A JP 25202589 A JP25202589 A JP 25202589A JP 2748031 B2 JP2748031 B2 JP 2748031B2
Authority
JP
Japan
Prior art keywords
protective layer
sensor
metal oxide
exhaust gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1252025A
Other languages
Japanese (ja)
Other versions
JPH02222831A (en
Inventor
孝夫 小島
俊樹 澤田
雅彦 山田
宏之 石黒
勝 山農
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Original Assignee
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Togyo KK filed Critical Nippon Tokushu Togyo KK
Priority to JP1252025A priority Critical patent/JP2748031B2/en
Priority to DE68927087T priority patent/DE68927087T2/en
Priority to EP89120196A priority patent/EP0369238B1/en
Publication of JPH02222831A publication Critical patent/JPH02222831A/en
Priority to US08/408,132 priority patent/US5849165A/en
Priority to HK9997A priority patent/HK9997A/en
Application granted granted Critical
Publication of JP2748031B2 publication Critical patent/JP2748031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸素センサ,特に自動車等の排気ガス浄化シ
ステムの三元触媒と組合せて利用される空燃比制御用酸
素センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen sensor, and more particularly to an oxygen sensor for controlling an air-fuel ratio used in combination with a three-way catalyst of an exhaust gas purification system for an automobile or the like.

[従来技術及び課題] 酸素センサを取り巻く環境はかなりきびしい。排気ガ
ス規制が強化される中で特に0.4g/mileNoXの規制が既に
カリフォルニアにて実施されている。その為センサにと
って初期での制御A/Fのバラツキをおさえることと耐久
後でのA/F変動をおさえる事は重要な必要条件となる。
[Prior art and problems] The environment surrounding an oxygen sensor is quite severe. As emissions regulations have been tightened, regulations of 0.4 g / mile No X have already been implemented in California. Therefore, it is an important necessary condition for the sensor to suppress the variation of the control A / F at the initial stage and to suppress the A / F fluctuation after the endurance.

更に近年は,エンジン部品にシリコンを用いたものが
多く,このシリコンによる影響も無視できない状況であ
る。
Furthermore, in recent years, many engine parts use silicon, and the influence of this silicon cannot be ignored.

従って,本発明は初期での制御A/Fバラツキを防止す
ると共に,耐久後のA/F変動を小さくし,かつSi被毒に
よるリーンシフト,立下り応答性の劣化を防止すること
にある。
Accordingly, an object of the present invention is to prevent the control A / F variation at the initial stage, to reduce the A / F fluctuation after the durability, and to prevent the lean shift and the fall responsiveness from being deteriorated due to Si poisoning.

[課題を解決するための手段] 初期での制御A/Fバラツキ,そして耐久後での変動を
抑える為には酸素センサの排ガス側保護層に貴金属を含
有させセンサ電極にガスが到着する迄に,完全に未燃成
分の燃焼反応を進めてしまうという対策が各種行なわれ
ている。その中で我々も非化学量論的化合物からなる保
護層(第2保護層)を設ける事により耐久後も非常に効
果の強い触媒を保持できることを見出した(特願昭62−
311278)。これは非化学量論的化合物例えばTiO2-X(x
≦0.4)からなる粒子は電子ホール等を有したものでリ
ッチ・リーン雰囲気での過剰なCO,及びO2が電極等に吸
着する事を防ぐ上,貴金属とのなじみも良い事から初
期,耐久での制御A/Fをλ≒1近傍に集中させる事がで
きる様になった。この層での貴金属は非化学量論的化合
物に対して2mol%以下が好ましくこれよりも多くなると
次第にエミッションがリッチ側になりCO等が排出される
様になってしまう。この様な素子によりセンサの制御A/
Fは初期のみならず耐久後もバラツキ変動が少ないもの
となる。しかし,Si成分が排ガス中に含まれた場合には
従来の酸素センサ素子に比べ効果が見られるが,かなり
リーン側にシフトしてしまった。
[Means to solve the problem] In order to suppress the control A / F variation at the initial stage and the fluctuation after the endurance, the protective layer on the exhaust gas side of the oxygen sensor should contain a noble metal before the gas arrives at the sensor electrode. Various measures have been taken to completely advance the combustion reaction of unburned components. Among them, we have also found that by providing a protective layer (second protective layer) made of a non-stoichiometric compound, it is possible to maintain a very effective catalyst even after endurance (Japanese Patent Application No. 62-62).
311278). This is a non-stoichiometric compound such as TiO 2-X (x
≤0.4) Particles with electron holes, etc., prevent excessive CO and O 2 from adsorbing to electrodes, etc. in a rich and lean atmosphere, and have good compatibility with precious metals. Control A / F can be concentrated near λ ≒ 1. The amount of the noble metal in this layer is preferably 2 mol% or less based on the non-stoichiometric compound. If the amount is more than 2 mol%, the emission gradually becomes rich and CO and the like are discharged. Sensor control A /
F has little variation not only in the initial stage but also after the endurance. However, when the Si component was contained in the exhaust gas, although the effect was seen compared with the conventional oxygen sensor element, it shifted considerably to the lean side.

その為,本発明にあっては,この保護層(貴金属を担
持したものも含む)中に周期率表II a族元素からなる成
分(以下,「II a族成分」という)を含有させる事によ
り,排気ガス中のSi成分がセンサの活性点に達する迄
に,この保護層にSiを吸着反応させることができる様に
したものである。
Therefore, in the present invention, the protection layer (including the one carrying a noble metal) contains a component consisting of a Group IIa element in the periodic table (hereinafter, referred to as a "Group IIa component"). The Si layer is allowed to adsorb and react with the protective layer before the Si component in the exhaust gas reaches the active point of the sensor.

これは,保護層中のII a族成分特にCa,Mg等は排ガス
中に含まれるSiとセンサが使用される状態下の温度で反
応を起こし低融点の結晶を生成する為,この保護層より
内側に位置し,耐熱性金属酸化物からなりII a族成分を
含有しない保護層(第1保護層)(特にスピネル,Al2O3
からなるもの)にSiが侵入してこなくなり第1保護層中
に在る貴金属及び電極を保護するものと推定される。特
にCa又はMgを含んだ変化物,炭酸塩は非常に細かい粒子
が形成される為このSi成分が素通りしてしまう事を防ぐ
事ができる上に,このSiに対して活性が高い。
This is because the IIa group components in the protective layer, especially Ca, Mg, etc., react with Si contained in the exhaust gas at the temperature under the condition where the sensor is used to generate low melting point crystals. A protective layer (first protective layer) which is located on the inner side and is made of a heat-resistant metal oxide and does not contain a Group IIa component (particularly spinel, Al 2 O 3
It is presumed that Si no longer enters the first protective layer and protects the noble metal and the electrode in the first protective layer. In particular, the change products and carbonates containing Ca or Mg form very fine particles, so that the Si component can be prevented from passing through and the activity is high with respect to the Si.

しかしながら排ガス中に含まれるシリコンがエンジン
の低回転つまり温度が低い時に混入した場合にはII a族
成分(特にCa,Mg化合物)によるSiの吸着効果は弱まり
未反応のまま保護層にSiが侵入してしまう事があった。
そのためにセンサが高温にさらされた時そのSiがSiO2
に変化し保護層に目詰まりを生じてしまう事も起こっ
た。
However, when silicon contained in the exhaust gas is mixed at low engine speed, that is, when the temperature is low, the effect of adsorbing Si by IIa group components (especially Ca and Mg compounds) is weakened, and Si enters the protective layer without reacting. I had to do it.
Therefore, when the sensor was exposed to a high temperature, the Si changed to SiO 2 or the like, and the protective layer was sometimes clogged.

そのため,本発明にあっては更に,排気ガスにさらさ
れる側の保護層にII a族成分を含有させると共に,セン
サ素子を加熱するヒータを備える事により,このSiの侵
入を防ぐ事ができたものである。つまり保護層温度をこ
のヒータにより高め,II a族成分の吸着能力を高める事
によりSiはこのII a族成分と反応しSiのみでの侵入を少
なくさせる事ができる為である。
Therefore, in the present invention, the infiltration of Si can be prevented by adding a group IIa component to the protective layer on the side exposed to the exhaust gas and by providing a heater for heating the sensor element. Things. That is, by increasing the temperature of the protective layer by this heater and increasing the adsorption capacity of the IIa group component, Si reacts with the IIa group component and the penetration of only Si can be reduced.

II a族成分を含む保護層(第2保護層)について、II
a族元素としてはCa,Mgが良好である。II a族成分の組
成としては非酸化物,例えばCaCl2,MgCO3等の塩化物,
炭酸塩,硝酸塩が良い。但し,ヒータを備えた酸素セン
サにあっては酸化物であっても有効である。又,これら
の水和物例えばCaCl2・2H2O,複合化合物例えばCaCO3・M
gCO3(ドロマイト)であってもよい。II a族成分は,Al2
O3,チタニア等の耐熱性金属酸化物に担持させるとよ
い。特に非化学量論的化合物として例えばTiO2-X(x≦
0.4),La2O3-Xに高分散担持させることが好ましい。
II Regarding the protective layer containing Group a component (second protective layer), II
Ca and Mg are good as group a elements. The composition of the IIa group component includes non-oxides such as chlorides such as CaCl 2 and MgCO 3 ,
Carbonates and nitrates are good. However, in the case of an oxygen sensor having a heater, an oxide sensor is effective. In addition, these hydrates such as CaCl 2 .2H 2 O, complex compounds such as CaCO 3 .M
It may be gCO 3 (dolomite). II Group a component is Al 2
It is preferable to support on a heat-resistant metal oxide such as O 3 and titania. In particular, as a non-stoichiometric compound, for example, TiO 2-X (x ≦
0.4), It is preferable to carry out high dispersion loading on La 2 O 3-X .

その製造法としては,例えば予めチタニア粒子(例え
ば平均粒径0.1〜1μm)にII a族成分を担持させ,ス
ラリとして第1保護層上に塗布させ熱処理(例えば500
〜700℃)する方法;チタニア粒子を第1保護層に塗布
した後,これをII a族成分溶液に減圧又は加圧下浸漬さ
せた後,熱処理する方法が挙げられる。これらの場合,
第2保護層の耐熱金属酸化物に対してII a族成分の割合
を,II a族元素換算で30wt%以下,より好ましくは20wt
%以下にするとよい。30wt%を越えると次第にセンサの
応答性が悪くなる,つまり目詰りが生じ始めるからであ
る。
As a manufacturing method, for example, a group IIa component is previously supported on titania particles (for example, having an average particle size of 0.1 to 1 μm), applied as a slurry on the first protective layer, and subjected to a heat treatment (for example, 500
To 700 ° C.): a method in which titania particles are applied to the first protective layer, immersed in a Group IIa component solution under reduced pressure or pressure, and then heat-treated. In these cases,
The proportion of the Group IIa component to the refractory metal oxide of the second protective layer is 30 wt% or less, more preferably 20 wt%, in terms of the Group IIa element.
%. If the content exceeds 30 wt%, the response of the sensor gradually deteriorates, that is, clogging starts to occur.

電極或いは触媒としての貴金属の耐久劣化を防ぐため
には,耐熱性金属酸化物の少なくとも一部が,非化学量
論的化合物例えばTiO2-Xとして存在することが必要であ
る。但し,全て非化学量論的化合物である必要はなく,
化学量論的化合物(例えばTiO2,Al2O3,スピネル)と共
にII a族成分を分散担持させることもできる。この場
合,非化学量論的化合物と化学量論的化合物との存在割
合は3:2以上,より好ましくは2:1以上にするとよい。
In order to prevent deterioration of the durability of the noble metal as an electrode or a catalyst, it is necessary that at least a part of the refractory metal oxide is present as a non-stoichiometric compound such as TiO 2 -X . However, not all need to be non-stoichiometric compounds.
A Group IIa component can be dispersed and supported together with a stoichiometric compound (eg, TiO 2 , Al 2 O 3 , spinel). In this case, the proportion of the non-stoichiometric compound to the stoichiometric compound is preferably 3: 2 or more, more preferably 2: 1 or more.

又,貴金属好ましくはPtを,非化学量論的化合物に対
して2mol%以下(但し,濃い(リッチ)排ガス条件では
1.5mol%以下)の量で含有させることにより初期での制
御A/Fのバラツキを更におさえることができる。この場
合,第2保護層はII a族成分と貴金属とを同一部に存在
させてもよいが,貴金属を担持してなる部分(第1保護
部)とII a族成分を担持してなる成分(第2保護部)と
をもって構成させてもよい。しかし,その場合には特に
第2保護部をより外側に配置させる必要がある。この第
1,第2保護部を構成する耐熱性金属酸化物については,
いずれも非化学量論的化合物であることが好ましい。第
1保護部については,非化学量論的化合物が60%以上あ
ることが必要である。又,II a族成分は保護層を構成す
る耐熱性金属酸化物とは独立して存在することが好まし
い。「独立して」とはII a族成分がこれら金属酸化物と
反応して例えばMgTiO3のようなSi成分に対して不活性な
化合物を形成していないことをいう。
In addition, noble metal, preferably Pt, is less than 2 mol% based on the non-stoichiometric compound
(1.5 mol% or less), the variation in the control A / F at the initial stage can be further suppressed. In this case, the second protective layer may contain the group IIa component and the noble metal in the same part, but the part carrying the noble metal (first protective part) and the component carrying the IIa group component (A second protection unit). However, in this case, it is particularly necessary to dispose the second protection portion more outside. This second
1, Regarding the heat-resistant metal oxide that constitutes the second protection part,
Both are preferably non-stoichiometric compounds. For the first protection unit, it is necessary that the non-stoichiometric compound is at least 60%. It is preferable that the group IIa component exists independently of the heat-resistant metal oxide constituting the protective layer. It refers to II a group component does not form a inert compound against Si components such as to e.g. MgTiO 3 react with these metal oxides as "independently".

又,前記第2保護層よりも内側において電極を直接被
覆して位置し,II a族成分を含有しない保護層(第1保
護層)を備えるとよい。第1保護層についても耐熱性金
属酸化物からなり,特に,スピネル(MgO・Al2O3),ア
ルミナが好ましく,溶射にて強固に付着させたものが良
い。この第1保護層中に,貴金属例えばPtおよび/また
はRn,Pdの含有を行なう事は,排ガス中の未燃成分の酸
化,還元を完全に行ない,センサにとって良好な制御A/
Fを示す事になる。なお,第2保護層の外側に例えばチ
タニア,アルミナ,スピネル等からなる第3保護層を更
にに備えてもよい。
Further, it is preferable to provide a protective layer (first protective layer) which is located inside the second protective layer so as to directly cover the electrode and does not contain a group IIa component. The first protective layer is also made of a heat-resistant metal oxide, and is particularly preferably spinel (MgO.Al 2 O 3 ) or alumina, and is preferably one that is firmly attached by thermal spraying. The inclusion of a noble metal such as Pt and / or Rn, Pd in the first protective layer completely oxidizes and reduces unburned components in the exhaust gas, and provides good control for the sensor.
F will be shown. Note that a third protective layer made of, for example, titania, alumina, spinel, or the like may be further provided outside the second protective layer.

尚,各保護層はセンサ応答性を劣化しない程度の通気
性を必要とすることは勿論である。そのため,第1保護
層については例えば気孔率10〜30%,厚み10〜150μm,
第2保護層については例えば気孔率8〜35%,厚み10〜
50μmにするとよい。
Needless to say, each protective layer needs to have air permeability that does not degrade sensor responsiveness. Therefore, for the first protective layer, for example, the porosity is 10 to 30%, the thickness is 10 to 150 μm,
For the second protective layer, for example, a porosity of 8 to 35% and a thickness of 10 to
It is good to set it to 50 μm.

又,センサ素子本体例えばジルコニア固体電解質の測
定電極側表面は凸凹10μm以上を有した構造にするとよ
い。保護層の剥離を防止して,耐久性に優れる。
The sensor element body, for example, the surface of the zirconia solid electrolyte on the measurement electrode side may have a structure having irregularities of 10 μm or more. Excellent protection by preventing peeling of the protective layer.

センサ素子の本体材料としては,ZrO2固体電解質の他,
TiO2,CoO半導体等であってもよい。非化学量論的化合物
としてチタニアの外,酸化ランタンであってもよい。又
ヒータの種類,材質(例えばセラミック),取付位置等
は,上記作用を発揮できる限り,問わない。
The main material of the sensor element is ZrO 2 solid electrolyte,
It may be a TiO 2 , CoO semiconductor or the like. The non-stoichiometric compound may be lanthanum oxide in addition to titania. The type, material (for example, ceramic), mounting position, and the like of the heater are not limited as long as the above-mentioned effects can be exhibited.

[実施例] 実施例A(第1表,試料No.1〜14) 1.下記工程1〜9によってセンサ素子本体(電極,第1
保護層を備えたもの)を製作する。
[Example] Example A (Table 1, Sample Nos. 1 to 14) 1. The sensor element body (electrode, first
With protective layer).

工程1: 純度99%以上のZrO2に純度99%のY2O3を5mol%添加
し,湿式混合した後,1300℃で2時間仮焼する。
Step 1: 5 mol% of 99% pure Y 2 O 3 is added to 99% or more pure ZrO 2 , and the mixture is wet-mixed and calcined at 1300 ° C. for 2 hours.

工程2: 水を加えボールミル中にて湿式にて粒子の80%が2.5
μm以下の粒径になるまで粉砕する。
Process 2: 80% of the particles are 2.5% wet in a ball mill by adding water
Grind to a particle size of μm or less.

工程3: 水溶性バインダを添加し,スプレードライにて平均粒
径70μmの球状の造粒粒子を得る。
Step 3: A water-soluble binder is added, and spherical granulated particles having an average particle size of 70 μm are obtained by spray drying.

工程4: 工程3にて得た粉末をラバープレスし所望の管状(U
字管状)に成形し乾燥後,砥石にて所定の形状に研削す
る。
Step 4: The powder obtained in step 3 is rubber-pressed and the desired tube (U
After drying and grinding, it is ground to a predetermined shape with a grindstone.

工程5: 外面上に,工程3で得た造粒粒子に水溶性バインダ繊
維素グリコール酸ナトリウム及び溶剤を添加した泥漿を
付着させる。
Step 5: A slurry containing a water-soluble sodium binder cellulose glycolate and a solvent is attached to the granulated particles obtained in step 3 on the outer surface.

工程6: 乾燥後,1500℃×2Hrsにて焼成する。検出部に対応す
る部分について,軸方向長25mm,外径約5mmφ,内径約3m
mφとした。
Step 6: After drying, firing at 1500 ° C. × 2 hrs. Axial length 25mm, outer diameter about 5mmφ, inner diameter about 3m
mφ.

工程7: 無電解メッキにより,外面にPt測定電極層を厚さ0.9
μmに析着させ,その後1000℃で焼付する。
Step 7: Pt measurement electrode layer with a thickness of 0.9 on the outer surface by electroless plating
Deposit to a thickness of μm and then bake at 1000 ° C.

工程8: MgO・Al2O3(スピネル)の粉末にてプラズマ溶射して
厚さ約100μmの電極を直接被覆する第1保護層を形成
する。
Step 8: forming a first protective layer directly covering the electrode having a thickness of about 100 μm by plasma spraying with MgO · Al 2 O 3 (spinel) powder.

工程9: 工程7と同様にして,内面にPt基準電極層を形成し
た。
Step 9: A Pt reference electrode layer was formed on the inner surface in the same manner as in step 7.

2.Pt0.05g/のH2PtCl6溶液に素子のスピネル溶射を入
れ真空引きし,第1保護層中に貴金属(Pt)を担持させ
た。その担持量は第1保護層の金属酸化物に対して約0.
02〜0.05wt%である。
2. Spinel spraying of the element was performed in a 0.05 g / Pt H 2 PtCl 6 solution, and the element was evacuated to carry a noble metal (Pt) in the first protective layer. The amount of the carrier is about 0.1 with respect to the metal oxide of the first protective layer.
02 to 0.05 wt%.

3.平均粒径0.2μm程度のTiO2-X粉末にCaCl2・2H2O(純
水にて溶かしたもの)等のII a族成分を加え,煮騰撹拌
しながら乾燥しその後550℃にて熱処理した。試料No.1
1,12はα−Al2O3も配合した。尚,TiO2-X粉末は,TiO2
子を予め非酸化性雰囲気600℃以上で処理することによ
って得た。TiO2に対して0.01mol%程度の貴金属を含有
させても,非化学量論的化合物にすることができる。チ
タニア粉末に貴金属を担持させるときは,予め所望の貴
金属含有塩溶液中にチタニア粒子を入れ煮沸乾燥し,そ
の後大気中550℃にて熱処理させた。
3. Add a Group IIa component such as CaCl 2 · 2H 2 O (dissolved in pure water) to TiO 2-X powder with an average particle size of about 0.2μm, dry while boiling and then 550 ℃ And heat treated. Sample No.1
1,12 also contained α-Al 2 O 3 . The TiO 2-X powder was obtained by treating TiO 2 particles in a non-oxidizing atmosphere at 600 ° C. or higher in advance. Even if about 0.01 mol% of a noble metal is contained in TiO 2 , a non-stoichiometric compound can be obtained. When the noble metal was supported on the titania powder, the titania particles were previously placed in a desired noble metal-containing salt solution, dried by boiling, and then heat-treated at 550 ° C. in the atmosphere.

4.2で得た素子に,3で得た粉末に有機バインダとブチル
カルビトールを加え,筆にて塗布,焼付した。焼付は50
0℃の還元雰囲気で行なった。
To the device obtained in 4.2, an organic binder and butyl carbitol were added to the powder obtained in 3 and applied and baked with a brush. Baking is 50
Performed at 0 ° C. in a reducing atmosphere.

5.公知のセンサ組付を行った。5. A known sensor was assembled.

実施例B(第2表,試料No.15〜27) 1,2.前記Aの1,2と同じ 3.1で得た素子に,平均粒径0.2μm程度のTiO2-X粉末に
有機バインダとブチルカルビトールを加え,筆にて塗
布,乾燥した。乾燥は120℃大気中にて行った。
Example B (Table 2, Samples Nos. 15 to 27) 1,2. Same as 1 and 2 in A. The device obtained in 3.1 was combined with TiO 2-X powder having an average particle size of about 0.2 μm and an organic binder. Butyl carbitol was added, applied with a brush and dried. Drying was performed at 120 ° C. in the atmosphere.

4.CaCl2・2H2Oを水にて溶かし,3で得た素子の塗布部を
入れ,真空引きした。その際,Ca濃度を各種変更させ
た。その後,100℃大気中にて乾燥を行った。
4. CaCl 2 · 2H 2 O was dissolved in water, the coated part of the device obtained in 3 was put in, and vacuum was drawn. At that time, the Ca concentration was changed variously. Thereafter, drying was performed at 100 ° C. in the atmosphere.

実施例C(第3表,試料28〜35) (a)センサ素子の製造 前記実施例A又はBと同じ。Example C (Table 3, Samples 28 to 35) (a) Production of sensor element Same as Example A or B above.

(b)ヒータの製造等 1.Al2O3を主成分とするシートを厚み0.8mmにドクターブ
レード法にて成形した。
(B) Manufacture of heater etc. 1. A sheet mainly composed of Al 2 O 3 was formed to a thickness of 0.8 mm by a doctor blade method.

2.スクリーン印刷法によりWを主成分とし有機バインダ
と溶剤を加えたペーストにて,導電性パターンを印刷し
た。
2. A conductive pattern was printed by a screen printing method using a paste containing W as a main component and an organic binder and a solvent.

3.更にAl2O3を主成分とし有機バインダと溶剤を加えた
ペーストにて厚30μmコーティングした。
3. Further, a 30 μm-thick coating was performed with a paste containing Al 2 O 3 as a main component and an organic binder and a solvent.

4.Al2O3を主成分とする外径2mmの碍管に3で得たシート
を巻きつけ400℃にて24Hrを樹脂抜きし,1550℃×2Hrsに
て焼成した。
4. The sheet obtained in step 3 was wound around an insulator 2 mm in outer diameter containing Al 2 O 3 as a main component, 24Hr was removed from the resin at 400 ° C, and fired at 1550 ° C × 2Hrs.

5.端子部にリード線を銀ロー付けしてヒータを得た。5. A lead wire was soldered to the terminals to obtain a heater.

6.素子を組付ける時に袋状素子の内側に接触しないよう
に1〜5で得たヒータを挿入した。
6. The heater obtained in 1 to 5 was inserted so as not to contact the inside of the bag-shaped element when assembling the element.

実施例D(第3表,試料37〜39) 1.ZrO2+Y2O35モル%を主成分とするシートを厚み0.8mm
にドクターブレード法にて成形した。
Example D (Table 3, Samples 37 to 39) 1. A sheet containing 5 mol% of ZrO 2 + Y 2 O 3 as a main component was 0.8 mm thick.
Was formed by a doctor blade method.

2.スクリーン印刷法によりPtを主成分とし,有機バイン
ダと溶剤を加えたペーストにて電極を20μm厚両面に印
刷した。
2. The electrodes were printed on both sides with a thickness of 20 μm using a paste containing Pt as a main component, an organic binder and a solvent by a screen printing method.

3.該電極を被覆する様にAl2O3を主成分とし,有機バイ
ンダと溶剤とを加え更に多孔質にする為テンプン等を少
量加えたペーストにて厚み30μmコーティングした。
3. A 30 μm thick coating was made with a paste containing Al 2 O 3 as a main component, an organic binder and a solvent, and a small amount of starch or the like to make the electrode more porous so as to cover the electrode.

4.1と同様のシート上にAl2O3を主成分とし有機バインダ
と溶剤とを加えたペーストを厚み30μmに両面にコーテ
ィングした。
The same sheet as in 4.1 was coated on both sides with a paste containing Al 2 O 3 as a main component and an organic binder and a solvent in a thickness of 30 μm.

5.2と同様のペーストにて20μmヒータパターンを印刷
した。
A 20 μm heater pattern was printed with the same paste as in 5.2.

6.更に4を繰り返した(ただしヒータパターン上の面の
み)。
6. Step 4 was repeated (however, only the surface on the heater pattern).

7.1と同様のシートをコの字状に切断しスペーサ用シー
トを1〜3で得た電極印刷シートと4〜6で得たヒータ
パターン内在シートとの間に配置して熱圧着した。
The same sheet as in 7.1 was cut into a U-shape, and a spacer sheet was placed between the electrode printing sheet obtained in 1 to 3 and the heater pattern-containing sheet obtained in 4 to 6 and thermocompression-bonded.

8.400℃24Hr樹脂抜きした後1500℃×4Hrの焼成を行なっ
た。
8. After baking out the resin at 400 ° C for 24 hours, baking was performed at 1500 ° C for 4 hours.

9.チタニア及びII a族成分担持保護層を形成した。この
第2保護層については,試料No.37は実施例Aの試料No.
3におけるもの,又試料No.38,39は実施例Bの試料No.1
7,18におけるものと同様にした。
9. A protective layer carrying titania and IIa group components was formed. Regarding the second protective layer, the sample No. 37 is the sample No. of the example A.
3 and Sample Nos. 38 and 39 correspond to Sample No. 1 of Example B.
Same as in 7,18.

実施例E(第4表,試料No.40〜55,60,61) 1.前記実施例Aの1(工程1〜9)と同じ。Example E (Table 4, Sample Nos. 40 to 55, 60, 61) 1. Same as 1 (Steps 1 to 9) in Example A.

試料No.45〜48については,前記実施例Aの2と同様
にして第1保護層中に貴金属を含浸させた。
For samples 45 to 48, the first protective layer was impregnated with a noble metal in the same manner as in Example A-2.

2.TiO2粉末(平均粒径0.3μm)をPt0.05g/〜1g/の
H2PtCl6溶液及び/又はRh0.05g/のRnCl3・xH2O溶液に
浸し,50〜100mmHgの圧力下で約5分放置して,TiO2に対
してPt又はRhが1mol%相当になるように含浸させた。次
に,乾燥した後,600℃大気中にて処理して,熱処理を行
ない,更に有機バインダと溶剤にてペーストとした。
2. TiO 2 powder (average particle size 0.3μm) with Pt0.05g / ~ 1g /
Dipped in H 2 PtCl 6 solution and / or Rh0.05G / of RnCl 3 · xH 2 O solution, and left for about 5 minutes at a pressure of 50~100MmHg, Pt or Rh respect TiO 2 is the 1 mol% equivalent Impregnation. Next, after drying, it was treated in the air at 600 ° C., heat treated, and further made into a paste with an organic binder and a solvent.

3.このペーストを第1保護層に塗布し,120℃にて乾燥し
た(第1保護部,20μm厚)。
3. This paste was applied to the first protective layer and dried at 120 ° C. (first protective part, 20 μm thick).

4.チタニア粉末をCaCl2・2H2Oなどの溶液中に入れ,煮
沸しながら乾燥した。その後水溶性バインダと水にてペ
ーストとした。TiO2に対して,II a族金属換算で20wt%
とした。
4. The titania powder was placed in a solution such as CaCl 2 · 2H 2 O and dried while boiling. Thereafter, a paste was formed with a water-soluble binder and water. 20 wt% of TiO 2 in terms of Group IIa metal
And

5.このペーストを第1保護部上に塗布し,600℃にて焼付
けた。(第2保護部,20μm厚)。
5. This paste was applied on the first protection part and baked at 600 ° C. (2nd protection part, 20 μm thickness).

6.第2保護層(第1,第2保護部からなる)上に適宜第3
保護層を形成した。その他,第4表に示すように各種の
多層構造からなる試料を作成した。
6. The third protection layer is formed on the second protection layer (consisting of the first and second protection parts).
A protective layer was formed. In addition, samples having various multilayer structures as shown in Table 4 were prepared.

7.公知のセンサ組付を行った。7. A known sensor was assembled.

実施例F(第4表,試料No.56〜59) 1.前記実施例Dの1〜8と同じ。但しNo.58,59について
は,実施例A−2と同様にしてAl2O3からなる保護層に
貴金属を含有させた。
Example F (Table 4, Sample Nos. 56 to 59) 1. Same as 1 to 8 in Example D. However, for Nos. 58 and 59, the noble metal was contained in the protective layer made of Al 2 O 3 in the same manner as in Example A-2.

2.実施例Eの3と同様なペーストを塗布,600℃大気中に
て焼付けて第1保護部を形成した(20μm)。
2. The same paste as in Example E-3 was applied and baked in the air at 600 ° C. to form a first protective portion (20 μm).

3.実施例Eの5と同様なペーストを塗布,600℃大気中に
て焼付けて第2保護部を形成した(20μm)。
3. The same paste as in Example E-5 was applied and baked in the air at 600 ° C. to form a second protective portion (20 μm).

4.こうして得られた素子の両側に,一対の支持体をガラ
スシールによって取付けた。
4. A pair of supports were mounted on both sides of the element thus obtained by glass seals.

5.公知のセンサ組付を行なった。5. A known sensor was assembled.

本発明は上記実施例に限定されるものではなく,種々
のタイプの空燃比制御用酸素センサ,例えばポンプ等を
併設してなる全域空燃比制御用センサ(第7図),又Ti
O2,CoO等の金属酸化物半導体を利用したセンサ(第8
図)にも適用与できる。半導体型センサの場合,例えば
半導体である金属酸化物中に貴金属を含有させ,スピネ
ル等の溶射層を備え,II a族成分を含有する第2保護層
を備えてもよい。
The present invention is not limited to the above-described embodiment. Various types of air-fuel ratio control oxygen sensors, for example, a full-range air-fuel ratio control sensor provided with a pump or the like (FIG. 7),
Sensors using metal oxide semiconductors such as O 2 and CoO (No. 8
Figure) can also be applied. In the case of a semiconductor type sensor, for example, a noble metal may be contained in a metal oxide which is a semiconductor, a thermal sprayed layer such as spinel may be provided, and a second protective layer containing a group IIa component may be provided.

尚,第1〜8図は本発明に係る酸素センサの例を示し
たもので,各図において,1はセンサ素子本体,2は基準電
極,3は測定電極,4は第1保護層,5は第2保護層,5aは耐
熱性金属酸化物(特に非化学量論的化合物),5bはII a
族成分,6はヒータを夫々表わす。
1 to 8 show examples of the oxygen sensor according to the present invention. In each of the drawings, 1 is a sensor element main body, 2 is a reference electrode, 3 is a measurement electrode, 4 is a first protective layer, 5 Is a second protective layer, 5a is a refractory metal oxide (especially a non-stoichiometric compound), and 5b is IIa
Group components 6 represent heaters respectively.

[試験] 各試料について,次のような試験を行なった。[Test] The following tests were performed for each sample.

1.実車にてセンサ初期の制御A/Fを測定した。測定方法
はマニホールドにセンサを取付け,80km/Hr×8psの走行
状態に固定した時のセンサによる制御を行い,その排ガ
スを空燃比計にてA/Fを計測した。
1. The control A / F at the initial stage of the sensor was measured with a real vehicle. The sensor was mounted on the manifold and controlled by the sensor when it was fixed at a running state of 80 km / Hr × 8 ps. The A / F of the exhaust gas was measured with an air-fuel ratio meter.

2.排気管(マニホールド−1m程下流)にセンサを取付
け,更にマニホールド部からSiオイルを5cc/30分の割合
で1Hr(10cc)を注入しながら3000rpm(但しヒータ付に
ついてはNo.28〜39を除き1000rpm)にてエンジンを動か
した[Siテスト]。雰囲気はλ≒1近傍にて行なった。
2. Attach a sensor to the exhaust pipe (manifold about 1 m downstream), and inject 1Hr (10 cc) of Si oil from the manifold at a rate of 5 cc / 30 min. 3000 rpm (However, No. 28 to 39 for heater type) The engine was operated at 1000 rpm except for [Si test]. The atmosphere was around λ ≒ 1.

3.1は測定を行い,初期と耐久後のA/Fの変化(ΔA/F)
を求めた。又センサの応答性として高速応答レコーダに
てセンサ出力をモニタした(例えば第10図)。そして,
第11図に示すように平均値な直線を結び300,600mV間の
時間(TLR,TRL)を,Siテスト後に計測した。
3.1 Measures and changes A / F at initial and endurance (ΔA / F)
I asked. The sensor output was monitored by a high-speed response recorder as the response of the sensor (for example, FIG. 10). And
As shown in FIG. 11, an average straight line was connected, and the time (T LR , T RL ) between 300 and 600 mV was measured after the Si test.

4.又,試料No.28〜39については,Siオイル注入時のE/G
回転1000rpm及び3000rpmにおいて,ヒータを通電させ
(試料No.35は除く),センサの制御状態を観察した。
4. For sample Nos. 28 to 39, the E / G
At rotations of 1000 rpm and 3000 rpm, the heater was energized (except for sample No. 35), and the control state of the sensor was observed.

5.又,実車エンジンにてλ≒1,850℃(30分)アイド
ル(30分)1000Hrsの熱サイクルテストを行ない,制御A
/Fを測定した。
5. In addition, a thermal cycle test of λ ≒ 1,850 ° C (30 minutes) idle (30 minutes) 1000Hrs was performed with the actual vehicle engine, and control A
/ F was measured.

これらの結果を第1〜4表及び第12,13図に示す。 The results are shown in Tables 1 to 4 and FIGS.

第1表〜第4表から明らかなように,本発明範囲外で
ある比較試料はSiテストにおいて,A/F変動が大きく(Δ
A/F≧0.08),立下り応答性も遅くなる(TRL≧120m
S)。又,熱サイクルテストにおいても,A/F変動が大き
い(ΔA/F=0.04)。
As is clear from Tables 1 to 4, the comparative samples outside the scope of the present invention showed large A / F fluctuations (Δ
A / F ≧ 0.08), falling response is slow (T RL ≧ 120m)
S). Also, in the thermal cycle test, the A / F fluctuation is large (ΔA / F = 0.04).

これに対して,各実施例試料はSiテストにおいて,A/F
変動が顕著に抑制され(ΔA/F≦0.04),応答性も高水
準に維持される(TRL≦90mS)。又,熱サイクルテスト
においてもA/F変動が抑制される(ΔA/F≦0.02)。
On the other hand, each of the samples of the examples had A / F
The fluctuation is remarkably suppressed (ΔA / F ≦ 0.04), and the response is maintained at a high level (T RL ≦ 90 mS). Also, in the thermal cycle test, A / F fluctuation is suppressed (ΔA / F ≦ 0.02).

又,第3表の結果から,1000rpm,300℃の低回転(低
温)時においては,ヒータが存在しない場合(試料No.3
5)ΔA/Fが大きくなってしまう。これは低温時にSiが混
入した場合,II a族成分による吸着効果が弱まるためと
考えられる。これに対して,ヒータを備えた本実施例の
各素子No.28〜34,No.37〜39はこの低温時におけるSiテ
スト後においてもA/F変動を顕著に抑制できる(ΔA/F≦
0.05)。
Also, from the results in Table 3, it can be seen that when the rotation speed is low (low temperature) at 1000 rpm and 300 ° C, the heater is not present (Sample No. 3).
5) ΔA / F increases. This is thought to be due to the fact that when Si is mixed at low temperature, the adsorption effect by the IIa group component is weakened. On the other hand, each of the elements Nos. 28 to 34 and Nos. 37 to 39 of this embodiment having the heater can significantly suppress the A / F fluctuation even after the Si test at this low temperature (ΔA / F ≦
0.05).

なお,第2保護層についてII a族成分と貴金属とを別
個の保護部に存在させた場合,A/Fの初期値はリッチ制御
の傾向にあることも確認された(第4表)。
It was also confirmed that when the IIa group component and the noble metal were present in separate protective portions for the second protective layer, the initial value of A / F tended to be richly controlled (Table 4).

[発明の効果] 以上の如く本発明によれば,排ガス中にSi成分が存在
しても,その被毒を防いでA/Fを集中でき,かつ立ち下
がり応答性も優れる。加えて,エンジンの低回転時にお
いてもSi被毒による性能劣化を確実に防止することもで
きる。
[Effects of the Invention] As described above, according to the present invention, even if the Si component is present in the exhaust gas, A / F can be concentrated while preventing poisoning, and the fall response is excellent. In addition, performance degradation due to Si poisoning can be reliably prevented even at low engine speeds.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の作用を示すセンサの一部断面図, 第2図は本発明の酸素センサの一例を示す一部断面図, 第3図,第4図は本発明の作用を示すセンサの一部断面
図(第3図はヒータ無の場合,第4図はヒータ有の場
合), 第5図は本発明の酸素センサの一例(袋状)を示す一部
断面図, 第6図は本発明の酸素センサの一例(板状)を示す一部
断面図, 第7図は本発明に係る全域空燃比制御用酸素センサ(ポ
ンプ素子を併設したもの)の一例を示す断面図, 第8図は本発明に係る半導体型酸素センサの一例を示す
図であって,第8(a)図はその平面図(但し保護層は
省略),第8(b)図はその断面図, 第9図はテスト後における制御中の出力を示す波形の略
図, 第10図,第11図はセンサ出力の波形の一例及び計測時間
(TLR,TRL)を規定する図, 第12図は初期及び耐久後の制御A/Fの変化を示すグラ
フ,そして 第13図は初期及び耐久後の(TLR,TRL)の変化を示すグ
ラフ, を夫々表わす。 A……酸素センサ、B……酸素センサ素子 1……素子本体、2……測定電極 4……第1保護層、5……第2保護層 5a……耐熱性金属酸化物 (特に非化学量論的化合物) 5b……II a族成分
1 is a partial cross-sectional view of a sensor showing the operation of the present invention, FIG. 2 is a partial cross-sectional view showing an example of the oxygen sensor of the present invention, and FIGS. 3 and 4 are sensors showing the operation of the present invention. (FIG. 3 is a case without a heater, FIG. 4 is a case with a heater), FIG. 5 is a partial cross-sectional view showing an example (bag shape) of the oxygen sensor of the present invention, FIG. FIG. 7 is a partial cross-sectional view showing an example (plate-like) of the oxygen sensor of the present invention. FIG. 7 is a cross-sectional view showing an example of an oxygen sensor for whole-range air-fuel ratio control (with a pump element) according to the present invention. FIG. 8 is a view showing an example of a semiconductor type oxygen sensor according to the present invention, wherein FIG. 8 (a) is a plan view thereof (a protective layer is omitted), FIG. 8 (b) is a sectional view thereof, and FIG. Figure 9 waveforms showing the output in the control after the test schematic, FIG. 10, FIG. 11 example and measurement time of the waveform of sensor output (T LR, T RL) and Diagram for the constant, Figure 12 is a graph showing the initial and change of the control A / F after durability and Figure 13, represents respectively graphs, showing changes in initial and after endurance of (T LR, T RL). A: oxygen sensor, B: oxygen sensor element 1: element body, 2: measuring electrode 4: first protective layer, 5: second protective layer 5a: heat-resistant metal oxide (particularly non-chemical Stoichiometric compound) 5b ... II group a component

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石黒 宏之 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (72)発明者 山農 勝 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 昭59−222754(JP,A) 特開 昭60−66154(JP,A) 特開 平1−97855(JP,A) 特開 昭60−205343(JP,A) 特開 昭61−137053(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Ishiguro 14-18 Takatsuji-cho, Mizuho-ku, Nagoya, Aichi Prefecture Inside Japan Specialty Ceramics Co., Ltd. No. 18 Japan Special Ceramics Co., Ltd. (56) References JP-A-59-222754 (JP, A) JP-A-60-66154 (JP, A) JP-A-1-97855 (JP, A) JP-A-60 -205343 (JP, A) JP-A-61-137053 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排気ガス中の酸素濃度を検出するセンサに
おいて,センサ素子の排気ガスにさらされる側に耐熱性
金属酸化物からなり周期率表II a族元素からなる成分
(以下,「II a族成分」という)を担持した保護層を備
え,該保護層の少なくとも一部が耐熱性金属酸化物につ
いて非化学量論的化合物として存在していることを特徴
とする酸素センサ。
In a sensor for detecting oxygen concentration in exhaust gas, a component composed of a heat-resistant metal oxide and a group IIa element of a periodic table (hereinafter referred to as "IIa") is provided on a side of the sensor element exposed to the exhaust gas. An oxygen sensor comprising a protective layer carrying a group III component), wherein at least a portion of the protective layer is present as a non-stoichiometric compound for the refractory metal oxide.
【請求項2】排気ガス中の酸素濃度を検出するセンサに
おいて,センサ素子を加熱するヒータを備え,センサ素
子の排気ガスにさらされる側に耐熱性金属酸化物からな
りII a族成分を担持した保護層を備え,該保護層の少な
くとも一部が耐熱性金属酸化物について非化学量論的化
合物として存在していることを特徴とする酸素センサ。
2. A sensor for detecting the concentration of oxygen in exhaust gas, comprising a heater for heating the sensor element, wherein a heat-resistant metal oxide made of a heat-resistant metal oxide is carried on a side of the sensor element exposed to the exhaust gas. An oxygen sensor comprising a protective layer, wherein at least a part of the protective layer is present as a non-stoichiometric compound for the refractory metal oxide.
【請求項3】保護層が貴金属をも含有している請求項1,
2の一記載の酸素センサ。
3. The protective layer according to claim 1, further comprising a noble metal.
An oxygen sensor according to item 2.
【請求項4】排気ガス中の酸素濃度を検出するセンサに
おいて,センサ素子の排気ガスにさらされる側に耐熱性
金属酸化物からなりII a族成分及び貴金属を担持した保
護層を備え,該保護層の少なくとも一部が耐熱性金属酸
化物について非化学量論的化合物として存在し,貴金属
が担持された部分がII a族成分が担持された部分よりも
電極に近接して位置することを特徴とする酸素センサ。
4. A sensor for detecting oxygen concentration in exhaust gas, comprising a protective layer made of a heat-resistant metal oxide and carrying a Group IIa component and a noble metal on a side of the sensor element exposed to the exhaust gas. Characterized in that at least a part of the layer exists as a non-stoichiometric compound with respect to the refractory metal oxide, and the noble metal-supported part is located closer to the electrode than the part supporting the IIa group component. Oxygen sensor.
【請求項5】排気ガス中の酸素濃度を検出するセンサに
おいて,センサ素子を加熱するヒータを備え,センサ素
子の排気ガスにさらされる側に耐熱性金属酸化物からな
りII a族成分及び貴金属を担持した保護層を備え,該保
護層の少なくとも一部が耐熱性金属酸化物について非化
学量論的化合物として存在し,貴金属が担持された部分
がII a族成分が担持された部分よりも電極に近接して位
置することを特徴とする酸素センサ。
5. A sensor for detecting the concentration of oxygen in exhaust gas, comprising a heater for heating the sensor element, wherein a heat-resistant metal oxide comprising a heat-resistant metal oxide is provided on the side of the sensor element exposed to the exhaust gas. A protective layer supported thereon, wherein at least a part of the protective layer is present as a non-stoichiometric compound with respect to the refractory metal oxide, and the portion where the noble metal is supported is more electrode than the portion where the group IIa component is supported. An oxygen sensor, which is located in close proximity to a sensor.
【請求項6】非化学量論的化合物がチタニアであり,該
チタニア粒子にII a族成分を分散担持してなる保護層で
あることを特徴とする請求項1,2,4,5の一記載の酸素セ
ンサ。
6. The method according to claim 1, wherein the non-stoichiometric compound is titania and the titania particles are a protective layer in which a Group IIa component is dispersed and supported. An oxygen sensor according to any of the preceding claims.
【請求項7】センサ素子の本体がZrO2固体電解質からな
ることを特徴とする請求項1,2,4,5の一記載の酸素セン
サ。
7. The oxygen sensor according to claim 1, wherein the main body of the sensor element is made of a ZrO 2 solid electrolyte.
【請求項8】前記II a族成分を含有しない保護層が貴金
属を含有し,センサ素子の本体の測定電極側表面が凸凹
10μm以上を有する請求項1,2,4,5の一記載の酸素セン
サ。
8. The protective layer containing no Group IIa component contains a noble metal, and the surface of the sensor element body on the side of the measuring electrode is uneven.
The oxygen sensor according to any one of claims 1, 2, 4, and 5, wherein the oxygen sensor has a thickness of 10 µm or more.
JP1252025A 1988-11-01 1989-09-29 Oxygen sensor for prevention of Si poisoning Expired - Fee Related JP2748031B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1252025A JP2748031B2 (en) 1988-11-01 1989-09-29 Oxygen sensor for prevention of Si poisoning
DE68927087T DE68927087T2 (en) 1988-11-01 1989-10-31 Oxygen-sensitive sensor and method for its production
EP89120196A EP0369238B1 (en) 1988-11-01 1989-10-31 Oxygen sensor and method for producing same
US08/408,132 US5849165A (en) 1988-11-01 1995-03-21 Oxygen sensor for preventing silicon poisoning
HK9997A HK9997A (en) 1988-11-01 1997-01-23 Oxygen sensor and method for producing same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP63-276743 1988-11-01
JP63-276744 1988-11-01
JP27674488 1988-11-01
JP27674388 1988-11-01
JP6394289 1989-03-17
JP1-63942 1989-03-17
JP1252025A JP2748031B2 (en) 1988-11-01 1989-09-29 Oxygen sensor for prevention of Si poisoning

Publications (2)

Publication Number Publication Date
JPH02222831A JPH02222831A (en) 1990-09-05
JP2748031B2 true JP2748031B2 (en) 1998-05-06

Family

ID=27464378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252025A Expired - Fee Related JP2748031B2 (en) 1988-11-01 1989-09-29 Oxygen sensor for prevention of Si poisoning

Country Status (1)

Country Link
JP (1) JP2748031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514001B2 (en) * 1995-08-31 2004-03-31 株式会社デンソー Oxygen sensor element
JP5637083B2 (en) * 2011-06-29 2014-12-10 トヨタ自動車株式会社 Gas sensor element and gas sensor

Also Published As

Publication number Publication date
JPH02222831A (en) 1990-09-05

Similar Documents

Publication Publication Date Title
US5849165A (en) Oxygen sensor for preventing silicon poisoning
US5160598A (en) Oxygen sensor for air-fuel ratio control having a protective layer including an oxygen storage material
US5443711A (en) Oxygen-sensor element
JP4923948B2 (en) Gas sensor element
JP4595264B2 (en) Oxygen sensor element and manufacturing method thereof
JPH05502719A (en) Resistance measurement sensor for gas composition detection and method for manufacturing this resistance measurement sensor
JPH06510854A (en) Exhaust gas sensor and its manufacturing method
US5445796A (en) Oxygen concentration sensor with heat resistant coating
JPWO2006103781A1 (en) Exhaust gas purification device and exhaust gas purification catalyst
US6210552B1 (en) Oxygen sensor
JPS61241657A (en) Oxygen sensor element
US4650697A (en) Process of manufacturing oxygen sensor
JP2000310610A (en) Gas sensor element and production thereof
JP2574452B2 (en) Oxygen sensor, method of manufacturing the same, and method of preventing poisoning
JP2748031B2 (en) Oxygen sensor for prevention of Si poisoning
EP1149623B2 (en) Catalyst and process for purifying exhaust gas
JP2589130B2 (en) Oxygen sensor element
JPH01203963A (en) Oxygen sensor element
JPH0810210B2 (en) Oxygen sensor for Si poison prevention
JP2589136B2 (en) Oxygen sensor element
JP2649405B2 (en) Oxygen sensor for controlling air-fuel ratio provided with a protective layer containing an oxygen storage material and a noble metal, and a method of manufacturing the same
JPH02212759A (en) Oxygen sensor and controlling air/fuel ratio with protective layer containing oxygen occluded material
JPH02212757A (en) Oxygen sensor for controlling air/fuel ratio with protective layer containing oxygen occluded material and making thereof
JP3623870B2 (en) Air-fuel ratio detection element, method for manufacturing the same, and method for stabilizing air-fuel ratio detection element
JPH0778483B2 (en) Oxygen detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees