JP2745805B2 - Manufacturing method of oxygen concentration sensor - Google Patents

Manufacturing method of oxygen concentration sensor

Info

Publication number
JP2745805B2
JP2745805B2 JP2291232A JP29123290A JP2745805B2 JP 2745805 B2 JP2745805 B2 JP 2745805B2 JP 2291232 A JP2291232 A JP 2291232A JP 29123290 A JP29123290 A JP 29123290A JP 2745805 B2 JP2745805 B2 JP 2745805B2
Authority
JP
Japan
Prior art keywords
electrode
oxygen concentration
sensor element
sensor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2291232A
Other languages
Japanese (ja)
Other versions
JPH04164245A (en
Inventor
良隆 神戸
和明 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2291232A priority Critical patent/JP2745805B2/en
Publication of JPH04164245A publication Critical patent/JPH04164245A/en
Application granted granted Critical
Publication of JP2745805B2 publication Critical patent/JP2745805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素濃度センサの製造方法、更に詳しくはセ
ンサ素子表面に電極を形成する工程が改良された酸素濃
度センサの製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxygen concentration sensor, and more particularly to a method for manufacturing an oxygen concentration sensor having an improved process of forming an electrode on a sensor element surface. .

〔従来の技術〕[Conventional technology]

酸素濃度センサを用いて自動車排気中の酸素濃度を検
出し、この値に基づいてエンジンに供給する空気と燃料
の比を制御することが広く行われている。酸素濃度セン
サには多くの種類が有るが、何れの種類においてもセン
サ素子は高温の排気に晒される。それ故、センサ素子は
耐熱性の高いセラミックで作られ且つセンサ素子の表面
には、電気信号を取り出すための耐熱金属からなる電極
が設けられる。
2. Description of the Related Art It has been widely practiced to detect an oxygen concentration in automobile exhaust gas using an oxygen concentration sensor and to control a ratio of air to fuel supplied to an engine based on this value. There are many types of oxygen concentration sensors, and in any case, the sensor element is exposed to high-temperature exhaust gas. Therefore, the sensor element is made of ceramic having high heat resistance, and an electrode made of a heat-resistant metal for extracting an electric signal is provided on the surface of the sensor element.

ところで、酸素濃度センサのセンサ素子表面に電極を
形成する方法としては、(1)化学メッキによる電極形
成方法、又は(2)導電性ペーストをスクリーン印刷し
た後焼成することによる電極形成方法が主流である。
(2)の方法においては種々の性状の導電性ペーストが
提案されており、例えば特開昭63−120482号公報にはセ
ンサ素子を構成するセラミック成分に対して融剤作用の
ある成分を加えてなる組成を有するセラミック材料を含
有している導電性ペーストを用いる電極形成方法が開示
されている。
By the way, as a method of forming an electrode on the sensor element surface of the oxygen concentration sensor, (1) an electrode forming method by chemical plating, or (2) an electrode forming method by screen-printing and firing a conductive paste is mainly used. is there.
In the method (2), conductive pastes of various properties have been proposed. For example, Japanese Patent Application Laid-Open No. 63-120482 discloses a method in which a component having a fluxing action is added to a ceramic component constituting a sensor element. An electrode forming method using a conductive paste containing a ceramic material having the following composition is disclosed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の2種類の電極形成方法にはそれぞれ特徴があ
る。すなわち、製造工程の上からは、(1)の方法は電
極を厚くするのに時間が掛かる(例えば厚さ1μmの電
極を得るのに24時間掛かる)という欠点がある。又、
(2)の方法は印刷技術上及び導電性ペースト製造上の
困難性により5μm以下の電極を得ることが難しいとい
う欠点がある。更に、センサ特性の上からは、(1)の
方法により製造したセンサ素子の電極(メッキ電極)は
応答性は良いが耐熱性が低く、反対に(2)の方法によ
り製造したセンサ素子の電極(ペースト電極)は応答性
は悪いが耐熱性が良い。これらをまとめると第5図及び
第6図の様になる。
Each of the above two types of electrode forming methods has its own characteristics. That is, from the viewpoint of the manufacturing process, the method (1) has a disadvantage that it takes time to thicken the electrode (for example, it takes 24 hours to obtain an electrode having a thickness of 1 μm). or,
The method (2) has a drawback that it is difficult to obtain an electrode of 5 μm or less due to difficulties in printing technology and production of a conductive paste. Further, from the viewpoint of sensor characteristics, the electrode (plated electrode) of the sensor element manufactured by the method (1) has good responsiveness but low heat resistance, and conversely, the electrode of the sensor element manufactured by the method (2). The (paste electrode) has low response but good heat resistance. These are summarized in FIGS. 5 and 6.

第5図に電極の厚さとセンサの応答性との関係及び電
極の厚さと電極の耐熱性との関係を示す。又、第6図に
センサ出力の時間変動を示す。第6図から、センサの応
答性が良い場合は排気中の酸素濃度の変動にセンサ出力
は正確に追従するが、センサの応答性が悪い場合は排気
中の酸素濃度の変動にセンサ出力が追従せず、正確な酸
素濃度の検出ができないことが分かる。
FIG. 5 shows the relationship between the electrode thickness and the response of the sensor and the relationship between the electrode thickness and the heat resistance of the electrode. FIG. 6 shows the time variation of the sensor output. As can be seen from FIG. 6, when the response of the sensor is good, the sensor output accurately follows the fluctuation of the oxygen concentration in the exhaust gas, but when the response of the sensor is poor, the sensor output follows the fluctuation of the oxygen concentration in the exhaust gas. It can be seen that accurate detection of the oxygen concentration was not possible.

それ故、実用上充分な耐熱性が得られるならば、電極
の厚さは薄いほうが良い。第5図から明らかな如く、電
極の厚さが1〜5μmの範囲ではセンサの応答性の応答
性と電極の耐熱性とが釣り合うので、最適な電極の厚さ
はこの範囲に有ることが予想される。しかしながら、従
来の方法では厚さが1〜5μmの範囲の電極を容易に且
つ生産性良くセンサ素子を形成すべきセラミック体の表
面に形成することができなかった。
Therefore, if sufficient heat resistance can be obtained for practical use, the thinner the electrode, the better. As is clear from FIG. 5, when the electrode thickness is in the range of 1 to 5 μm, the responsiveness of the sensor and the heat resistance of the electrode are balanced, so that it is expected that the optimum electrode thickness is in this range. Is done. However, in the conventional method, an electrode having a thickness in the range of 1 to 5 μm cannot be easily and efficiently formed on the surface of the ceramic body on which the sensor element is to be formed.

本発明は前記従来技術の問題点を解決するためのもの
である。本発明の目的は、センサ素子表面に電極を形成
する工程を改良することにより性能の優れた酸素濃度セ
ンサを容易に且つ生産性良く得ることができる方法を提
供することにある。
The present invention is to solve the above-mentioned problems of the prior art. An object of the present invention is to provide a method for improving the process of forming an electrode on the surface of a sensor element so that an oxygen concentration sensor having excellent performance can be obtained easily and with good productivity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の酸素濃度センサの製造方法は、酸素濃度セン
サを製造する際のセンサ素子表面に電極を形成する工程
が、 重量比で導電性金属粉末100部に対して、バインダー6
0部、溶剤50部、可塑剤5部、解膠剤3部及びセラミッ
ク粉末12.5部からなる組成の導電性ペーストをセンサ素
子を形成すべきセラミック体の表面にスクリーン印刷に
より塗布する工程と、 次いで前記センサ素子を焼成して表面に厚さ2〜3μ
mの電極層を形成する工程とからなることを特徴とす
る。
According to the method for manufacturing an oxygen concentration sensor of the present invention, the step of forming an electrode on the surface of the sensor element when manufacturing the oxygen concentration sensor includes the steps of:
Applying a conductive paste having a composition of 0 parts, 50 parts of a solvent, 5 parts of a plasticizer, 3 parts of a deflocculant and 12.5 parts of ceramic powder to the surface of a ceramic body on which a sensor element is to be formed by screen printing; Baking the sensor element to a thickness of 2 to 3 μm on the surface
m) forming an electrode layer.

導電性金属粉末としては、所定の平均粒径の貴金属例
えば白金、ロジウム、イリジウム等を単独又は組み合わ
せて使用することができる。
As the conductive metal powder, a noble metal having a predetermined average particle size, for example, platinum, rhodium, iridium or the like can be used alone or in combination.

バインダー、溶剤、可塑剤及び解膠剤は、この分野に
おいて慣用のものから適宜選択する。
The binder, solvent, plasticizer, and peptizer are appropriately selected from those commonly used in this field.

セラミック粉末は、焼成後に電極層がセンサ素子に強
固に結合するような種類のセラミックからなる粉末を選
択する。それ故、センサ素子を構成するセラミックと同
種のセラミックからなる粉末が好ましい。具体的には、
センサ素子を構成するセラミックとしてジルコニアやチ
タニアを使用する場合には、セラミック粉末としてジル
コニア粉末やチタニア粉末を使用するのが好ましい。
As the ceramic powder, a powder made of a type of ceramic such that the electrode layer is firmly bonded to the sensor element after firing is selected. Therefore, a powder made of the same type of ceramic as the ceramic constituting the sensor element is preferable. In particular,
When zirconia or titania is used as the ceramic constituting the sensor element, it is preferable to use zirconia powder or titania powder as the ceramic powder.

センサ素子の大きさや形状は、本発明の方法を適用し
得る限り特に限定されない。センサ素子の形状は、例え
ば板状、一端が閉じた筒状などであってよい。
The size and shape of the sensor element are not particularly limited as long as the method of the present invention can be applied. The shape of the sensor element may be, for example, a plate shape, a cylindrical shape with one end closed, or the like.

スクリーン印刷により、後の燃成で厚さ2〜3μmの
電極層を形成し得るような厚さの導電性ペースト層をセ
ンサ素子表面に塗布する。
By screen printing, a conductive paste layer having a thickness such that an electrode layer having a thickness of 2 to 3 μm can be formed by subsequent burning is applied to the sensor element surface.

〔作用〕[Action]

本発明の方法においては、導電性ペースト層の組成を
最適に選択することにより、センサ素子の表面に厚さ2
〜3μmの電極層を形成することができる。
In the method of the present invention, by selecting the composition of the conductive paste layer optimally, a thickness of 2
An electrode layer of about 3 μm can be formed.

又、導電性ペーストの一成分としてセラミック粉末を
用いることにより、電極層をセンサ素子と一体に焼成・
成形することができる。
Also, by using ceramic powder as one component of the conductive paste, the electrode layer is fired integrally with the sensor element.
Can be molded.

〔実施例〕〔Example〕

以下に本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.

I.導電性ペースト組成の検討 導電性金属粉末として白金(Pt)粉末を、バインダー
としてポリビニルブチラール(PVB)を、溶剤としてブ
タノール(BN)を、可塑剤としてジオクチルフタレート
(DOP)を、解膠剤としてトリオレイン(TO)を、セラ
ミック粉末としてジルコニア粉末を各々使用し、組成比
を変えて導電性ペーストを製造した。次いでこれをジル
コニアグリーンシート上にスクリーン印刷し、所定条件
で焼成して電極層を形成した時の状態を観察した。結果
を下記第1表に示す。
I. Study of conductive paste composition Platinum (Pt) powder as conductive metal powder, polyvinyl butyral (PVB) as binder, butanol (BN) as solvent, dioctyl phthalate (DOP) as plasticizer, deflocculant The conductive paste was manufactured by using triolein (TO) as a ceramic powder and zirconia powder as a ceramic powder and changing the composition ratio. Next, this was screen-printed on a zirconia green sheet and fired under predetermined conditions to observe the state when the electrode layer was formed. The results are shown in Table 1 below.

第1表から明らかな如く、ポリビニルブチラール(PV
B)〔バインダー〕及びジオクチルフタレート(DOP)
〔可塑剤〕の電極層の形成における影響は大きく、各々
適量を逸脱すると印刷後にニジミ及び焼成後にワレを生
ずる。それ故、導電性ペーストの組成は第1表の評価II
の組成に定めた。
As is evident from Table 1, polyvinyl butyral (PV
B) [Binder] and dioctyl phthalate (DOP)
[Plasticizer] has a large influence on the formation of the electrode layer, and if it deviates from the appropriate amount, bleeding occurs after printing and cracking occurs after firing. Therefore, the composition of the conductive paste was evaluated according to Table II.
The composition was determined.

II.電極層の形成 重量比でジルコニア粉末100部に対して、バインダー1
1部、溶剤70部、可塑剤5部、解膠剤3部を混合し、ボ
ールミルで50時間撹拌した後ドクターブレード装置によ
り厚さ200μmのシート状に成形して、第1図(a−
1)[斜視図]及び第1図(b−1)[断面図]に示す
ジルコニアグリーンシート1を得た。次いで、ジルコニ
アグリーンシート1の表面に導電性ペーストをスクリー
ン印刷して、第1図(a−2)及び第1図(b−2)に
示す厚さ5μmの導電性ペースト層2を形成した。ここ
で導電性ペーストは、前記Iの評価IIの組成のものを使
用した。導電性ペーストは、粘度が10000〜20000cpsの
ものが好ましい。又、Pt粉末の代わりに例えばPt−Rh粉
末を用いてもよい。第2図に、導電性金属粉末に対する
バインダーの比率(重量%)と印刷厚に対する焼成厚の
比率(重量%)との関係を示す。これより、バインダー
の比率を60重量%とすると、導電性ペースト層2の焼成
後の厚さは印刷時の厚さの40%となることが分かる。
II.Formation of electrode layer 100 parts of zirconia powder by weight ratio, binder 1
1 part, 70 parts of a solvent, 5 parts of a plasticizer, and 3 parts of a deflocculant were mixed, stirred for 50 hours by a ball mill, and then formed into a sheet having a thickness of 200 μm by a doctor blade device.
1) A zirconia green sheet 1 shown in [perspective view] and FIG. 1 (b-1) [cross-sectional view] was obtained. Next, a conductive paste was screen-printed on the surface of the zirconia green sheet 1 to form a conductive paste layer 2 having a thickness of 5 μm as shown in FIGS. 1 (a-2) and 1 (b-2). Here, the conductive paste having the composition of the evaluation II of the above I was used. The conductive paste preferably has a viscosity of 10,000 to 20,000 cps. Further, for example, Pt-Rh powder may be used instead of Pt powder. FIG. 2 shows the relationship between the ratio of the binder to the conductive metal powder (% by weight) and the ratio of the fired thickness to the printed thickness (% by weight). From this, it can be seen that when the binder ratio is 60% by weight, the thickness of the conductive paste layer 2 after firing is 40% of the thickness at the time of printing.

表面に導電性ペーストを形成したジルコニアグリーン
シート1を最高420℃まで昇温して脱脂し、次いで1400
℃で1時間焼成すると、第1図(b−2′)に矢印で示
す如く導電性ペースト層2中の多量のバインダーが消失
して収縮部分2′の厚さだけ厚さが減少し、第1図(a
−3)及び第1図(b−3)に示す厚さ2μmの電極層
3を得る。同様にして、ジルコニアグリーンシート1の
他の表面にも電極層3と表裏で一対となった電極層3′
(図示せず)を形成する。
The zirconia green sheet 1 having a conductive paste formed on the surface is heated to a maximum of 420 ° C. and degreased.
C. for 1 hour, a large amount of binder in the conductive paste layer 2 disappears as shown by the arrow in FIG. 1 (b-2 '), and the thickness decreases by the thickness of the contracted portion 2'. Fig. 1 (a
3) and a 2 μm-thick electrode layer 3 shown in FIG. 1 (b-3). Similarly, on the other surface of the zirconia green sheet 1, the electrode layer 3 and the pair of electrode layers 3 'on the front and back are also provided.
(Not shown).

III.酸素濃度センサの製造 第3図に、表面に電極層3,8′を形成したジルコニア
グリーンシート1を用いて製造した酸素濃度センサのセ
ンサ素子の一実施例の概略構成図を示す。このセンサ素
子は積層型であり、図中、4は保護層、5は大気ダクト
層、6は下端層である。
III. Manufacture of Oxygen Concentration Sensor FIG. 3 shows a schematic configuration diagram of an embodiment of the sensor element of the oxygen concentration sensor manufactured using the zirconia green sheet 1 having the electrode layers 3, 8 'formed on the surface. This sensor element is of a stacked type, in which 4 is a protective layer, 5 is an air duct layer, and 6 is a lower end layer.

第4図に、本発明の方法により製造した酸素濃度セン
サ(本発明品,電極層の厚さ2μm)と従来の方法によ
り製造した酸素濃度センサ(従来品,ペースト電極,電
極層の厚さ5μm以上)のセンサ出力の時間変動を示
す。本発明品は従来品に比べて電極層の厚さが最適に選
択されているため、応答性が良い。又、本発明品は電極
層がジルコニアグリーンシートと一体に焼成・成形され
ているので、従来品に比べて電極層の耐熱性も高い。
FIG. 4 shows an oxygen concentration sensor manufactured by the method of the present invention (product of the present invention, electrode layer thickness 2 μm) and an oxygen concentration sensor manufactured by the conventional method (conventional product, paste electrode, electrode layer thickness 5 μm). The above shows the time variation of the sensor output. The product of the present invention has a good response since the thickness of the electrode layer is optimally selected as compared with the conventional product. Further, in the product of the present invention, since the electrode layer is integrally fired and molded with the zirconia green sheet, the heat resistance of the electrode layer is higher than that of the conventional product.

(発明の効果) 本発明の酸素濃度センサの製造方法は、組成を最適に
選択した導電性ペーストをセンサ素子を形成すべきセラ
ミック体の表面にスクリーン印刷により塗布し、次いで
このセンサ素子を焼成して表面に厚さ2〜3μmの電極
層を形成するので、応答性が良く且つ耐熱性が高い酸素
濃度センサを容易に得ることができる。
(Effect of the Invention) According to the method of manufacturing an oxygen concentration sensor of the present invention, a conductive paste whose composition is optimally selected is applied by screen printing to the surface of a ceramic body on which a sensor element is to be formed, and then the sensor element is fired. Since the electrode layer having a thickness of 2 to 3 μm is formed on the surface, an oxygen concentration sensor having good responsiveness and high heat resistance can be easily obtained.

又、本発明の方法は少ない工程で薄い電極を製造し得
るので、生産性が向上するとともに、高価な貴金属の使
用量が少なくて済むので製造コストの低減に効果があ
る。
In addition, the method of the present invention can produce a thin electrode in a small number of steps, so that productivity is improved, and the amount of expensive noble metal used is small, which is effective in reducing the production cost.

更に、本発明の方法は積層型、一端が閉じた筒状型等
の種々の型のセンサ素子を用いた限界電流型、半導体型
等の種々の型の酸素濃度センサの製造に広く応用するこ
とができる。
Further, the method of the present invention can be widely applied to the manufacture of various types of oxygen concentration sensors such as a limiting current type and a semiconductor type using various types of sensor elements such as a stacked type and a cylindrical type having one end closed. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の酸素濃度センサの製造方法におけるセ
ンサ素子表面に電極を形成する工程の説明図、 第2図は導電性金属粉末に対するバインダーの比率と印
刷厚に対する焼成厚の比率との関係を示す図、 第3図は本発明の方法により製造した酸素濃度センサの
センサ素子の一実施例の概略構成図、 第4図は本発明の方法により製造した酸素濃度センサと
従来の方法により製造した酸素濃度センサのセンサ出力
の時間変動を示す図、 第5図は酸素濃度センサにおける電極の厚さとセンサの
応答性との関係及び電極の厚さと電極の耐熱性との関係
を示す図、 第6図はペースト電極及びメッキ電極を有する酸素濃度
センサのセンサ出力の時間変動を示す図である。 図中、 1……ジルコニアグリーンシート 2……導電性ペースト層、2′……収縮部分 3,3′……電極層、4……保護層 5……大気ダクト層、6……下端層
FIG. 1 is an explanatory view of a step of forming an electrode on a sensor element surface in a method of manufacturing an oxygen concentration sensor according to the present invention, and FIG. 2 is a relation between a ratio of a binder to a conductive metal powder and a ratio of a fired thickness to a printed thickness. FIG. 3 is a schematic configuration diagram of an embodiment of a sensor element of an oxygen concentration sensor manufactured by the method of the present invention. FIG. 4 is an oxygen concentration sensor manufactured by the method of the present invention and manufactured by a conventional method. FIG. 5 is a diagram showing the time variation of the sensor output of the oxygen concentration sensor. FIG. 5 is a diagram showing the relationship between the electrode thickness and the response of the oxygen concentration sensor and the relationship between the electrode thickness and the heat resistance of the electrode. FIG. 6 is a diagram showing the time variation of the sensor output of the oxygen concentration sensor having the paste electrode and the plating electrode. In the figure, 1... Zirconia green sheet 2... Conductive paste layer 2 ′... Shrunk portion 3 3 ′... Electrode layer 4... Protective layer 5.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素濃度センサを製造する際のセンサ素子
表面に電極を形成する工程が、 重量比で導電性金属粉末100部に対して、バインダー60
部、溶剤50部、可塑剤5部、解膠剤3部及びセラミック
粉末12.5部からなる組成の導電性ペーストをセンサ素子
を形成すべきセラミック体の表面にスクリーン印刷によ
り塗布する工程と、 次いで前記センサ素子を焼成して表面に厚さ2〜3μm
の電極層を形成する工程とからなることを特徴とする酸
素濃度センサの製造方法。
1. The process of forming an electrode on the surface of a sensor element when manufacturing an oxygen concentration sensor comprises the steps of:
Applying a conductive paste having a composition of 5 parts, 50 parts of a solvent, 5 parts of a plasticizer, 3 parts of a deflocculant and 12.5 parts of a ceramic powder to a surface of a ceramic body on which a sensor element is to be formed by screen printing; Sinter the sensor element to a thickness of 2-3 μm on the surface
Forming an electrode layer of the above.
JP2291232A 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor Expired - Fee Related JP2745805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291232A JP2745805B2 (en) 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291232A JP2745805B2 (en) 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor

Publications (2)

Publication Number Publication Date
JPH04164245A JPH04164245A (en) 1992-06-09
JP2745805B2 true JP2745805B2 (en) 1998-04-28

Family

ID=17766188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291232A Expired - Fee Related JP2745805B2 (en) 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JP2745805B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521875B2 (en) * 1993-03-09 1996-08-07 株式会社フジクラ Method for manufacturing ionic conductor device
JP3703627B2 (en) 1998-06-18 2005-10-05 日本特殊陶業株式会社 Gas sensor

Also Published As

Publication number Publication date
JPH04164245A (en) 1992-06-09

Similar Documents

Publication Publication Date Title
JP2851291B2 (en) Method of manufacturing PTC temperature sensor and PTC temperature sensor element for PTC temperature sensor
CA1117789A (en) Temperature compensated resistive exhaust gas sensor construction
TW201433791A (en) Metal paste for forming gas sensor electrodes
JP2745805B2 (en) Manufacturing method of oxygen concentration sensor
JP3503761B2 (en) Ceramic heater
JP4198855B2 (en) Stacked oxygen sensor element and air-fuel ratio sensor
CN112912972B (en) Improved noble metal paste for screen printing electrode structures
WO2017146120A1 (en) Metal paste for forming gas sensor electrode
JP2003504604A (en) Heater circuit, in particular a heater circuit for a sensor, and a method for manufacturing the heater circuit
JP6212328B2 (en) Metal paste for gas sensor electrode formation
JPH0248055B2 (en)
JP3903181B2 (en) Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
JP4504595B2 (en) Connection structure between board and lead
JPH01203964A (en) Formation of electrode for oxygen concentration sensor
JPH088044A (en) Ceramic heater
CA2226786A1 (en) Gas sensor and heater unit for use therein
JP4087100B2 (en) Sensor substrate and gas sensor element including the same
WO2018198620A1 (en) Temperature sensor and temperature measuring device
JP3936259B2 (en) Manufacturing method of ceramic heater
JPH10199705A (en) Resistor paste, resistor using it and manufacture thereof
JP4163840B2 (en) Gas sensor
JPS58198754A (en) Manufacture of substrate having heater for gas sensor element
JPH0656556A (en) Production of porous electrode
JP2006202601A (en) Ceramic heater and its manufacturing method
JP4485712B2 (en) Sensor substrate, gas sensor element including the same, and sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees