JPH04164245A - Manufacture of oxygen concentration sensor - Google Patents

Manufacture of oxygen concentration sensor

Info

Publication number
JPH04164245A
JPH04164245A JP2291232A JP29123290A JPH04164245A JP H04164245 A JPH04164245 A JP H04164245A JP 2291232 A JP2291232 A JP 2291232A JP 29123290 A JP29123290 A JP 29123290A JP H04164245 A JPH04164245 A JP H04164245A
Authority
JP
Japan
Prior art keywords
parts
sensor element
sensor
oxygen concentration
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2291232A
Other languages
Japanese (ja)
Other versions
JP2745805B2 (en
Inventor
Yoshitaka Kanbe
良隆 神戸
Kazuaki Takada
和明 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2291232A priority Critical patent/JP2745805B2/en
Publication of JPH04164245A publication Critical patent/JPH04164245A/en
Application granted granted Critical
Publication of JP2745805B2 publication Critical patent/JP2745805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enhance the responsiveness and heat resistance of an oxygen density sensor by applying a conductive paste having specific compositions, over the bare surface of a ceramic body from which an sensor element is formed, with the use of screen printing process, and then by baking the sensor element so as to form an electrode layer having a thickness of 2 to 3mum. CONSTITUTION:A conductive paste which is composed of 60 parts, by weight ratio, of a binder, 50 parts of a solvent, 5 parts of a plasticizer, 3 part of deflocculant and 12.5 parts of ceramic powder, with respect 100 parts of conductive metal powder, is screen-printed over the outer surface of a zirconia green sheet 1 from which a sensor element is formed, so as to obtain a conductive paste layer 2. Then the sensor element is baked so as to form an electrode layer 3 having a thickness of 2 to 3mum on the surface of the element. Thereby it is possible to obtain an oxygen concentration sensor having a high responsiveness and a high heat resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素濃度センサの製造方法、更に詳しくはセン
サ素子表面に電極を形成する工程が改良された酸素濃度
センサの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an oxygen concentration sensor, and more particularly to a method for manufacturing an oxygen concentration sensor in which the process of forming an electrode on the surface of a sensor element is improved. .

〔従来の技術〕[Conventional technology]

酸素濃度センサを用いて自動車排気中の酸素濃度を検出
し、この値に基づいてエンジンに供給する空気と燃料の
比を制御することが広(行われている。酸素濃度センサ
には多(の種類が有るが、何れの種類においてもセンサ
素子は高温の排気に晒される。それ故、センサ素子は耐
熱性の高いセラミックで作られ且っセンサ素子の表面に
は、電気信号を取り出すための耐熱金属からなる電極が
設けられる。
It is widely used to detect the oxygen concentration in automobile exhaust using an oxygen concentration sensor, and to control the ratio of air and fuel supplied to the engine based on this value. There are different types, but in all types, the sensor element is exposed to high-temperature exhaust gas.Therefore, the sensor element is made of highly heat-resistant ceramic, and the surface of the sensor element has a heat-resistant layer to extract electrical signals. An electrode made of metal is provided.

ところで、酸素濃度センサのセンサ素子表面に電極を形
成する方法としては、(1)化学メツキによる電極形成
方法、又は(2)導電性ペーストをスクリーン印刷した
後焼成することによる電極形成方法が主流である。(2
)の方法においては種々の性状の導電性ペーストが提案
されており、例えば特開昭63−120482号公報に
はセンサ素子を構成するセラミック成分に対して融剤作
用のある成分を加えてなる組成を有するセラミック材料
を含有している導電性ペーストを用いる電極形成方法が
開示されている。
By the way, the mainstream methods for forming electrodes on the sensor element surface of oxygen concentration sensors are (1) electrode forming method by chemical plating, or (2) electrode forming method by screen printing a conductive paste and then baking it. be. (2
), conductive pastes with various properties have been proposed; for example, Japanese Patent Laid-Open No. 63-120482 discloses a composition in which a fluxing component is added to the ceramic component constituting the sensor element. Disclosed is a method of forming an electrode using a conductive paste containing a ceramic material having .

〔発明か解決しようとする課題〕[Invention or problem to be solved]

前記の2種類の電極形成方法にはそれぞれ特徴がある。 The two types of electrode formation methods described above each have their own characteristics.

すなわち、製造−r−1程の−にからは、(1)の方法
は電極を厚くするのに時間が掛かる(例えば厚さ1μm
の電極を得るのに24時間掛かる)という欠点がある。
That is, from the manufacturing point of r-1, method (1) takes time to thicken the electrode (for example, 1 μm thick).
The disadvantage is that it takes 24 hours to obtain an electrode.

又、(2)の方法は印刷技術上及び導電性ペースト製造
」−の困難性により5μm以下の電極を得ることが難し
いという欠点がある。更に、センサ特性の−1−からは
、(1)の方法により製造したセンサ素子の電極(メツ
キ電極)は応答性は良いが耐熱性が低く、反対に(2)
の方法により製造したセンサ素子の電極(ペースト電極
)は応答性は悪いが耐熱性が良い。これらをまとめると
第5図及び第6図の様になる。
Furthermore, method (2) has the disadvantage that it is difficult to obtain electrodes of 5 μm or less due to printing technology and difficulties in producing conductive paste. Furthermore, from the sensor characteristic -1-, the electrode (metallic electrode) of the sensor element manufactured by the method (1) has good responsiveness but low heat resistance, and on the contrary, (2)
The sensor element electrode (paste electrode) manufactured by the above method has poor responsiveness but good heat resistance. These are summarized as shown in FIGS. 5 and 6.

第5図に電極の厚さとセンサの応答性との関係及び電極
の厚さと電極の耐熱性との関係を示す。又、第6図にセ
ンサ出力の時間変動を示す。
FIG. 5 shows the relationship between the thickness of the electrode and the responsiveness of the sensor, and the relationship between the thickness of the electrode and the heat resistance of the electrode. Further, FIG. 6 shows the temporal fluctuation of the sensor output.

第6図から、センサの応答性か良い場合は排気中の酸素
濃度の変動にセンサ出力は正確に追従するが、センサの
応答性が悪い場合は排気中の酸素濃度の変動にセンサ出
力が追従せず、正確な酸素濃度の検出ができないことが
分かる。
From Figure 6, if the sensor response is good, the sensor output will accurately follow the fluctuations in the oxygen concentration in the exhaust gas, but if the sensor response is poor, the sensor output will follow the fluctuations in the oxygen concentration in the exhaust gas. It can be seen that the oxygen concentration cannot be detected accurately.

それ故、実用上充分な耐熱性が得られるならば、電極の
厚さは薄いほうが良い。第5図から明らかな如く、電極
の厚さが1〜5μmの範囲ではセンサの応答性の応答性
と電極の耐熱性とが釣り合うので、最適な電極の厚さは
この範囲に有ることか予想される。しかしながら、従来
の方法では厚さが1〜5μmの範囲の電極を容易に且つ
生産性良くセンサ素子を形成すべきセラミック体の表面
に形成することかできなかった。
Therefore, if practically sufficient heat resistance can be obtained, the thinner the electrode is, the better. As is clear from Figure 5, when the electrode thickness is in the range of 1 to 5 μm, the responsiveness of the sensor and the heat resistance of the electrode are balanced, so it is expected that the optimal electrode thickness will be within this range. be done. However, with conventional methods, electrodes having a thickness in the range of 1 to 5 μm cannot be easily and productively formed on the surface of a ceramic body on which a sensor element is to be formed.

本発明は前記従来技術の問題点を解決するだめのもので
ある。本発明の目的は、センサ素子表面に電極を形成す
る工程を改良することにより性能の優れた酸素濃度セン
サを容易に且つ生産性良く得ることかできる方法を提供
することにある。
The present invention is intended to solve the problems of the prior art. An object of the present invention is to provide a method for easily and efficiently obtaining an oxygen concentration sensor with excellent performance by improving the process of forming electrodes on the surface of a sensor element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の酸素濃度センサの製造方法は、酸素濃度センサ
を製造する際のセンサ素子表面に電極を形成する工程が
、 重量比で導電性金属粉末100部に対して、バインダー
60部、溶剤50部、可塑剤5部、解膠剤3部及びセラ
ミック粉末12.5部からなる組成の導電性ペーストを
センサ素子を形成すべきセラミック体の表面にスクリー
ン印刷により塗布する工程と、 次いで前記センサ素子を焼成して表面に厚さ2〜3μm
の電極層を形成する工程とからなることを特徴とする。
In the method for manufacturing an oxygen concentration sensor of the present invention, the step of forming an electrode on the surface of a sensor element when manufacturing an oxygen concentration sensor includes 60 parts of binder and 50 parts of solvent based on 100 parts of conductive metal powder by weight. , applying a conductive paste having a composition of 5 parts of plasticizer, 3 parts of peptizer, and 12.5 parts of ceramic powder to the surface of the ceramic body in which the sensor element is to be formed by screen printing; After firing, the surface has a thickness of 2 to 3 μm.
The method is characterized by comprising a step of forming an electrode layer.

導電性金属粉末としては、所定の平均粒径の貴金属例え
ば白金、ロジウム、イリジウム等を単独又は組み合わせ
て使用することができる。
As the conductive metal powder, noble metals such as platinum, rhodium, iridium, etc. having a predetermined average particle size can be used alone or in combination.

バインダー、溶剤、可塑剤及び解膠剤は、この分野にお
いて慣用のものから適宜選択する。
The binder, solvent, plasticizer and deflocculant are appropriately selected from those commonly used in this field.

セラミック粉末は、焼成後に電極層がセンサ素子に強固
に結合するような種類のセラミックからなる粉末を選択
する。それ故、センサ素子を構成するセラミックと同種
のセラミックからなる粉末が好ましい。具体的には、セ
ンサ素子を構成するセラミックとし7てジルコニアやチ
タニアを使用する場合には、セラミック粉末としてジル
コニア粉末やチタニア粉末を使用するのが好ましい。
The ceramic powder is selected to be of a type such that the electrode layer is firmly bonded to the sensor element after firing. Therefore, it is preferable to use a powder made of the same type of ceramic as the ceramic constituting the sensor element. Specifically, when zirconia or titania is used as the ceramic 7 constituting the sensor element, it is preferable to use zirconia powder or titania powder as the ceramic powder.

センサ素子の大きさや形状は、本発明の方法を適用し得
る限り特に限定されない。センサ素子の形状は、例えば
板状、一端が閉じた筒状などであってよい。
The size and shape of the sensor element are not particularly limited as long as the method of the present invention can be applied. The shape of the sensor element may be, for example, plate-like or cylindrical with one end closed.

スクリーン印刷により、後の焼成で厚さ2〜3μmの電
極層を形成し得るような厚さの導電性ペースト層をセン
サ素子表面に塗布する。
By screen printing, a layer of conductive paste is applied to the surface of the sensor element in such a thickness that an electrode layer with a thickness of 2 to 3 μm can be formed by subsequent firing.

〔作用〕[Effect]

本発明の方法においては、導電性ペースト層の組成を最
適に選択することにより、センサ素子の表面に厚さ2〜
3μmの電極層を形成することができる。
In the method of the present invention, by optimally selecting the composition of the conductive paste layer, the surface of the sensor element can be coated with a thickness of 2 to 2.
An electrode layer of 3 μm can be formed.

又、導電性ペーストの一成分としてセラミック粉末を用
いることにより、電極層をセンサ素子と一体に焼成・成
形することができる。
Furthermore, by using ceramic powder as a component of the conductive paste, the electrode layer can be fired and molded integrally with the sensor element.

〔実施例〕〔Example〕

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

1、導電性ペースト組成の検討 導電性金属粉末として白金(Pt)粉末を、バインダー
としてポリビニルブチラール(PVB)を、溶剤として
ブタノール(BN)を、可塑剤としてジオクチルフタレ
ート(DOP)を、解膠剤としてトリオレイン(TO)
を、セラミック粉末としてジルコニア粉末を各々使用し
、組成比を変えて導電性ペーストを製造した。次いでこ
れをジルコニアグリーンシート」−にスクリーン印刷し
、所定条件で焼成して電極層を形成した時の状態を観察
した。結果を下記第1表に示す。
1. Study of conductive paste composition Platinum (Pt) powder as conductive metal powder, polyvinyl butyral (PVB) as binder, butanol (BN) as solvent, dioctyl phthalate (DOP) as plasticizer, peptizer as triolein (TO)
Conductive pastes were manufactured using zirconia powder as the ceramic powder and varying the composition ratio. This was then screen printed on a zirconia green sheet and fired under predetermined conditions to form an electrode layer.The state of the electrode layer was observed. The results are shown in Table 1 below.

第1表 導電性ペースト組成の検討 第1表から明らかな如く、ポリビニルブチラール(PV
B)  Cバインダー〕及びジオクチルフタレート(D
OP)  (可塑剤〕の電極層の形成における影響は太
き(、各々適量を逸脱すると印刷後にニジミ及び焼成後
にワレを生ずる。それ故、導電性ペーストの組成は第1
表の評価Hの組成に定めた。
Table 1 Examination of conductive paste composition As is clear from Table 1, polyvinyl butyral (PV
B) C binder] and dioctyl phthalate (D
OP) (Plasticizer) has a large influence on the formation of the electrode layer (if the appropriate amount of each is exceeded, it will cause bleeding after printing and cracking after baking. Therefore, the composition of the conductive paste should be
The composition was determined to be rated H in the table.

■、電極層の形成 重量比でジルコニア粉末100部に対して、バインダー
11部、溶剤70部、可塑剤5部、解膠剤3部を混合し
、ボールミルで50時間攪拌した後ドクターブレード装
置により厚さ200μmのシート状に成形して、第1図
(a−1)[斜視図]及び第1図(b−1)[断面図]
に示すジルコニアグリーンシート1を得た。次いで、ジ
ルコニアグリーンシート1の表面に導電性ペーストをス
クリーン印刷して、第1図(a−2)及び第1図(b−
2)に示す厚さ5μmの導電性ペースト層2を形成した
(2) Formation of electrode layer: 100 parts of zirconia powder, 11 parts of binder, 70 parts of solvent, 5 parts of plasticizer, and 3 parts of deflocculant were mixed in a weight ratio, and after stirring in a ball mill for 50 hours, a doctor blade was used to form the electrode layer. It was molded into a sheet with a thickness of 200 μm, and FIG. 1 (a-1) [perspective view] and FIG. 1 (b-1) [cross-sectional view]
A zirconia green sheet 1 shown in Figure 1 was obtained. Next, a conductive paste is screen printed on the surface of the zirconia green sheet 1 to obtain the results shown in FIG. 1(a-2) and FIG. 1(b-2).
A conductive paste layer 2 having a thickness of 5 μm as shown in 2) was formed.

ここで導電性ペーストは、前記■の評価■の組成のもの
を使用した。導電性ペーストは、粘度が10000〜2
0000cpsOものが好ましい。又、pt粉末の代わ
りに例えばPt−Rb粉末を用いてもよい。第2図に、
導電性金属粉末に対するバインダーの比率(重量%)と
印刷厚に対する焼成厚の比率(重量%)との関係を示す
。これより、バインダーの比率を60重量%とすると、
導電性ペースト層2の焼成後の厚さは印刷時の厚さの4
0%となることが分かる。
Here, the conductive paste used had a composition of evaluation (2) above. The conductive paste has a viscosity of 10,000 to 2
0000 cpsO is preferable. Further, for example, Pt-Rb powder may be used instead of PT powder. In Figure 2,
The relationship between the ratio of binder to conductive metal powder (weight %) and the ratio of firing thickness to printing thickness (weight %) is shown. From this, if the binder ratio is 60% by weight,
The thickness of the conductive paste layer 2 after firing is 4 times the thickness at the time of printing.
It can be seen that it is 0%.

表面に導電性ペーストを形成したジルコニアグリーンシ
ート1を最高420℃まで昇温しで脱脂し、次いで14
00℃で1時間焼成すると、第1図(b−2’ )に矢
印で示す如く導電性ペースト層2中の多量のバインダー
が消失して収縮部分2“の厚さだけ厚さが減少し、第1
図(a−3)及び第1図(b−3)に示す厚さ2μmの
電極層3を得る。
A zirconia green sheet 1 with a conductive paste formed on its surface was heated to a maximum of 420°C to degrease it, and then heated to a temperature of 14°C.
When baked at 00°C for 1 hour, a large amount of the binder in the conductive paste layer 2 disappears and the thickness decreases by the thickness of the contracted portion 2'', as shown by the arrow in Figure 1 (b-2'). 1st
An electrode layer 3 having a thickness of 2 μm as shown in FIG. 1(a-3) and FIG. 1(b-3) is obtained.

同様にして、ジルコニアグリーンシート1の他の表面に
も電極層3と表裏で一対となった電極層3′ (図示せ
ず)を形成する。
Similarly, on the other surface of the zirconia green sheet 1, an electrode layer 3' (not shown), which is paired with the electrode layer 3 on the front and back sides, is formed.

■、酸素濃度センサの製造 第3図に、表面に電極層3,3′を形成したジルコニア
グリーンシート1を用いて製造した酸素濃度センサのセ
ンサ素子の一実施例の概略構成図を示す。このセンサ素
子はM層型であり、図中、4は保護層、5は大気ダクト
層、6は下端層である。
(2) Manufacture of oxygen concentration sensor FIG. 3 shows a schematic diagram of an embodiment of a sensor element of an oxygen concentration sensor manufactured using a zirconia green sheet 1 having electrode layers 3, 3' formed on its surface. This sensor element is of M-layer type, and in the figure, 4 is a protective layer, 5 is an atmospheric duct layer, and 6 is a bottom layer.

第4図に、本発明の方法により製造した酸素濃度センサ
(本発明品、電極層の厚さ2μm)と従来の方法により
製造した酸素濃度センサ(従来品、ペースト電極、電極
層の厚さ5μm以上)のセンサ出力の時間変動を示す。
Figure 4 shows an oxygen concentration sensor manufactured by the method of the present invention (invention product, electrode layer thickness 2 μm) and an oxygen concentration sensor manufactured by the conventional method (conventional product, paste electrode, electrode layer thickness 5 μm). (above) shows the time fluctuation of the sensor output.

本発明品は従来品に比べて電極層の厚さが最適に選択さ
れているため、応答性が良い。又、本発明品は電極層が
ジルコニアグリーンシートと一体に焼成・成形されてい
るので、従来品に比べて電極層の耐熱性も高い。
The product of the present invention has an optimally selected thickness of the electrode layer compared to conventional products, so it has better responsiveness. Furthermore, since the electrode layer of the product of the present invention is fired and molded integrally with the zirconia green sheet, the electrode layer has higher heat resistance than conventional products.

(発明の効果) 本発明の酸素濃度センサの製造方法は、組成を最適に選
択した導電性ペーストをセンサ索r−を形成すべきセラ
ミック体の表面にスクリーン印刷により塗布し、次いで
このセンサ素子を焼成して表面に厚さ2〜3μmの電極
層を形成するので、応答性が良く且つ耐熱性か高い酸素
濃度センサを容易に得ることかできる。
(Effects of the Invention) In the method for manufacturing an oxygen concentration sensor of the present invention, a conductive paste with an optimally selected composition is applied by screen printing to the surface of a ceramic body in which a sensor cable is to be formed, and then this sensor element is Since an electrode layer with a thickness of 2 to 3 μm is formed on the surface by firing, an oxygen concentration sensor with good responsiveness and high heat resistance can be easily obtained.

又、本発明の方法は少ない工程で薄い電極を製造し得る
ので、生産性が向上するとともに、高価な貴金属の使用
量が少なくて済むので製造コストの低減に効果がある。
Furthermore, since the method of the present invention can manufacture thin electrodes with fewer steps, productivity is improved, and the amount of expensive precious metals used can be reduced, which is effective in reducing manufacturing costs.

更に、本発明の方法は積層型、一端が閉じた筒状型等の
種々の型のセンサ素Pを用いた限界電流型、半導体型等
の種々の型の酸素濃度センサの製造に広く応用すること
かできる。
Furthermore, the method of the present invention can be widely applied to the production of various types of oxygen concentration sensors such as limiting current type and semiconductor type using sensor elements P of various types such as laminated type and cylindrical type with one end closed. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸素濃度センサの製造方法におけるセ
ンサ素子表面に電極を形成する工程の説明図、 第2図は導電性金属粉末に対するバインダーの比率と印
刷厚に対する焼成厚の比率との関係を示す図、 第3図は本発明の方法により製造した酸素濃度センサの
センサ素子の一実施例の概略構成図、第4図は本発明の
方法により製造した酸素濃度センサと従来の方法ににり
製造した酸素濃度センサのセンサ出力の時間変動を示す
図、第5図は酸素濃度センサにおける電極の厚さとセン
サの応答性との関係及び電極の厚さと電極の耐熱性との
関係を示す図、 第6図はペースト電極及びメツキ電極を有する酸素濃度
センサのセンサ出力の時間変動を示す図である。 図中、 1− ンルコニアグリーンシーI・ 2−導電性ペースト層    2゛・−収縮部分3.3
′ −電極層      4−保護層5−大気ダクト層
      6−・・下端層特許出願人      ト
ヨタ自動車株式会社代理人 弁理士    萼  優美
(ほか2名)第1図 第3図 第2図 導も伯名り属粉末1こ対するハイツタ20上ヒ牟 (’
/、)第4図 時間(S)
Figure 1 is an explanatory diagram of the step of forming an electrode on the surface of a sensor element in the method for manufacturing an oxygen concentration sensor of the present invention. Figure 2 is the relationship between the ratio of binder to conductive metal powder and the ratio of firing thickness to printing thickness. 3 is a schematic configuration diagram of an embodiment of a sensor element of an oxygen concentration sensor manufactured by the method of the present invention, and FIG. 4 is a diagram showing the configuration of an oxygen concentration sensor manufactured by the method of the present invention and a conventional method. Fig. 5 is a diagram showing the relationship between the thickness of the electrode and the responsiveness of the sensor in the oxygen concentration sensor, and the relationship between the thickness of the electrode and the heat resistance of the electrode. , FIG. 6 is a diagram showing temporal fluctuations in sensor output of an oxygen concentration sensor having a paste electrode and a plating electrode. In the figure, 1 - Luconia green sea I, 2 - conductive paste layer 2 - contracted part 3.3
′ - Electrode layer 4 - Protective layer 5 - Atmospheric duct layer 6 - Lower end layer Patent applicant Toyota Motor Corporation agent Patent attorney Yumi Kaly (and 2 others) Figure 1 Figure 3 Figure 2 Guidance is also by Hakumei 20 vines per 1 vine powder ('
/,) Figure 4 Time (S)

Claims (1)

【特許請求の範囲】 酸素濃度センサを製造する際のセンサ素子表面に電極を
形成する工程が、 重量比で導電性金属粉末100部に対して、バインダー
60部、溶剤50部、可塑剤5部、解膠剤3部及びセラ
ミック粉末12.5部からなる組成の導電性ペーストを
センサ素子を形成すべきセラミック体の表面にスクリー
ン印刷により塗布する工程と、 次いで前記センサ素子を焼成して表面に厚さ2〜3μm
の電極層を形成する工程とからなることを特徴とする酸
素濃度センサの製造方法。
[Claims] The step of forming an electrode on the surface of a sensor element when manufacturing an oxygen concentration sensor is performed using 60 parts of binder, 50 parts of solvent, and 5 parts of plasticizer based on 100 parts of conductive metal powder by weight. , applying a conductive paste having a composition of 3 parts of deflocculant and 12.5 parts of ceramic powder to the surface of the ceramic body on which the sensor element is to be formed by screen printing; and then firing the sensor element to coat the surface of the ceramic body. Thickness 2-3μm
1. A method of manufacturing an oxygen concentration sensor, comprising the steps of: forming an electrode layer.
JP2291232A 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor Expired - Fee Related JP2745805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291232A JP2745805B2 (en) 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291232A JP2745805B2 (en) 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor

Publications (2)

Publication Number Publication Date
JPH04164245A true JPH04164245A (en) 1992-06-09
JP2745805B2 JP2745805B2 (en) 1998-04-28

Family

ID=17766188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291232A Expired - Fee Related JP2745805B2 (en) 1990-10-29 1990-10-29 Manufacturing method of oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JP2745805B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258281A (en) * 1993-03-09 1994-09-16 Fujikura Ltd Manufacture of ion conductor device
US6548023B1 (en) 1998-06-18 2003-04-15 Ngk Spark Plug Co., Ltd. Gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258281A (en) * 1993-03-09 1994-09-16 Fujikura Ltd Manufacture of ion conductor device
US6548023B1 (en) 1998-06-18 2003-04-15 Ngk Spark Plug Co., Ltd. Gas sensor

Also Published As

Publication number Publication date
JP2745805B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP2851291B2 (en) Method of manufacturing PTC temperature sensor and PTC temperature sensor element for PTC temperature sensor
JP5357347B1 (en) Metal paste for gas sensor electrode formation
TWI499775B (en) Metal paste for forming gas sensor electrodes
KR101581602B1 (en) Electroconductive particle and metal paste, and electrode
JPS6213622B2 (en)
WO2017146120A1 (en) Metal paste for forming gas sensor electrode
CN112912972B (en) Improved noble metal paste for screen printing electrode structures
JPH04164245A (en) Manufacture of oxygen concentration sensor
JPS6017060B2 (en) Manufacturing method of membrane structure oxygen sensor element
JP6212328B2 (en) Metal paste for gas sensor electrode formation
JP2002146465A (en) Metallic resistor, heater having the same metallic resistor and gas sensor
JP4629356B2 (en) Manufacturing method of ceramic heater
JP3535398B2 (en) NOx measuring element for exhaust gas
JPH09245946A (en) Ceramic heater
JPH01203964A (en) Formation of electrode for oxygen concentration sensor
JP4087100B2 (en) Sensor substrate and gas sensor element including the same
JP5097082B2 (en) Gas sensor and manufacturing method thereof
JPH088044A (en) Ceramic heater
WO2017146121A1 (en) Gas sensor electrode and method for producing same
JPS58198754A (en) Manufacture of substrate having heater for gas sensor element
JP2009059755A (en) Electrode for ntc thermistor
JP3936259B2 (en) Manufacturing method of ceramic heater
JP2001242122A (en) Gas sensor
JP2001266639A (en) Metal resistor, heater having the metal resistor, and gas sensor with the heater
JP4485712B2 (en) Sensor substrate, gas sensor element including the same, and sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees