JP2735922B2 - High-pressure experimental tank - Google Patents

High-pressure experimental tank

Info

Publication number
JP2735922B2
JP2735922B2 JP2018846A JP1884690A JP2735922B2 JP 2735922 B2 JP2735922 B2 JP 2735922B2 JP 2018846 A JP2018846 A JP 2018846A JP 1884690 A JP1884690 A JP 1884690A JP 2735922 B2 JP2735922 B2 JP 2735922B2
Authority
JP
Japan
Prior art keywords
sub
chamber
deep
pressure
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2018846A
Other languages
Japanese (ja)
Other versions
JPH03224426A (en
Inventor
義人 辻
惇 橋本
俊二 鋤崎
克則 藤倉
幸雄 田中
征男 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIYO KAGAKU GIJUTSU SENTAA
Mitsubishi Heavy Industries Ltd
Original Assignee
KAIYO KAGAKU GIJUTSU SENTAA
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIYO KAGAKU GIJUTSU SENTAA, Mitsubishi Heavy Industries Ltd filed Critical KAIYO KAGAKU GIJUTSU SENTAA
Priority to JP2018846A priority Critical patent/JP2735922B2/en
Publication of JPH03224426A publication Critical patent/JPH03224426A/en
Application granted granted Critical
Publication of JP2735922B2 publication Critical patent/JP2735922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は深海生物の長期飼育、培養等に適用される高
圧実験水槽に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-pressure experimental tank applied to long-term breeding, culturing, and the like of deep-sea organisms.

〔従来の技術〕[Conventional technology]

たとえば、いかの色素が液晶技術の発達を促したよう
に海洋生物の分野は産業への貢献を大きく期待される分
野である。とりわけ、深海生物は単なる即物的貢献にと
どまらず、光を完全に遮断され、かつ、貧養の条件下で
生き継いできた生命体として、生命の誕生と進化のメカ
ニズムを探ぐる上からも貴重な資料として注目を浴びつ
つある。ところが、深海生物は海上へ持ち帰ると環境条
件の激変のため、短時間で死滅し、常態での研究を続行
できないという問題があり、観察可能な状態で飼育ない
しは培養する技術の出現が望まれている。
For example, the marine life field is a field that is expected to greatly contribute to industry, as the dyes have promoted the development of liquid crystal technology. Above all, deep-sea creatures are not just contributors to life, but as a living entity that has been completely shielded from light and has survived under poor conditions, from the perspective of exploring the mechanisms of the birth and evolution of life. It is gaining attention as a valuable resource. However, when deep-sea organisms are brought back to the sea, environmental conditions change drastically, causing them to die in a short period of time, making it impossible to continue research under normal conditions. I have.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の深海生物の研究には解決すべき次の課題が
あった。
The above-mentioned conventional research on deep-sea organisms has the following problems to be solved.

即ち、深海調査船等で、深海生物等を採取しても、深
海調査船が海上に浮上すれば、環境条件、就中、圧力が
変化し、深海生物は死滅してしまう可能性があった。深
海生物を活して海上に浮上する手段として、耐圧容器内
に深海生物を採取する提案がなされている。
That is, even if a deep-sea research vessel or the like collects deep-sea creatures, if the deep-sea research vessel floats on the sea, the environmental conditions, especially the pressure, may change, and the deep-sea creatures may die. . As a means for utilizing the deep-sea creatures to float on the sea, proposals have been made to collect deep-sea creatures in pressure-resistant vessels.

しかし、耐圧容器を深海調査船で深海まで搬送する都
合上、耐圧容器の形状及び重量が制限される。しかる
に、小さな耐圧容器で深海生物を採取しても、長期飼育
及び培養することが困難である。
However, the shape and weight of the pressure vessel are limited due to the fact that the pressure vessel is transported to the deep sea by a deep sea research vessel. However, even if deep-sea organisms are collected in a small pressure vessel, it is difficult to breed and culture them for a long time.

本発明はこの問題点を解決するため、深海で耐圧容器
内に採取した生物を環境条件を変化させることなく、耐
圧容器から移せると同時にそのまま長期飼育及び培養が
可能な高圧実験水槽を提供することを目的とする。
In order to solve this problem, the present invention provides a high-pressure experimental water tank that allows organisms collected in a pressure-resistant container in the deep sea to be transferred from the pressure-resistant container without changing environmental conditions, and that allows long-term breeding and cultivation as it is. With the goal.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記課題の解決手段として、円面の中心回り
に回転可能に設けられ耐圧容器内を主室と副室とに仕切
る円板状の耐圧壁と、同耐圧壁にその回転中心より外方
に主室開口蓋によって開閉可能に設けられ主室と副室と
の間を連通する主室開口部と、上記副室に副室蓋によっ
て開閉可能に設けられ外部と連通する副室開口部と、主
室と副室の双方に到達可能にかつ外部より遠隔操作可能
に設けられたマニピュレータと、外部より主室及び副室
の内部観察可能に設けられた監視窓とを具備してなるこ
とを特徴とする高圧実験水槽を提供しようとするもので
ある。
The present invention provides a disk-shaped pressure-resistant wall rotatably provided around the center of a circular surface and partitioning the inside of a pressure-resistant container into a main chamber and a sub-chamber, and the pressure-resistant wall is provided outside the rotation center as a means for solving the above problem. A main chamber opening provided to be openable and closable by the main chamber opening lid and communicating between the main chamber and the sub-chamber; and a sub-chamber opening provided to the above-mentioned sub-chamber to be openable and closable by the sub-chamber lid and communicating with the outside. And a manipulator provided to be able to reach both the main room and the sub-room and to be remotely controllable from the outside, and a monitoring window provided to be able to observe inside the main room and the sub-room from the outside. It is intended to provide a high-pressure experimental water tank characterized by the following.

〔作用〕[Action]

本発明は上記のように構成されるので次の作用を有す
る。
The present invention has the following effects because it is configured as described above.

即ち、深海生物の入った耐圧容器を高圧実験水槽の副
室開口部から副室内に入れ、副室内を副室蓋で密封後、
深海環境となるように海水を注入し、耐圧容器内から深
海生物を監視窓から覗きながらマニピュレータで搬出
し、同様に海水を注入して予め深海環境となっている主
室を遮閉する耐圧壁の主室開口蓋を開いて、開かれた主
室開口部が主室直上に到来するよう耐圧壁を回転し、マ
ニピュレータで主室内に深海生物を搬入することによ
り、環境変化を与えることなく深海生物を活した状態で
高圧実験水槽に移し、そのまま長期飼育ないしは培養す
ることが可能となる。
That is, a pressure-resistant container containing deep-sea organisms is put into the sub-chamber through the sub-chamber opening of the high-pressure experimental tank, and the sub-chamber is sealed with the sub-chamber lid,
Seawater is injected to create a deep-sea environment, and the deepwater organisms are carried out from the inside of the pressure-resistant container through a monitoring window using a manipulator. The main chamber opening lid is opened, the pressure-resistant wall is rotated so that the opened main chamber opening comes directly above the main chamber, and the deep-sea organisms are carried into the main chamber by the manipulator, so that there is no change in the environment. The organism can be transferred to a high-pressure experimental water tank with the organism alive, and can be bred or cultured for a long period as it is.

〔実施例〕〔Example〕

本発明の一実施例に係る高圧実験水槽について第1図
〜第4図により説明する。
A high-pressure experimental water tank according to one embodiment of the present invention will be described with reference to FIGS.

第1図は本実施例の高圧実験水槽1の縦断面図、第2
図〜第4図はその作用(操作手順)を説明するための図
である。先ず第1図で構成の概要を説明し、詳細説明に
ついては第2図〜第4図における作用の説明を兼ねて行
なう。
FIG. 1 is a longitudinal sectional view of a high-pressure experimental water tank 1 of this embodiment, and FIG.
FIG. 4 to FIG. 4 are diagrams for explaining the operation (operation procedure). First, an outline of the configuration will be described with reference to FIG. 1, and a detailed description will be given also as an explanation of the operation in FIG. 2 to FIG.

第1図において、高圧実験水槽1は図示しない深海生
物を長期飼育及び培養できる主室2と主室2に深海生物
を搬出入させるための副室3からなっている。主室2に
は主室蓋昇降ハンドル15及び主室蓋回転機構17の操作に
よって開閉回転可能な主室蓋16が設けられ、同じく副室
3にも副室蓋昇降ハンドル5等の操作によって開閉可能
な副室蓋4が設けられている。なお、主室蓋16は主室2
と副室3とを仕切る耐圧壁を兼ねている。また主室2、
副室3の何れの部位にも到達可能な多関節のマニピュレ
ータ9が内部に設けられており、飼育対象である深海生
物の把持、移動等に供せられる。その際のマニピュレー
タ9の操作や深海生物の飼育状況その他の内部観察のた
めの主室内監視窓20が主室2の側壁に、副室内監視窓12
が副室3の側壁にそれぞれ設けられている。主室2内底
部には深海生物の培地として投入された海底の泥が底泥
部19を形成している。
In FIG. 1, a high-pressure experimental water tank 1 comprises a main chamber 2 (not shown) for long-term breeding and culturing deep-sea organisms, and a sub-chamber 3 for carrying deep-sea organisms into and out of the main chamber 2. The main chamber 2 is provided with a main chamber lid 16 that can be opened and closed by operating a main chamber lid elevating handle 15 and a main chamber lid rotating mechanism 17, and the sub chamber 3 is also opened and closed by operating a sub chamber lid elevating handle 5. A possible subchamber lid 4 is provided. In addition, the main room lid 16 is the main room 2
And a pressure-resistant wall separating the sub-chamber 3. Main room 2,
A multi-joint manipulator 9 that can reach any part of the sub-chamber 3 is provided inside, and is used for gripping, moving, and the like of deep-sea creatures to be bred. At this time, a main room monitoring window 20 for operating the manipulator 9 and breeding conditions of the deep-sea organisms and other internal observations is provided on a side wall of the main room 2 and a sub-room monitoring window 12.
Are provided on the side walls of the sub chamber 3 respectively. At the bottom of the main chamber 2, bottom mud 19 is formed by mud on the seabed that has been introduced as a medium for deep-sea organisms.

次に第2図により深海生物1を搬入するための手順に
ついて説明する。なお、煩雑を避けるため、第2図〜第
4図では第1図に示す微細部材を省略してある。副室3
に取付けられた副室蓋4を副室蓋昇降ハンドル5を回転
して、副室3内に下げ、副室蓋回転ハンドル6で副室蓋
4を水平方向に回転移動して、副室開口部7を明け、副
室開口部7より深海調査船等で採取した深海生物を内蔵
した耐圧容器8を搬入する(搬入は手動その他の任意の
手段で行なう)。この時、マニピュレータ9は耐圧容器
8の搬入の障害とならないようマニピュレータ回転機構
10で障害にならない位置に回転移動しておく。
Next, a procedure for carrying the deep-sea creature 1 will be described with reference to FIG. 2 to 4, the fine members shown in FIG. 1 are omitted for the sake of simplicity. Sub-room 3
The sub-chamber lid 4 attached to the sub-chamber lid is lowered into the sub-chamber 3 by rotating the sub-chamber lid raising / lowering handle 5, and the sub-chamber lid 4 is horizontally rotated by the sub-chamber lid rotation handle 6 to open the sub-chamber. The part 7 is opened, and a pressure-resistant container 8 containing deep-sea creatures collected by a deep-sea research vessel or the like is carried in from the sub-chamber opening 7 (the carrying-in is performed manually or any other means). At this time, the manipulator 9 is rotated by a manipulator rotating mechanism so as not to hinder the loading of the pressure-resistant container 8.
Rotate and move to a position that does not interfere with 10.

次に第3図に示すように副室蓋回転ハンドル6で副室
蓋4を回転移動して元の位置に戻し、副室蓋昇降ハンド
ル5で副室蓋4を上昇し、副室開口部7を閉め、副室3
内を副室内海水注入口11より海水を入れ昇圧し、深海条
件と同一にする。マニピュレータ回転機構10でマニピュ
レータ9を作業位置まで回転移動し、マニピュレータ9
で副室内監視窓12から観察しながら、耐圧容器8を開放
して深海生物を取り出す。
Next, as shown in FIG. 3, the sub-chamber cover 4 is rotated and moved back to the original position by the sub-chamber cover rotation handle 6, and the sub-chamber cover 4 is raised by the sub-chamber cover raising / lowering handle 5, and the sub-chamber opening is opened. Close 7 and sub room 3
The inside is filled with seawater from the sub-room seawater inlet 11 and pressurized to make it the same as the deep sea condition. The manipulator 9 is rotated to the working position by the manipulator rotation mechanism 10 and the manipulator 9 is moved.
While observing from the sub-room monitoring window 12, the pressure vessel 8 is opened to take out deep-sea creatures.

最後に第4図に示すように、主室2内に主室内海水注
入口13より図示しない海水を入れ、深海条件と同一にし
ておく。次に、主室開口蓋14を主室蓋昇降ハンドル15で
下降させ主室2と副室3とを連通し、主室蓋16を主室蓋
回転機構17で回転し、主室開口部18を主室2上に到来さ
せ、マニピュレータ9を操作して主室2底部に設けられ
た底泥部19上に深海生物01を主室内監視窓20から観察し
ながら載置する。
Finally, as shown in FIG. 4, seawater (not shown) is introduced into the main chamber 2 from the main chamber seawater inlet 13 so as to be the same as the deep sea condition. Next, the main chamber opening lid 14 is lowered by the main chamber lid raising / lowering handle 15, the main chamber 2 and the sub chamber 3 are communicated, the main chamber lid 16 is rotated by the main chamber lid rotating mechanism 17, and the main chamber opening 18 is opened. Arrives on the main room 2, and the manipulator 9 is operated to place the deep-sea creature 01 on the bottom mud portion 19 provided at the bottom of the main room 2 while observing from the main room monitoring window 20.

その後、マニピュレータ9を主室2内より引き上げ、
主室蓋16を回転して元の位置に戻し、主室開口蓋14を上
昇させ、主室2内を密封する。主室2内では、深海生物
01の状況を主室内監視窓20から観察しながら、長期飼育
ないしは培養する。
After that, the manipulator 9 is pulled up from the main chamber 2,
The main chamber lid 16 is rotated back to the original position, the main chamber opening lid 14 is raised, and the interior of the main chamber 2 is sealed. In main room 2, deep-sea creatures
While observing the situation of 01 from the main room monitoring window 20, long-term breeding or culturing is performed.

また、長期飼育ないしは培養した深海生物01を主室2
内から取り出す場合は、搬入の逆の手順により取り出
す。
In addition, long-term reared or cultured deep-sea creatures 01
When taking it out from inside, take it out by the reverse procedure of loading.

マニピュレータ9は多関節マニピュレータで高圧実験
水槽1外から遠隔操作で駆動する方式であるが、各関節
及びマニピュレータ回転機構10を操作するための信号線
21は主室蓋回転機構17の軸内から取り出すように構成し
てある。
The manipulator 9 is a multi-joint manipulator that is driven by remote control from outside the high-pressure experimental water tank 1. Signal lines for operating each joint and the manipulator rotation mechanism 10 are provided.
Reference numeral 21 is configured to be taken out from the axis of the main chamber cover rotating mechanism 17.

以上の通り、本実施例によれば高圧実験水槽1内を主
室2、副室3の2室に区画及び連通可能に構成したので
深海生物等の搬入搬出に際しても主室2内に常に深海相
当の圧力条件に保つことができるという利点がある。ま
た、外部から遠隔操作可能なマニピュレータ9を内部に
設けたので、高圧条件のまま深海生物を把持、移動等自
由に扱うことができるという利点もある。
As described above, according to the present embodiment, the inside of the high-pressure experimental water tank 1 is divided and communicated with the two chambers of the main chamber 2 and the sub-chamber 3. There is an advantage that it can be maintained at a considerable pressure condition. Further, since the manipulator 9 which can be remotely controlled from the outside is provided inside, there is an advantage that the deep-sea creature can be freely handled such as grasping and moving under high pressure conditions.

〔発明の効果〕〔The invention's effect〕

本発明は上記のように構成されるので次の効果を有す
る。
The present invention has the following effects because it is configured as described above.

(1) 深海調査船等で採取した深海生物を死滅させる
ことなく、長期飼育及び培養を可能とした。
(1) Long-term breeding and culturing were possible without killing deep-sea organisms collected by a deep-sea research vessel.

(2) 深海生物を長期飼育及び培養することにより、
深海生物の特性が把持できる。
(2) By breeding and culturing deep-sea organisms for a long time,
The characteristics of deep-sea creatures can be grasped.

(3) 深海生物の特性等で人類に利用できるものがあ
れば、培養することにより世界に貢献できる。
(3) If there are some characteristics of deep-sea organisms that can be used by human beings, culture can contribute to the world.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る高圧実験水槽の縦断面
図、第2図は上記実施例の操作手順を示した第1ステッ
プの説明図、第3図は同じく第2ステップの説明図、第
4図は同じく第3ステップの説明図である。 1……高圧実験水槽、2……主室、 3……副室、4……副室蓋、 5……副室蓋昇降ハンドル、 6……副室蓋回転ハンドル、7……副室開口部、 8……耐圧容器、9……マニピュレータ、 10……マニピュレータ回転機構、 11……副室内海水注入口、12……副室内監視窓、 13……主室内海水注入口、14……主室開口蓋、 15……主室蓋昇降ハンドル、16……主室蓋、 17……主室蓋回転機構、18……主室開口部、 19……底泥部、20……主室内監視窓、 21……信号線、01……深海生物。
FIG. 1 is a longitudinal sectional view of a high-pressure experimental water tank according to one embodiment of the present invention, FIG. 2 is an explanatory view of a first step showing an operation procedure of the above-described embodiment, and FIG. FIG. 4 is an explanatory view of the third step. 1 ... high-pressure experimental water tank, 2 ... main chamber, 3 ... sub-chamber, 4 ... sub-chamber lid, 5 ... sub-chamber lid elevating handle, 6 ... sub-chamber lid rotating handle, 7 ... sub-chamber opening 8: Pressure vessel, 9: Manipulator, 10: Manipulator rotation mechanism, 11: Sub-room seawater inlet, 12: Sub-room monitoring window, 13: Main room seawater inlet, 14: Main Chamber opening lid, 15: Main chamber lid raising / lowering handle, 16: Main chamber lid, 17: Main chamber lid rotation mechanism, 18: Main chamber opening, 19: bottom mud section, 20: Main chamber monitoring Windows, 21 ... signal lines, 01 ... deep-sea creatures.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鋤崎 俊二 神奈川県横須賀市夏島町2番地15 海洋 科学技術センター内 (72)発明者 藤倉 克則 神奈川県横須賀市夏島町2番地15 海洋 科学技術センター内 (72)発明者 田中 幸雄 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (72)発明者 山上 征男 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shunji Kowozaki 2-15 Natsushima-cho, Yokosuka City, Kanagawa Prefecture Inside the Marine Science and Technology Center (72) Inventor Katsunori Fujikura 2-15 Natsushima-cho, Yokosuka City, Kanagawa Prefecture Inside the Marine Science and Technology Center (72) Inventor Yukio Tanaka 1-1-1, Wadazakicho, Hyogo-ku, Hyogo-ku, Hyogo Prefecture Inside the Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (72) Inventor Seio Yamagami 1-1-1 Wadazakicho, Hyogo-ku, Hyogo-ku, Kobe-shi, Hyogo No.Mitsubishi Heavy Industries, Ltd.Kobe Shipyard

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円面の中心回りに回転可能に設けられ耐圧
容器内を主室と副室とに仕切る円板状の耐圧壁と、同耐
圧壁にその回転中心より外方に主室開口蓋によって開閉
可能に設けられ主室と副室との間を連通する主室開口部
と、上記副室に副室蓋によって開閉可能に設けられ外部
と連通する副室開口部と、主室と副室の双方に到達可能
にかつ外部より遠隔操作可能に設けられたマニピュレー
タと、外部より主室及び副室の内部観察可能に設けられ
た監視窓とを具備してなることを特徴とする高圧実験水
槽。
1. A disk-shaped pressure-resistant wall rotatably provided around a center of a circular surface and partitioning the inside of a pressure-resistant container into a main chamber and a sub-chamber, and a main chamber opening in the pressure-resistant wall outward from the center of rotation. A main chamber opening provided to be openable and closable by the lid and communicating between the main chamber and the sub-chamber; a sub-chamber opening provided to the sub-chamber to be openable and closable by the sub-chamber lid and communicating with the outside; A high-pressure system comprising: a manipulator provided to be able to reach both of the sub-chambers and to be remotely controllable from the outside; and a monitoring window provided to be able to observe the inside of the main room and the sub-chamber from the outside. Laboratory tank.
JP2018846A 1990-01-31 1990-01-31 High-pressure experimental tank Expired - Lifetime JP2735922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018846A JP2735922B2 (en) 1990-01-31 1990-01-31 High-pressure experimental tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018846A JP2735922B2 (en) 1990-01-31 1990-01-31 High-pressure experimental tank

Publications (2)

Publication Number Publication Date
JPH03224426A JPH03224426A (en) 1991-10-03
JP2735922B2 true JP2735922B2 (en) 1998-04-02

Family

ID=11982922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018846A Expired - Lifetime JP2735922B2 (en) 1990-01-31 1990-01-31 High-pressure experimental tank

Country Status (1)

Country Link
JP (1) JP2735922B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536246B2 (en) * 2000-11-21 2010-09-01 エイブル株式会社 Deep water organism transport and growth container
JP5740767B2 (en) * 2011-03-25 2015-07-01 公益財団法人東京動物園協会 High water pressure habitat transfer system
CN102657116B (en) * 2012-04-27 2013-08-21 中国水产科学研究院长江水产研究所 Method for realizing hydrostatic tests of aquatic organisms based on principle of communicating vessels
CN112833180B (en) * 2020-12-31 2023-02-24 福建省特种设备检验研究院 Can simulate submarine environment's underwater robot popular science show and use overhead tank
CN114287365B (en) * 2022-01-25 2023-09-26 中国科学院海洋研究所 High-pressure high-temperature-control simulation culture device for large-scale organisms in deep sea and application method of high-pressure high-temperature-control simulation culture device

Also Published As

Publication number Publication date
JPH03224426A (en) 1991-10-03

Similar Documents

Publication Publication Date Title
Mackie et al. Use of the Pisces IV submersible for zooplankton studies in coastal waters of British Columbia
CN108719216B (en) Submarine small organism trapping and pressure maintaining heat preservation device
CN108990925B (en) Deep sea cold spring micro-organism collection and fidelity storage device and use method thereof
Engås et al. The ‘MultiSampler’: a system for remotely opening and closing multiple codends on a sampling trawl
Kelley et al. Submersibles and remotely operated vehicles
JP2009044979A (en) Device for rearing aquatic organism
JP2735922B2 (en) High-pressure experimental tank
CN204507228U (en) Submersible sampling box and submersible sampling box system
JP2019534714A (en) Devices containing larvae and / or aquatic organisms, systems and methods for maintaining and farming them in an aqueous environment
Wirsen et al. Decomposition of solid organic materials in the deep sea
Davies et al. Preliminary studies with a large plastic enclosure
US4606233A (en) Bag sampler
CN113277034B (en) Underwater robot for marine product fishing
Thiel Benthic investigations of the deep Red Sea: cruise reports: RV" Sonne"-Meseda I (1977), RV" Valdivia"-Meseda II (1979)
CN205808753U (en) Bloom-causing Algal sampling apparatus
Smith Jr et al. 9 laboratory and in situ methods for studying deep-Sea fishes
CN111762301A (en) Salvaging and recycling robot
JPH0315332A (en) High pressure water tank for rearing organism
JP2000316413A (en) Equipment for culturing marine organism
Acuňa et al. A simple device to transfer large and delicate planktonic organisms
James et al. The development, implementation, and establish-ment of a Meso-pelagic and Bentho-pelagic biological survey program using submersibles in the seas around Japan
CN115152686B (en) Scalable portable antarctic krill temporary rearing device
JPH03151818A (en) Experimental facility for deep-sea microorganism
Munir et al. Design and Fabrication of a Low-Cost Multi-Purpose Underwater Remotely Operated Vehicle
McNutt Ocean exploration