JP2730691B2 - Surface electrolytic treatment method for carbon fiber - Google Patents
Surface electrolytic treatment method for carbon fiberInfo
- Publication number
- JP2730691B2 JP2730691B2 JP61313733A JP31373386A JP2730691B2 JP 2730691 B2 JP2730691 B2 JP 2730691B2 JP 61313733 A JP61313733 A JP 61313733A JP 31373386 A JP31373386 A JP 31373386A JP 2730691 B2 JP2730691 B2 JP 2730691B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- carbon fiber
- concentration
- water
- inorganic salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は炭素繊維の表面電解処理方法に関するもので
ある。
〔従来の技術〕
最近、構造材料として注目を集めている炭素繊維は各
種マトリツクス例えば、エポキシ樹脂、不飽和ポリエス
テル樹脂、フエノール樹脂等の熱硬化製樹脂や、ポリア
ミド樹脂、ポリアセタール樹脂、ポリスルホン樹脂等の
熱可塑性樹脂などの各種樹脂との複合材料として使用さ
れる。通常、炭素繊維とこれら樹脂との接着性を高める
ために炭素繊維の表面処理が必要であり、各種の方法が
提案されている。このうち、水酸化ナトリウム、水酸化
カリウム、硫酸、リン酸などの電解質水溶液中で炭素繊
維に通電する、いわゆる電解表面処理方法は経済的観点
から有用視されており、例えば特公昭47−40119号公報
や特公昭55−20033号公報で公知のものである。
これら電解質のうち、特に水酸化ナトリウムは高導電
性を有し、従つて電解処理が低電圧かつ、短時間で行な
えるなどの利点を有するので広く使用されている。
〔発明が解決しようとする問題点〕
しかしながら、水酸化ナトリウムは電解処理後の炭素
繊維中に残存し易く、通常水洗で除去を図つているが完
全に除去するのが困難とされており、残存電解質の除去
が不十分であると、得られる炭素繊維の耐熱酸化性が劣
つたり、樹脂マトリツクスを硬化するために用いられ
る、触媒が失活して硬化不良を呈したり、得られる複合
材の物性を悪くするなどの問題が指摘されている。さら
に水洗工程から出てくる多量の排水をいかに処理するか
という問題がある。
従来技術によれば、このような電解処理後の炭素繊維
中に残存する電解質を除去するための方法が種々示され
ているが、必ずしも好都合とは云えない。
例えば、特公昭49−29906号公報には電解質溶液を包
含する炭素繊維を洗浄液中で陰極および/または陽極の
傍を通過せしめ、電解質を除去する方法が示されてい
る。
ところが、かかる方法では電解処理のために通電する
に加えて、電解質除去のためにさらに通電する必要があ
り、電力消費が多くなるなどの欠点を有している。
又、特開昭50−40891号公報には、炭素繊維を電解表
面処理した後、ついで熱風による乾燥を行う方法におい
て、電解表面処理工程で電解質として乾燥時に発散又は
分解して消失するものを使用することにより電解質の残
存付着を少なくする方法が開示されている。しかしこの
方法も水洗工程が必要であり、水洗排水の処理とか、場
合によつては乾燥時に分解ガスの処理が必要であり、又
高温で分解させるにはその分余分のエネルギーが必要で
あり経済的でない。
さらに、特公昭58−24554号公報には、黒鉛繊維を電
解表面処理する際に、電解質として250℃以下の温度で
加熱した時に分解してガス状生成物を生ずることの出来
る重炭酸アンモニウム等のアンモニウム化合物を使用
し、電解処理済の繊維を250℃以下の温度で熱処理し
て、その繊維から残留電解質を除去する方法が開示され
ているものの、周知のように重炭酸アンモニウムは35〜
60℃に加熱するとアンモニア、炭酸ガス及び水に分解
し、特にアンモニアは腐食性が高く、かつ毒性の高い物
質であることから、装置上耐腐食性の対策が必要となつ
たり、排ガスの環境対策を講じたりせねばらないなどの
装置的もしくはコスト的に問題がある。
このような観点から、特開昭59−100762号公報では、
河川水、井戸水、工業用水あるいは水道水など実質的に
電解質を含まない水中で炭素繊維に通電する方法が提案
されている。しかしこの方法は水洗工程が不要で、又乾
燥時に有害なガスが出ないという利点を有するものゝ、
上記のような水の中に微量含まれるNH4 +、Na+、K+、Ca
2+、Mg2+、HCO3 -、Cl-、SO4 2-などのイオンの濃度やイ
オンの種類に時間的あるいは季節的変動があり、これに
対応して水の電気伝導度が変動するため、炭素繊維の表
面電解処理効果にバラツキを生じ、したがつて炭素繊維
とマトリツクス樹脂との接着性にバラツキが出て品質上
の問題になるという難点があつた。
上記の電気伝導度の変動を、たとえばある工業用水に
ついて表わすと、時間的(24時間)には平均値に対する
振れ幅が±60〜70%、季節的(1年)には平均値に対す
る振れ幅が±70〜90%であると報告されている。また同
報告は電気伝導度ばかりでなく、全硬度、鉄分および酸
素消費量などについても時間的および季節的に大きく変
動する様子が示されている〔鈴木静夫著;工業用水処
理、昭和43年7月5日 内田老鶴圃新社発行、4〜28ペ
ージ参照〕。
〔問題点を解決するための手段〕
そこで、本発明者等は炭素繊維の表面電解処理に関し
て、従来技術の問題点を解決し、工業的にも有利な方法
を見い出すべく検討した。
とりわけ、従来技術で通常用いられるような数%オー
ダーの濃度の電解質水溶液の場合、炭素繊維に付着する
電解質の除去の問題もさることながら、電解質水溶液の
電気伝導度が炭素繊維のそれに比べて極めて大きい。そ
のため表面電解処理装置を走行する炭素繊維(陽極)と
陰極との間を流れる電流は、該装置の入口部で過大な値
となり、それによつて炭素繊維の強度がかなり低下す
る。一方低濃度の電解質水溶液の場合、該濃度の絶対値
が小さいが故に、その変動が炭素繊維の電解表面処理効
果に大きな影響を与えることを知得した。
以上の点に着目して鋭意検討を行なつた結果、電解質
溶液として実質的に電解質を含まない水に、無機塩を添
加して一定の低濃度に調製した水溶液を用いて、炭素繊
維を表面電解処理することにより、極めて容易に、かつ
経済的にマトリツクス樹脂との接着性に優れた高い強度
及び層間剪断強度を有し、また品質の変動が極めて少な
い炭素繊維を得ることを見い出し本発明を完成した。
すなわち、本発明の目的は炭素繊維の表面電解処理に
際して、簡便かつ経済的な方法を採用することにより、
マトリツクス樹脂との接着性に優れた高い強度及び層間
剪断強度を有し、また品質の変動が極めて少ない炭素繊
維を得る表面電解処理方法を提供するものである。そし
て、その目的は電解質溶液として電気伝導度が10μs/cm
以下の実質的に電解質を含まない水に、アルカリ土類金
属もしくはアルカリ金属のハロゲン化物、硫酸塩もしく
はりん酸塩の1種又は2種以上の混合物から選ばれる無
機塩を添加して、無機塩濃度を設定した水溶液を用い、
濃度設定値に対する変動幅を20%以下に調製しながら表
面電解処理を行うことにより容易に達成される。
以下、本発明を詳細に説明する。
本発明に用いられる炭素繊維は公知の各種原料から製
造することが出来、例えば、石炭タールピッチ、石油ピ
ッチ、石炭液化物、ポリアクリロニトリル、セルロー
ス、ポリビニルアルコール等から製造され、1000〜2000
℃程度で炭素化処理した炭素繊維、或いは2000℃以上程
度で黒鉛化処理した黒鉛化繊維のいずれもが使用出来
る。
これらの炭素繊維を表面電解処理する際に用いる電解
質溶液は、実質的に電解質を含まない水に無機塩を添加
して、無機塩濃度を10〜1000ppmの範囲から設定し、濃
度設定値に対する変動幅を20%以下に調製した水溶液で
ある。
実質的に電解質を含まない水とは、具体的には酸、ア
ルカリ、無機塩、有機塩等の電解質を実質的に含有しな
いものであり、たとえば脱塩水、蒸留水、凝縮水、イオ
ン交換処理水などである。この水は電解質溶液における
濃度調製のベースとなるものなので、出来るだけ電気伝
導度は小さい方が望ましい。この水の電気伝導度として
10μs/cm以下、電解質の濃度として10ppm以下が好まし
い。この水の電気伝導度が10μs/cmを超えるか、あるい
は電解質の濃度が10ppmを超える場合、この水は無機塩
濃度調製のベースとなり難く、これに無機塩を添加して
前記一定の低濃度に調製しようとしても該低濃度に抑え
るのが困難になつたり、濃度変動の原因になつたりす
る。
実質的に電解質を含まない水に添加する無機塩として
はアルカリ土類金属もしくはアルカリ金属のハロゲン化
物、硫酸塩もしくはリン酸塩の1種又は2種以上の混合
物が用いられ、具体的には塩化カルシウム、塩化マグネ
シウム、塩化ナトリウム、塩化カルシウム、硫酸カルシ
ウム、硫酸マグネシウム、硫酸ナトリウム、硫酸カリウ
ム、リン酸カルシウム、リン酸マグネシウム、リン酸ナ
トリウム、リン酸カリウムおよびこれらの混合物などが
用いられる。
本発明において無機塩の代わりに酸、アルカリまたは
有機塩のような電解質を用いることはできない。酸、ア
ルカリのような電解質を用いると、炭素繊維の単繊維強
度を大きく低下させたり、該繊維に付着した電解質は水
洗しても落ちにくく、マトリツクス樹脂との複合材とす
る場合に、樹脂硬化触媒失活の原因になり易い。また有
機塩を電解質として用いてもマトリツクス樹脂との接着
性が充分に上がらず、ILSS(層間剪断強度)の値も低い
ものしか得られないなどの点で、本発明の効果を期待し
がたい。実質的に電解質を含まない水に無機塩を添加し
て調製する水溶液中の無機塩の濃度は、小さ過ぎるのも
大き過ぎるのも望ましくない。すなわちこの濃度が小さ
過ぎると、水溶液の電気伝導度が小さいため炭素繊維を
陽極酸化するためには高電圧が必要となり操業上の危険
をもたらしたり、陽極酸化による表面処理装置の容量を
徒らに大きくする必要が出てくる。一方この濃度が大き
過ぎると、水溶液の電気伝導度が大きいため、該表面処
理装置における炭素繊維方向に電流分布を生じ、該表面
処理装置入口付近において電流密度が異常に高くなり、
炭素繊維の強度劣化を招いたり、炭素繊維に付着した無
機塩の水洗が必要になる。このような点から水溶液中の
無機塩の濃度は、通常10〜1000ppm、好ましくは100〜50
0ppmの範囲で用いられる。
表面電解処理を行なう炭素繊維の性質、あるいは要求
される炭素繊維の性質、用途などに応じて、水溶液中の
無機塩濃度はほゞ上記の範囲から任意に選定すればよ
い。
水溶液中の無機塩濃度の選定とともに重要なことは、
炭素繊維の電解表面処理操業中に、水溶液中の無機塩濃
度を大きく変動させないで変動幅が20%以下である一定
値に制御することである。すなわち従来技術においては
炭素繊維の電解表面処理に際して水溶液中の電解質濃度
は数%以上の比較的高い値で実施しているのに対して、
本発明における水溶液中の電解質すなわち無機塩濃度の
絶対値が小さいだけに、その値の変動が炭素繊維の表面
電解処理効果に敏感に影響する。したがつて水溶液中の
無機塩濃度を上記の如く一定に好ましくは変動幅が10%
以下の一定値に、制御する必要がある。これは例えば表
面電解処理装置内の水溶液中の無機塩濃度又は水溶液の
電気伝導度を検出するセンサーと、その検出値に対応し
て、脱塩水など実質的に電解質を含まない水、あるいは
所定濃度より若干高い無機塩濃度の水溶液を供給する供
給タンクなどを付設することにより、容易に目的を達成
することが出来る。
本発明においては、上述したように実質的に電解質を
含まない水を一旦作つて、それをベースにするのが重要
である。工業用水、河川水、井戸水等も所定の電気伝導
度に制御することも可能だが、それ以外の諸物性(全硬
度、鉄分、酸素消費量など)の変動は避けられず、本発
明の陽極酸化の電解質としては不適当であり、バラツキ
のない効果は期待出来ないのである。
陽極酸化のその他の条件としては、電圧、電流密度、
通電量、時間、温度等があり、これらも炭素繊維の種
類、処理速度、処理すべき程度等によつて変化するが通
常は、電圧として1〜50V、電流密度として炭素繊維1cm
当り0.1〜100mA、通電量として炭素繊維1g当り0.05〜50
0クーロン、時間として数秒〜数分、温度として常温〜8
0℃である。
〔実施例〕
以下実施例により本発明を具体的に説明するが、本発
明の要旨を超えない限り、本発明は実施例に限定される
ものではない。
(実施例1)
ピツチ繊維を2,300℃で焼成して得られた糸径10μの
炭素繊維の3,000本のトウを、第1図に示す装置(陽極
ローテ3,3′及び陰極板の材質:黒鉛、長さ1m)を用い
て、次の条件で連続的に表面処理した。
電解液:脱塩水(電気伝導度2μs/cm、無機塩濃度5pp
m)にCaCl2・2H2Oを添加してCaCl2250ppmの濃度に調製
した水溶液。
電気伝導度は375μs/cmで、この値を運転中、
電解液中電気伝導度を測定するセンサーと、脱塩水供給
糸およびCaCl2500ppm水溶液(脱塩水にCaCl2・2H2Oを添
加し濃度調製した水溶液)供給糸からなる糸で自動制御
した。
電 圧: 8V 温 度:30℃
電 流:15mA 時 間:60sec
通電量:1.8C/g−CF 糸 速:1m/分
得られた炭素繊維の樹脂含浸ストランド引張り強さJI
S−Rー7601に従い、またILSS(層間剪断強度)をASTM
D−2344に従い測定し、その結果を第1表に示す。
(実施例2)
電解液としてCaCl2濃度100ppmに調製した水溶液を使
用し、電圧を20Vとした以外は実施例1と同様に実施し
た。
得られた炭素繊維の樹脂含浸ストランド引張り強さ及
びILSSを実施例1と同様に測定し、その結果を第1表に
併記する。
(実施例3)
電解液として脱塩水にMgSO4・H2Oを添加してMgSO4 2
50ppmの濃度に調製した水溶液を使用し、電圧を8V、CaC
l2 500ppm水溶液供給糸の代わりにMgSO4 500ppm水溶
液供給糸を自動制御のために使用する以外は実施例1と
同様に実施した。
得られた炭素繊維の樹脂含浸ストランド引張り強さ及
びILSSを実施例1と同様に測定し、その結果を第1表に
併記する。
(比較例1)
表面電解処理を実施しない炭素繊維の樹脂含浸ストラ
ンド引張り強さとILSSを実施例1と同様に測定し、その
結果を第1表に併記する。
比較例1は各実施例に対するブランクを示すものであ
り第1表から明らかな通り、引張り強さは若干大きもの
のILSSはかなり小さく、マトリツクス樹脂に対する炭素
繊維の接着性がよくないことが判る。
(比較例2〜7)
電解液として過水(夏、冬)、工業用水、河川水
(夏、冬)、井戸水をそれそれ1ケ月に亘つて使用した
以外は実施例1と同様に実施した。各電解液の電気伝導
度および、得られた炭素繊維の樹脂含浸ストランド引張
り強さとILSSを1ケ月に亘つて実施例1と同様に測定
し、その最低値と最高値を変動幅として第1表に併記す
る。
第1表から明らかな通り、これらの水は種類によつて
も、また季節的にも電気伝導度の値が異なるとともに溶
存イオンの種類も多岐に亘るため、全般的に引張り強さ
及びILSSが低い値であり、たとえILSSが比較的高い値で
も、引張り強さがかなり低く、バランスの良い特性の炭
素繊維は得られなかつた。また比較例2〜7において
は、電気伝導度の変動幅が大きいが、それに伴ない炭素
繊維特性の変動幅もまた大きいことがわかる。〔発明の効果〕
本発明によれば表面電解処理後、炭素繊維の水洗を殆
ど必要とせず、強度低下が小さく、層間剪断強度が大き
い品質の安定した高特性炭素繊維を製造することが出来
る。この高特性炭素繊維は各種繊維強化複合材に非常に
有用である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a surface electrolytic treatment method for carbon fibers. [Prior art] Carbon fibers that have recently attracted attention as structural materials include various matrices such as epoxy resins, unsaturated polyester resins, thermosetting resins such as phenolic resins, polyamide resins, polyacetal resins, and polysulfone resins. Used as a composite material with various resins such as thermoplastic resins. Usually, surface treatment of carbon fiber is required to enhance the adhesiveness between the carbon fiber and these resins, and various methods have been proposed. Of these, the so-called electrolytic surface treatment method of energizing carbon fibers in an aqueous solution of an electrolyte such as sodium hydroxide, potassium hydroxide, sulfuric acid, and phosphoric acid is considered to be useful from an economic viewpoint, for example, Japanese Patent Publication No. 47-40119. This is known in the official gazette and Japanese Patent Publication No. 55-20033. Among these electrolytes, sodium hydroxide is particularly widely used because it has high conductivity and therefore has the advantage that the electrolytic treatment can be performed at a low voltage in a short time. [Problems to be Solved by the Invention] However, sodium hydroxide tends to remain in the carbon fiber after the electrolytic treatment, and is usually removed by washing with water, but it is said that it is difficult to completely remove the sodium hydroxide. If the removal of the electrolyte is insufficient, the resulting carbon fiber has inferior thermal oxidation resistance, or is used to cure the resin matrix, the catalyst is deactivated and exhibits poor curing, or the resulting composite material Problems such as deterioration of physical properties have been pointed out. Furthermore, there is a problem of how to treat a large amount of wastewater coming out of the washing step. According to the prior art, various methods for removing the electrolyte remaining in the carbon fiber after such electrolytic treatment have been described, but they are not always convenient. For example, Japanese Patent Publication No. 49-29906 discloses a method in which carbon fibers containing an electrolyte solution are passed by a cathode and / or an anode in a cleaning solution to remove the electrolyte. However, such a method has a drawback in that, in addition to energizing for the electrolytic treatment, energizing needs to be further performed for removing the electrolyte, thereby increasing power consumption. Japanese Patent Application Laid-Open No. 50-40891 discloses a method in which carbon fibers are subjected to electrolytic surface treatment and then dried by hot air. A method of reducing the remaining adhesion of the electrolyte by doing so is disclosed. However, this method also requires a washing step, and requires treatment of washing wastewater and, in some cases, decomposition gas at the time of drying, and extra energy is required to decompose at a high temperature, which is economical. Not a target. Further, Japanese Patent Publication No. 58-24554 discloses that when graphite fibers are subjected to electrolytic surface treatment, ammonium bicarbonate or the like which can be decomposed to generate gaseous products when heated at a temperature of 250 ° C. or less as an electrolyte. Although a method of using an ammonium compound and heat treating electrolytically treated fibers at a temperature of 250 ° C. or less to remove residual electrolyte from the fibers is disclosed, as is well known, ammonium bicarbonate is 35 to
When heated to 60 ° C, it decomposes into ammonia, carbon dioxide, and water. In particular, ammonia is a highly corrosive and highly toxic substance. There is a problem in terms of equipment or cost such as having to take measures. From such a viewpoint, JP-A-59-100762 discloses that
A method has been proposed in which carbon fibers are energized in water substantially free of electrolytes, such as river water, well water, industrial water or tap water. However, this method does not require a washing step, and has the advantage that no harmful gas is emitted during drying.
NH 4 + , Na + , K + , Ca contained in trace amounts in water as described above
2+, Mg 2+, HCO 3 - , Cl -, there is temporal or seasonal variations in different concentrations and ions of an ion such as SO 4 2-, this corresponds to change the electrical conductivity of the water Therefore, there is a problem that the surface electrolytic treatment effect of the carbon fiber varies, and accordingly, the adhesiveness between the carbon fiber and the matrix resin varies, which causes a quality problem. If the above-mentioned fluctuation of the electric conductivity is expressed, for example, for a certain industrial water, the fluctuation width with respect to the average value over time (24 hours) is ± 60 to 70%, and the fluctuation width with respect to the average value seasonally (1 year). Is reported to be ± 70-90%. The report also shows that not only the electrical conductivity but also the total hardness, iron content and oxygen consumption fluctuate greatly over time and seasonally [by Shizuo Suzuki; Industrial Water Treatment, July 1968. Published by Uchida Lao Tsuruho Shinsha on March 5th, see pages 4-28). [Means for Solving the Problems] Accordingly, the present inventors have studied the surface electrolytic treatment of carbon fibers in order to solve the problems of the prior art and find an industrially advantageous method. In particular, in the case of an aqueous electrolyte solution having a concentration on the order of several percent, which is generally used in the prior art, the electric conductivity of the aqueous electrolyte solution is much higher than that of the carbon fiber, while not only removing the electrolyte adhering to the carbon fibers. large. Therefore, the current flowing between the carbon fiber (anode) and the cathode running on the surface electrolytic treatment apparatus has an excessive value at the inlet of the apparatus, thereby considerably reducing the strength of the carbon fiber. On the other hand, in the case of a low-concentration aqueous solution of an electrolyte, it has been found that since the absolute value of the concentration is small, the fluctuation greatly affects the electrolytic surface treatment effect of carbon fibers. As a result of intensive studies focusing on the above points, the carbon fiber was surface-treated using an aqueous solution adjusted to a certain low concentration by adding an inorganic salt to water substantially free of electrolyte as an electrolyte solution. It has been found that by performing the electrolytic treatment, it is possible to obtain a carbon fiber having high strength and interlayer shear strength excellent in adhesiveness to a matrix resin very easily and economically, and having very little variation in quality. completed. That is, the object of the present invention is to adopt a simple and economical method in the surface electrolytic treatment of carbon fiber,
An object of the present invention is to provide a surface electrolytic treatment method for obtaining carbon fibers having high strength excellent in adhesiveness to a matrix resin and interlayer shear strength, and having very little variation in quality. And the purpose is that the electrical conductivity of the electrolyte solution is 10μs / cm
An inorganic salt selected from one or a mixture of two or more halides, sulfates or phosphates of an alkaline earth metal or an alkali metal is added to the following substantially electrolyte-free water. Using an aqueous solution with a set concentration,
This can be easily achieved by performing the surface electrolytic treatment while adjusting the fluctuation range with respect to the concentration set value to 20% or less. Hereinafter, the present invention will be described in detail. Carbon fiber used in the present invention can be produced from various known raw materials, for example, coal tar pitch, petroleum pitch, coal liquefaction, polyacrylonitrile, cellulose, produced from polyvinyl alcohol, etc., 1000 to 2000
Either carbon fiber which has been carbonized at about ℃ or graphitized fiber which has been graphitized at about 2,000 ° C. or higher can be used. Electrolyte solution used when performing surface electrolytic treatment of these carbon fibers, the inorganic salt is added to water substantially containing no electrolyte, the inorganic salt concentration is set from the range of 10 to 1000 ppm, and the variation with respect to the concentration set value. This is an aqueous solution whose width has been adjusted to 20% or less. Water that is substantially free of electrolytes is, specifically, substantially free of electrolytes such as acids, alkalis, inorganic salts, and organic salts, such as demineralized water, distilled water, condensed water, and ion exchange treatment. Such as water. Since this water serves as a basis for adjusting the concentration in the electrolyte solution, it is desirable that the electric conductivity be as low as possible. As the electrical conductivity of this water
Preferably, the concentration of the electrolyte is 10 μs / cm or less, and the concentration of the electrolyte is 10 ppm or less. When the electric conductivity of the water exceeds 10 μs / cm or the concentration of the electrolyte exceeds 10 ppm, it is difficult for the water to serve as a base for adjusting the inorganic salt concentration. Even if an attempt is made to prepare it, it will be difficult to keep the concentration low, or it will cause concentration fluctuation. As the inorganic salt to be added to water containing substantially no electrolyte, one or a mixture of two or more halides, sulfates or phosphates of alkaline earth metals or alkali metals is used. Calcium, magnesium chloride, sodium chloride, calcium chloride, calcium sulfate, magnesium sulfate, sodium sulfate, potassium sulfate, calcium phosphate, magnesium phosphate, sodium phosphate, potassium phosphate, and mixtures thereof are used. In the present invention, an electrolyte such as an acid, an alkali or an organic salt cannot be used in place of the inorganic salt. When an electrolyte such as an acid or an alkali is used, the strength of the single fiber of the carbon fiber is greatly reduced, and the electrolyte attached to the fiber is hardly dropped even when washed with water. It is likely to cause catalyst deactivation. Further, even when an organic salt is used as an electrolyte, the effect of the present invention cannot be expected in that the adhesiveness with the matrix resin is not sufficiently improved and only a low value of ILSS (interlaminar shear strength) is obtained. . It is not desirable that the concentration of the inorganic salt in the aqueous solution prepared by adding the inorganic salt to water containing substantially no electrolyte is too low or too high. In other words, if the concentration is too low, the electric conductivity of the aqueous solution is low, so that a high voltage is required to anodize the carbon fiber, resulting in operational danger, or the capacity of the surface treatment apparatus by anodization is unclear. I need to make it bigger. On the other hand, if the concentration is too high, the electric conductivity of the aqueous solution is large, so that a current distribution is generated in the carbon fiber direction in the surface treatment device, and the current density becomes abnormally high near the entrance of the surface treatment device,
This may cause deterioration of the strength of the carbon fiber and requires washing of the inorganic salt attached to the carbon fiber with water. From such a point, the concentration of the inorganic salt in the aqueous solution is usually 10 to 1000 ppm, preferably 100 to 50 ppm.
Used in the range of 0 ppm. The concentration of the inorganic salt in the aqueous solution may be arbitrarily selected from the above range, depending on the properties of the carbon fibers to be subjected to the surface electrolytic treatment, or the required properties and uses of the carbon fibers. What is important with the selection of the inorganic salt concentration in the aqueous solution is
It is to control the concentration of the inorganic salt in the aqueous solution to a constant value of 20% or less without greatly changing the concentration of the inorganic salt in the aqueous solution during the operation of the electrolytic surface treatment of the carbon fiber. That is, in the prior art, the concentration of the electrolyte in the aqueous solution is performed at a relatively high value of several% or more when performing the electrolytic surface treatment of the carbon fiber,
As the absolute value of the electrolyte in the aqueous solution, that is, the inorganic salt concentration in the present invention is small, the change in the value has a sensitive effect on the surface electrolytic treatment effect of the carbon fiber. Therefore, the concentration of the inorganic salt in the aqueous solution should be kept constant as described above, preferably with a fluctuation range of 10%.
It is necessary to control to the following fixed value. This is, for example, a sensor that detects the concentration of the inorganic salt in the aqueous solution or the electric conductivity of the aqueous solution in the surface electrolytic treatment device, and, corresponding to the detected value, water substantially containing no electrolyte such as demineralized water, or a predetermined concentration. By providing a supply tank or the like for supplying an aqueous solution having a slightly higher inorganic salt concentration, the object can be easily achieved. In the present invention, as described above, it is important to once make substantially electrolyte-free water and base it on it. Industrial water, river water, well water, etc. can also be controlled to a predetermined electrical conductivity, but fluctuations in other physical properties (total hardness, iron content, oxygen consumption, etc.) cannot be avoided. However, it is not suitable as an electrolyte, and an effect without variation cannot be expected. Other conditions for anodization include voltage, current density,
There are the amount of electricity, time, temperature, etc., which also vary depending on the type of carbon fiber, the processing speed, the degree to be processed, etc., but usually, the voltage is 1 to 50 V and the current density is 1 cm of carbon fiber.
0.1-100mA per carbon fiber, 0.05-50 per g of carbon fiber
0 coulomb, several seconds to several minutes as time, room temperature to 8 as temperature
0 ° C. EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples unless it exceeds the gist of the present invention. (Example 1) 3,000 tows of 10 μm diameter carbon fiber obtained by firing pitch fiber at 2,300 ° C. were placed in an apparatus shown in FIG. 1 (materials of anode rotors 3, 3 ′ and cathode plate: graphite) , 1 m in length) under the following conditions. Electrolyte: Demineralized water (electric conductivity 2μs / cm, inorganic salt concentration 5pp
An aqueous solution prepared by adding CaCl 2 .2H 2 O to m) to a concentration of 250 ppm CaCl 2 . The electric conductivity is 375μs / cm.
Automatic control was performed by using a sensor for measuring the electric conductivity in the electrolytic solution, and a yarn consisting of a supply line for deionized water and a supply line for a 500 ppm aqueous solution of CaCl 2 (an aqueous solution prepared by adding CaCl 2 .2H 2 O to demineralized water). Voltage: 8V Temperature: 30 ° C Current: 15mA Time: 60sec Electricity: 1.8C / g-CF Yarn speed: 1m / min Resin-impregnated strand tensile strength of carbon fiber obtained JI
According to SR-7601 and ILSS (interlaminar shear strength)
The measurement was performed according to D-2344, and the results are shown in Table 1. (Example 2) The same operation as in Example 1 was carried out except that an aqueous solution adjusted to a CaCl 2 concentration of 100 ppm was used as an electrolyte and the voltage was set to 20 V. The tensile strength of the resin-impregnated strand and the ILSS of the obtained carbon fiber were measured in the same manner as in Example 1, and the results are shown in Table 1. (Example 3) MgSO 4 · H 2 O was added to demineralized water as an electrolyte to form MgSO 4 2
Using an aqueous solution prepared to a concentration of 50 ppm, voltage 8 V, CaC
Example 1 was carried out in the same manner as in Example 1 except that a MgSO 4 500 ppm aqueous solution supply yarn was used for automatic control instead of the l 2 500 ppm aqueous solution supply yarn. The tensile strength of the resin-impregnated strand and the ILSS of the obtained carbon fiber were measured in the same manner as in Example 1, and the results are shown in Table 1. (Comparative Example 1) Tensile strength of resin-impregnated strand and ILSS of carbon fiber not subjected to surface electrolytic treatment were measured in the same manner as in Example 1, and the results are also shown in Table 1. Comparative Example 1 shows a blank for each example. As is apparent from Table 1, although the tensile strength is slightly large, the ILSS is quite small, and it can be seen that the adhesion of the carbon fiber to the matrix resin is not good. (Comparative Examples 2 to 7) The same operation as in Example 1 was carried out except that superhydrogen (summer and winter), industrial water, river water (summer and winter), and well water were used for one month as electrolytes. . The electric conductivity of each electrolytic solution, the tensile strength of the resin-impregnated strand of the obtained carbon fiber, and the ILSS were measured for one month in the same manner as in Example 1, and the minimum and maximum values were used as fluctuation ranges in Table 1. It is described together. As is evident from Table 1, these waters have different values of electric conductivity and different types of dissolved ions depending on the type and season, so that the tensile strength and ILSS are generally low. Even at low values, even at relatively high ILSS values, carbon fibers with very low tensile strength and well-balanced properties have not been obtained. In Comparative Examples 2 to 7, it can be seen that the fluctuation width of the electric conductivity is large, but the fluctuation width of the carbon fiber characteristics is also large. [Effects of the Invention] According to the present invention, it is possible to produce a stable high-performance carbon fiber of a quality that requires little water washing of the carbon fiber after the surface electrolytic treatment, has a small decrease in strength, and has a large interlayer shear strength. This high-performance carbon fiber is very useful for various fiber-reinforced composite materials.
【図面の簡単な説明】
第1図は本発明に用いる表面電解処理装置の一例を示
す。
1:炭素繊維
2:電解液槽
3,3′:陽極ローラ
4:陰極板BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an example of a surface electrolytic treatment apparatus used in the present invention. 1: Carbon fiber 2: Electrolyte tank 3, 3 ': Anode roller 4: Cathode plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 恵介 北九州市八幡西区大字藤田2447番地の1 三菱化成工業株式会社黒崎工場内 (56)参考文献 特開 昭61−282470(JP,A) 特開 昭59−100762(JP,A) 特公 昭47−40119(JP,B2) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Keisuke Nakano Kitakyushu City Inside the Kurosaki Plant of Mitsubishi Chemical Industry Co., Ltd. (56) References JP-A-61-282470 (JP, A) JP-A-59-100762 (JP, A) Tokiko 47-40119 (JP, B2)
Claims (1)
極にして電気分解により表面処理を行なう方法におい
て、電解質溶液として、電気伝導度が10μs/cm以下の実
質的に電解質を含まない水に、アルカリ土類金属もしく
はアルカリ金属のハロゲン化物、硫酸塩もしくはりん酸
塩の1種又は2種以上の混合物から選ばれる無機塩を添
加して、無機塩濃度を設定した水溶液を用い、濃度設定
値に対する変動幅を20%以下に調製しながら電気分解を
行うことを特徴とする炭素繊維の表面電解処理方法。 2.実質的に電解質を含まない水の電解質の濃度が10pp
m以下である特許請求の範囲第1項記載の表面電解処理
方法。 3.無機塩濃度を10〜1000ppmの範囲から設定する特許
請求の範囲第1項記載の炭素繊維の表面電解処理方法。 4.濃度設定値に対する変動幅が10%以下である特許請
求の範囲第1項記載の炭素繊維の表面電解処理方法。(57) [Claims] In a method of immersing carbon fibers in an electrolyte solution and performing surface treatment by electrolysis using the carbon fibers as an anode, as an electrolyte solution, the electrical conductivity is 10 μs / cm or less in water substantially containing no electrolyte, Add an inorganic salt selected from one or a mixture of two or more of alkaline earth metal or alkali metal halides, sulfates or phosphates, and use an aqueous solution in which the inorganic salt concentration is set. A method for electrolytically treating carbon fibers, comprising performing electrolysis while adjusting the fluctuation range to 20% or less. 2. 10 pp concentration of water electrolyte substantially free of electrolyte
2. The surface electrolytic treatment method according to claim 1, wherein the diameter is not more than m. 3. 2. The method according to claim 1, wherein the inorganic salt concentration is set in the range of 10 to 1000 ppm. 4. 2. The method according to claim 1, wherein the variation range with respect to the concentration set value is 10% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61313733A JP2730691B2 (en) | 1986-12-26 | 1986-12-26 | Surface electrolytic treatment method for carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61313733A JP2730691B2 (en) | 1986-12-26 | 1986-12-26 | Surface electrolytic treatment method for carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63165580A JPS63165580A (en) | 1988-07-08 |
JP2730691B2 true JP2730691B2 (en) | 1998-03-25 |
Family
ID=18044865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61313733A Expired - Fee Related JP2730691B2 (en) | 1986-12-26 | 1986-12-26 | Surface electrolytic treatment method for carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2730691B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007224459A (en) * | 2006-02-24 | 2007-09-06 | Toray Ind Inc | Method for producing surface-oxidized carbon fiber bundle |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100762A (en) * | 1982-11-26 | 1984-06-11 | 旭化成株式会社 | Surface treatment of carbon fiber |
-
1986
- 1986-12-26 JP JP61313733A patent/JP2730691B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63165580A (en) | 1988-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6044946B2 (en) | Method for recovering carbon fiber from carbon fiber composite material | |
CN1269995C (en) | Fin stripping system with feedback control of water treatment and acid reusing system | |
JPS6262185B2 (en) | ||
KR950002820B1 (en) | Surface treatment process for carbon fibers | |
CN109457460A (en) | A kind of modified graphite felt and preparation method thereof | |
JP2730691B2 (en) | Surface electrolytic treatment method for carbon fiber | |
EP0374680A1 (en) | Carbon fibers having modified surfaces and process for preparing the same | |
WO2021020253A1 (en) | Composition, method for roughening stainless steel surface using same, roughened stainless steel, and method for producing said roughened stainless steel | |
JPH0544154A (en) | Surface treatment of carbon fiber | |
JP3339961B2 (en) | Method for producing amphoteric membrane and aqueous alkali metal hydroxide solution | |
JP3409920B2 (en) | Lead dioxide electrode for electrolysis and method for producing the same | |
JPS62149964A (en) | Production of ultrahigh strength carbon fiber | |
JPS61275470A (en) | Surface treatment of carbon fiber | |
JP3500399B2 (en) | Method for producing highly functional activated carbon fiber having ion exchange properties | |
Varentsova et al. | Formation of surface oxides in electrode polarization of fibrous carbon materials in a sulfuric acid solution and their influence on ion-exchange and electrochemical properties of these materials | |
CH622466A5 (en) | Process for producing flat-bed printing plate carriers made of aluminium | |
JPS61275469A (en) | Surface treatment of carbon fiber | |
KR20190084187A (en) | Apparatus and method for treating surface of carbon fiber | |
CA1120001A (en) | Treatment of cyanide | |
JPH11165177A (en) | Electric deionized water generator | |
JPS6347823B2 (en) | ||
KR20180031324A (en) | Method of manufacturing electrode of capacitive deionization | |
JPH02300375A (en) | Surface treatment of carbon fiber | |
CN118668468A (en) | Surface treatment method for high-modulus carbon fiber and post-treatment carbon fiber | |
CN115897241A (en) | High-shear-strength ultrahigh-modulus asphalt-based graphite fiber and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |