JPS6347823B2 - - Google Patents

Info

Publication number
JPS6347823B2
JPS6347823B2 JP57206058A JP20605882A JPS6347823B2 JP S6347823 B2 JPS6347823 B2 JP S6347823B2 JP 57206058 A JP57206058 A JP 57206058A JP 20605882 A JP20605882 A JP 20605882A JP S6347823 B2 JPS6347823 B2 JP S6347823B2
Authority
JP
Japan
Prior art keywords
water
carbon fiber
present
carbon fibers
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57206058A
Other languages
Japanese (ja)
Other versions
JPS59100762A (en
Inventor
Toshio Iharaki
Takaji Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20605882A priority Critical patent/JPS59100762A/en
Publication of JPS59100762A publication Critical patent/JPS59100762A/en
Publication of JPS6347823B2 publication Critical patent/JPS6347823B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 本発明は炭素繊維の表面処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface treatment of carbon fibers.

炭素繊維と各種の樹脂マトリツクスからなる複
合材料は、軽量、高強力、高弾性等の卓越した特
性により航空宇宙用構造材や自動車、産業機械部
品スポーツ用品等に使用されている。しかしなが
ら炭素繊維をこれら複合材として使用する場合、
炭素繊維自身の強度の重要性もさることながら他
樹脂などのマトリツクスと接着性を向上させ、複
合材料としての強度、層間剪断強度を向上させる
ことが極めて重要である。
Composite materials made of carbon fiber and various resin matrices are used in aerospace structural materials, automobiles, industrial machinery parts, sporting goods, etc. due to their outstanding properties such as light weight, high strength, and high elasticity. However, when using carbon fiber as these composite materials,
In addition to the importance of the strength of carbon fiber itself, it is extremely important to improve its adhesion to matrices such as other resins, and to improve its strength as a composite material and interlaminar shear strength.

この接着性を向上させるため炭素繊維表面を気
相酸化する方法、液相酸化する方法、電解酸化す
る方法等が提案されている。このうち水酸化ナト
リウム、硫酸、リン酸などの電解質水溶液中で、
炭素繊維に通電する電解処理法が有用視されてお
り、例えば特公昭47−40119号公報、特公昭48−
12444号公報に開示されている。しかしながら電
解表面処理すると電解質が炭素繊維に付着し、後
の加工工程に悪影響を与える事が欠点とされてい
る。すなわち短時間の水洗では付着イオンをほぼ
完全に除去できず、最近では例えば特開昭50−
40891号公報または、特開昭50−157697号公報に
見られるように分解性の電解質を用いる方法が提
案されている。ところがこのような方法も水洗工
程が必要であり、水洗排水の処理とか、場合によ
つては乾燥時に分解ガスの処理が必要であり、又
高温で分解させるにはその分余分のエネルギーが
必要であり経済的でないなど必ずしも製品の品質
及び経済性の面で満足のゆく方法ではないのが現
状である。
In order to improve this adhesion, methods such as vapor phase oxidation, liquid phase oxidation, and electrolytic oxidation of the carbon fiber surface have been proposed. Among these, in electrolyte aqueous solutions such as sodium hydroxide, sulfuric acid, and phosphoric acid,
An electrolytic treatment method in which carbon fibers are energized is considered to be useful;
It is disclosed in Publication No. 12444. However, the disadvantage of electrolytic surface treatment is that the electrolyte adheres to the carbon fibers, which adversely affects subsequent processing steps. In other words, it is not possible to remove adhering ions almost completely with water washing for a short time, and recently, for example,
A method using a decomposable electrolyte has been proposed as seen in Japanese Patent Application Laid-open No. 40891 or Japanese Patent Application Laid-Open No. 157697/1983. However, this method also requires a washing process, and it is necessary to treat the washing wastewater and, in some cases, to treat the decomposed gas during drying, and decomposition at high temperatures requires extra energy. The current situation is that this method is not necessarily satisfactory in terms of product quality and economic efficiency.

かかる状況下において本発明者らは、炭素繊維
のマトリツクス樹脂との接着性が優れ、しかも経
済性、生産性の優れた表面処理方法について鋭意
検討した結果、本発明に至つた。
Under such circumstances, the present inventors have conducted intensive studies on a surface treatment method that has excellent adhesion of carbon fibers to matrix resin, and is also economical and productive, and as a result, has arrived at the present invention.

すなわち、本発明は炭素繊維を陽極として、
NH4 +、Na+、K+、Ca++、Mg++、HCO3 -、Cl-
SO4 --イオンの総和が500mg/以下の水中に連
続的に供給し、水中の陰極との間に電気を通じる
事を特徴とする炭素繊維の表面処理方法にある。
That is, the present invention uses carbon fiber as an anode,
NH 4 + , Na + , K + , Ca ++ , Mg ++ , HCO 3 - , Cl - ,
A method for surface treatment of carbon fibers characterized by continuously supplying SO 4 --- ions in water with a total of 500 mg or less and conducting electricity between the water and a cathode.

本発明の方法によればマトリツクス樹脂との接
着性に優れた高い強度及び層間剪断強度を有する
炭素繊維が得られ、航空宇宙用構造材や自動車部
品等の用途に有用に用いる事ができる。また本発
明の方法は実質的に電解質を用いないので、水洗
工程が不要であり、水洗排水の処理が不要で又乾
燥時に有害なガスも出ず極めて簡略なプロセスで
その生産性、経済性の面でも極めて優れた有用な
プロセスであり工業的価値は大きい。
According to the method of the present invention, carbon fibers having high strength and interlaminar shear strength with excellent adhesion to matrix resins can be obtained, and can be usefully used in applications such as aerospace structural materials and automobile parts. Furthermore, since the method of the present invention does not substantially use electrolytes, there is no need for a washing process, no need to treat washing wastewater, and no harmful gases are emitted during drying, resulting in an extremely simple process that improves productivity and economy. It is an extremely useful process and has great industrial value.

本発明の方法は、陰極としての銅板、黒鉛板等
を備えた水が入る槽(通電槽)さえあれば良く、
その前後にローラー等を介して炭素繊維を陽極に
して通電し、この通電層を出た炭素繊維は水の絞
りローラーを経て直ちにサイジング剤を付けて製
品とすることが出来る極めて簡単な方法である。
The method of the present invention only requires a tank containing water (current-carrying tank) equipped with a copper plate, graphite plate, etc. as a cathode.
This is an extremely simple method in which electricity is applied to the carbon fiber as an anode through rollers, etc. before and after that, and the carbon fiber that comes out of this current-carrying layer passes through a water squeezing roller and is immediately coated with a sizing agent and made into a product. .

本発明において、通電槽で用いる水は、実質的
に電解質を含まない水であつて、例えば、浮遊固
体の少ない一般河川の水、井戸水、工業用水、工
業用水を一部処理した軟水、水道水等が含まれ
る。
In the present invention, the water used in the energized tank is water that does not substantially contain electrolytes, such as general river water with few suspended solids, well water, industrial water, soft water partially treated with industrial water, and tap water. etc. are included.

更に、本発明の目的を充分に達成する上で、上
記水中に含まれる主要なイオンであるNH4 +
Na+、K+、Ca2+、Mg2+、HCO3 -、Cl-、SO4 2-
の総和が500mg/以下である。
Furthermore, in order to fully achieve the purpose of the present invention, NH 4 + , which is the main ion contained in the water,
Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - , Cl - , SO 4 2- ,
The total amount is 500mg/or less.

本発明の方法において、連続的に走行する炭素
繊維を陽極として通電する方法は例えばカーボン
ローラー等を介して接触的に行つても良いし、非
接触的に通電する等従来公知の方法で良い。又こ
の通電は、通電槽の前後2ケ所で行なつても良い
が、場合によつては1ケ所又は3ケ所以上で行な
つても良い。
In the method of the present invention, the method of energizing the continuously running carbon fiber as an anode may be carried out in a contact manner via a carbon roller or the like, or may be a conventionally known method such as non-contact energization. Further, this energization may be carried out at two places before and after the energizing tank, but depending on the case, it may be carried out at one place or three or more places.

本発明の方法において、加えるべき電気は、炭
素繊維の種類、処理速度、処理すべき程度等によ
つて変化するが通常は、電流として約10mAから
5A程度であり、電圧としては約1.5Vから200Vで
ある。これ以下であるとマトリツクス樹脂との接
着向上が認められず本発明の目的に合わなくな
る。又これ以上では炭素繊維に余分のエネルギー
を加えるだけで炭素繊維に損傷を与える要因にも
なり実用的でない。
In the method of the present invention, the amount of electricity to be applied varies depending on the type of carbon fiber, processing speed, degree of processing, etc., but is usually from about 10 mA as a current.
The current is about 5A, and the voltage is about 1.5V to 200V. If it is less than this, no improvement in adhesion to the matrix resin will be observed and the object of the present invention will not be met. Further, if the amount is more than this, excess energy is simply added to the carbon fibers, which may cause damage to the carbon fibers, which is not practical.

次に本発明を実施例によつて説明するが、本発
明を限定するものではない。
Next, the present invention will be explained by examples, but the present invention is not limited thereto.

実施例 1 アクリル系繊維を最終的に1350℃で焼成して得
た炭素繊維(強度385Kg/mm2、弾性率23.5T/mm2
単繊維直径7.5μ)の12000フイラメントの束を用
いて糸速1.5m/分で連続的に表面処理した。黒
鉛電極板を備えた長さ1mの通電槽に工業用水を
入れ、この通電槽の前後にカーボンローラーを介
して炭素繊維を陽極に、通電槽の黒鉛を陰極とし
て、5V、100mA通電した。この工業用水中の
NH4 +(0.mg/)、Na+(7mg/)、K+(1mg/
)、Ca++(12mg/)、Mg++(2mg/)、
HCO3 -(40mg/)、Cl-(0.mg/)、SO4 --(9
mg/)イオンの総和は71mg/であつた。この
炭素繊維は水を絞り直ちに通常のサイジング剤を
付着させ乾燥した。このようにして得られた炭素
繊維の引張強度は383Kg/mm2で弾性率は23.5T/
mm2であつた。更に樹脂との接着性を見るためエポ
キシ樹脂(エピコート828 100重量部)および三
弗化ホウ素モノメチルアミン(3重量部)のメチ
ルエチルケトン溶液中に含浸させ、一方向のプリ
プレグを作成した。この一方向プリプレグを一方
向に積層し130℃×10分、175℃×2時間で熱硬化
させ、繊維含有率60%の平板状複分材を作成し
た。次いてインストロンを用いて層間剪断強度
(I.L.S.S)を三点曲げシヨートビーム法でL/D
=4の条件で測定した。得られたコンポジツトは
ボイドもなく硬化も満足すべきものでILSSは8.6
Kg/mm2で、比較のため表面処理を行なわなかつた
炭素繊維を使用して同様の実験を行なつた値6.1
Kg/mm2と比較して明らかに接着性の向上が認めら
れた。
Example 1 Carbon fiber obtained by finally firing acrylic fiber at 1350°C (strength 385 Kg/mm 2 , elastic modulus 23.5 T/mm 2 ,
A bundle of 12,000 filaments with a single fiber diameter of 7.5 μm was used for continuous surface treatment at a yarn speed of 1.5 m/min. Industrial water was placed in a 1 m long energizing tank equipped with a graphite electrode plate, and a current of 5 V and 100 mA was applied via carbon rollers before and after the energizing tank, using the carbon fiber as an anode and the graphite in the energizing tank as a cathode. This industrial water
NH 4 + (0.mg/), Na + (7mg/), K + (1mg/
), Ca ++ (12 mg/), Mg ++ (2 mg/),
HCO 3 - (40mg/), Cl - (0.mg/), SO 4 -- (9
mg/) ion total was 71 mg/. The carbon fibers were squeezed with water, immediately coated with a conventional sizing agent, and dried. The tensile strength of the carbon fiber thus obtained is 383Kg/ mm2 , and the elastic modulus is 23.5T/mm2.
It was warm in mm2 . Furthermore, in order to check the adhesion with the resin, a unidirectional prepreg was prepared by impregnating an epoxy resin (Epicoat 828 100 parts by weight) and boron trifluoride monomethylamine (3 parts by weight) in a methyl ethyl ketone solution. This unidirectional prepreg was laminated in one direction and thermally cured at 130°C for 10 minutes and at 175°C for 2 hours to create a tabular composite material with a fiber content of 60%. Next, using an Instron, the interlaminar shear strength (ILSS) was measured using the three-point bending shot beam method.
Measurement was performed under the condition of =4. The resulting composite had no voids, cured satisfactorily, and had an ILSS of 8.6.
Kg/mm 2 , the value of 6.1 when a similar experiment was conducted using carbon fiber without surface treatment for comparison.
A clear improvement in adhesion was observed compared to Kg/mm 2 .

実施例 2 実施例1に準じる方法で、炭素繊維として引張
強度392Kg/mm2、弾性率26.5T/mm2のものを用い
て、又通電槽に軟水を用いて実験した。この軟水
中のNH4 +(0.mg/)、Na+(30mg/)、K+(4
mg/)、Ca++(0.mg/)、Mg++(0.mg/l)、
HCO3 -(0.mg/)、Cl-(0.mg/l)、SO4 --(0.
mg/)イオンの総和は34mg/であつた。表面
処理された炭素繊維の引張強度は395Kg/mm2、弾
性率26.4T/mm2で、I.L.S.Sは8.4Kg/mm2であり、表
面処理をしないものの値5.9Kg/mm2より明らかに
優れていた。
Example 2 An experiment was carried out in the same manner as in Example 1, using carbon fibers having a tensile strength of 392 Kg/mm 2 and an elastic modulus of 26.5 T/mm 2 and using soft water in the energizing bath. NH 4 + (0.mg/), Na + (30mg/), K + (4
mg/), Ca ++ (0.mg/), Mg ++ (0.mg/l),
HCO 3 - (0.mg/l), Cl - (0.mg/l), SO 4 -- (0.
mg/) ion total was 34 mg/. The tensile strength of the surface-treated carbon fiber is 395Kg/mm 2 , the elastic modulus is 26.4T/mm 2 , and the ILSS is 8.4Kg/mm 2 , which is clearly superior to the value of 5.9Kg/mm 2 without surface treatment. Ta.

比較例 比較のため実施例1の炭素繊維を用いて、同じ
方法で、通電槽に電解質としてカセイソーダ及び
炭酸アンモニウムを用いて5%水溶液で電解処理
した。得られた二種の炭素繊維を実施例1の方法
で一方向プリプレグ及び複合材を作成した。カセ
イソーダ液で処理したものは硬化不良を起し良好
な成形品が得られなかつた。また炭酸アンモニウ
ムを用いたサンプルは成形品にボイドが発生しや
すく、ILSSを測定したが6.5〜7.6Kg/mm2と信頼性
の良いデータは得られなかつた。これらはいづれ
も電解質の付着が悪影響を与えていると考えられ
る。また電解質に炭酸アンモニウムを用い実施例
1に準じて電流値を合わせて4.7V、100mA通電
し表面処理した後、水洗し電解質を除去した後、
ILSSを測定したものは、8.0Kg/mm2であつた。こ
の事から本願発明は従来公知の電解質を用いた処
理とほぼ同じ処理効率で、かつ目的とするILSS
も従来公知の方法(電解処理した後水洗)と同等
ないし優れたものである。
Comparative Example For comparison, the carbon fiber of Example 1 was electrolytically treated with a 5% aqueous solution using caustic soda and ammonium carbonate as electrolytes in an energized tank in the same manner. A unidirectional prepreg and a composite material were created using the method of Example 1 using the two types of carbon fibers obtained. Those treated with caustic soda solution had poor curing and could not produce good molded products. In addition, samples using ammonium carbonate tend to have voids in the molded product, and ILSS was measured, but reliable data was not obtained at 6.5 to 7.6 Kg/mm 2 . It is thought that all of these are caused by the adhesion of electrolytes. In addition, ammonium carbonate was used as the electrolyte, and the surface was treated by applying a current of 4.7V and 100mA according to Example 1, and then washed with water to remove the electrolyte.
The ILSS measured was 8.0Kg/ mm2 . From this fact, the present invention has almost the same processing efficiency as the treatment using conventionally known electrolytes, and achieves the desired ILSS.
This method is equivalent to or superior to the conventionally known method (washing with water after electrolytic treatment).

以上の実施例から見て、本願発明は、マトリツ
クス樹脂との接着性を向上させしかも、水洗工程
が不要の単純で経済性に富む優れた方法であるこ
とがわかる。
From the above examples, it can be seen that the present invention is an excellent method that improves the adhesion to the matrix resin and is simple and economical, requiring no water washing step.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維を陽極として、NH4 +、Na+、K+
Ca++、Mg++、HCO3 -、Cl-、SO4 --イオンの総
和が500mg/以下の水中に連続的に供給し、水
中の陰極との間に電気を通じる事を特徴とする炭
素繊維の表面処理方法。
1 Using carbon fiber as an anode, NH 4 + , Na + , K + ,
Ca ++ , Mg ++ , HCO 3 - , Cl - , SO 4 --- ions are continuously supplied into water with a total of 500 mg/less or less, and electricity is conducted between them and the cathode in the water. Carbon fiber surface treatment method.
JP20605882A 1982-11-26 1982-11-26 Surface treatment of carbon fiber Granted JPS59100762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20605882A JPS59100762A (en) 1982-11-26 1982-11-26 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20605882A JPS59100762A (en) 1982-11-26 1982-11-26 Surface treatment of carbon fiber

Publications (2)

Publication Number Publication Date
JPS59100762A JPS59100762A (en) 1984-06-11
JPS6347823B2 true JPS6347823B2 (en) 1988-09-26

Family

ID=16517160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20605882A Granted JPS59100762A (en) 1982-11-26 1982-11-26 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS59100762A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3584119D1 (en) * 1984-06-22 1991-10-24 Toray Industries CARBON FIBERS WITH VERY HIGH TENSILE STRENGTH.
JP2730691B2 (en) * 1986-12-26 1998-03-25 三菱化学株式会社 Surface electrolytic treatment method for carbon fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832994A (en) * 1971-09-03 1973-05-04
JPS4832993A (en) * 1971-08-26 1973-05-04
JPS4842812A (en) * 1971-09-30 1973-06-21

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832993A (en) * 1971-08-26 1973-05-04
JPS4832994A (en) * 1971-09-03 1973-05-04
JPS4842812A (en) * 1971-09-30 1973-06-21

Also Published As

Publication number Publication date
JPS59100762A (en) 1984-06-11

Similar Documents

Publication Publication Date Title
US4401533A (en) Surface-treatment of carbon fiber
US3671411A (en) Treatment of carbon or graphite fibers and yarns for use in fiber reinforced composites
US4050997A (en) Method of manufacturing a fiber reinforced composite material
US4839006A (en) Surface treatment process for carbon fibers
KR20030049702A (en) Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
JPS6347823B2 (en)
JPH0544154A (en) Surface treatment of carbon fiber
US3865705A (en) Process for modifying the surface characteristics of carbon substrates and composite articles produced from the treated substrates
JPS59116469A (en) Surface treatment of carbon fiber
KR100317617B1 (en) Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
JP2943073B2 (en) Method for producing surface-modified carbon fiber
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JP3012885B2 (en) Method for producing surface-modified carbon fiber
KR20190084187A (en) Apparatus and method for treating surface of carbon fiber
JPS63264967A (en) Method for modifying carbon fiber
US3694333A (en) Treatment of articles having metallic core with boron coating
JPH0478747B2 (en)
JP2730691B2 (en) Surface electrolytic treatment method for carbon fiber
JPH03185181A (en) Method for treating surface of carbon fiber
JPS58132168A (en) Improved surface electrolytic treatment of carbon fiber bundle
JPS63282364A (en) Surface treatment of carbon fiber
JPS6246665B2 (en)
JPS62149966A (en) Treatment of carbon fiber
JPS63548B2 (en)