JPS59100762A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPS59100762A
JPS59100762A JP20605882A JP20605882A JPS59100762A JP S59100762 A JPS59100762 A JP S59100762A JP 20605882 A JP20605882 A JP 20605882A JP 20605882 A JP20605882 A JP 20605882A JP S59100762 A JPS59100762 A JP S59100762A
Authority
JP
Japan
Prior art keywords
water
carbon
carbon fiber
surface treatment
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20605882A
Other languages
Japanese (ja)
Other versions
JPS6347823B2 (en
Inventor
伊原木 俊夫
松村 隆爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20605882A priority Critical patent/JPS59100762A/en
Publication of JPS59100762A publication Critical patent/JPS59100762A/en
Publication of JPS6347823B2 publication Critical patent/JPS6347823B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は炭素繊維の表面処理方法に関するものである。[Detailed description of the invention] The present invention relates to a method for surface treatment of carbon fibers.

炭素繊維と各種の樹脂マトリックスからなる複合材料は
、軽量、高強力、高弾性等の卓越した特性により航空宇
宙用構造材や自動車、産業機械部品スポーツ用品等に使
用されている。しかしながら炭素A・・パ維をこれら複
合材として使用する場合、炭素1f、N #(li自身
の強度の重要性もさることながら他樹脂などのマトリッ
クスと接着性を向上させ、複合材料としての強度、層間
剪断強度を向上させることが極めて重要である。
Composite materials made of carbon fiber and various resin matrices are used in aerospace structural materials, automobiles, industrial machinery parts, sporting goods, etc. due to their outstanding properties such as light weight, high strength, and high elasticity. However, when carbon A...P fibers are used as these composite materials, the strength of carbon 1f, N#(li) itself is important, but it also improves the adhesion with matrices such as other resins, and increases the strength of the composite material. , it is extremely important to improve interlaminar shear strength.

この接着性を向上させるため炭素繊維表面を気相酸化す
る方法、液相酸化する方法、電解酸化する方法等が提案
されている。このうち水酸化ナトリウム、硫酸、リン酸
などの電解質水溶液中で、炭素繊維に通電する電解処理
法が有用視されており、例えば特公昭47−40119
号公報、特公昭48−12444号公報に開示されてい
る。しかしながら電解表面処理すると電解質が炭素繊維
に付着し、後の加工工程に悪影響を与える事が欠点とさ
れている。すなわち短時間の水洗では付着イオンtはぼ
完全に除去できず、最近では例えば特開昭50−408
91号公報または、特開昭50−157697号公報に
見られるように分解性の電解質を用いる方法が提案され
ている。ところがこのような方法も水洗工程が必要であ
υ、水洗排水の処理とか、場合によっては乾燥時に分解
ガスの処理が必要であり、又高温で分解させるにはその
分余分のエネルギーが必要でちり経済的でないなど必ず
しも製品の品質及び経済性の面で満足のゆく方法ではな
いのが現状である。
In order to improve this adhesion, methods such as vapor phase oxidation, liquid phase oxidation, and electrolytic oxidation of the carbon fiber surface have been proposed. Among these, an electrolytic treatment method in which carbon fibers are energized in an electrolyte aqueous solution such as sodium hydroxide, sulfuric acid, or phosphoric acid is considered to be useful.
It is disclosed in Japanese Patent Publication No. 48-12444. However, the disadvantage of electrolytic surface treatment is that the electrolyte adheres to the carbon fibers, which adversely affects subsequent processing steps. In other words, the adhering ions cannot be completely removed by washing with water for a short time, and recently, for example,
A method using a decomposable electrolyte has been proposed as seen in Japanese Patent Application Laid-open No. 91 or 157697/1983. However, this method also requires a washing process, and it is necessary to treat washing wastewater and, in some cases, to treat decomposed gas during drying.Additionally, decomposition at high temperatures requires extra energy and generates dust. At present, this method is not necessarily satisfactory in terms of product quality and economic efficiency, such as being uneconomical.

かかる状況下において本発明者らは、炭素繊維のマ) 
IJラックス脂との接着性が優れ、しかも経済性、生産
性の優れた表面処理方法について鋭意検討した結果、本
発明に至った。
Under such circumstances, the present inventors developed a carbon fiber matrix.
As a result of extensive research into a surface treatment method that has excellent adhesion to IJ Lux resin, is economical, and has excellent productivity, the present invention has been achieved.

すなわち、本発明は炭素繊維を陽極として、実質的に電
M質を含丑ない水中に連続的に供給し、水中の陰極との
間に電気を通じる事を特徴とする炭素繊維の表面処理方
法にある。
That is, the present invention provides a method for surface treatment of carbon fibers, which is characterized in that carbon fibers are continuously supplied as anodes into water substantially free of electrolyte, and electricity is passed between the carbon fibers as anodes and the cathodes in the water. It is in.

本発明の方法によればマトリックス樹脂との接着性に優
れた高い強度及び層間剪断強度を有する炭素繊維が得ら
れ、航空宇宙用構造材や自動車部品等の用途に有用に用
いる事ができる。また本発明の方法は実質的に電解質を
用いないので、水洗工程が不要であり、水洗排水の処理
が不要で又乾燥時に有害なガスも出す極めて簡略なプロ
セスでその生産性、経済性の面でも極めて優れた有用な
プロセスでありニブj′14的filli値は大きい。
According to the method of the present invention, carbon fibers having high strength and interlaminar shear strength with excellent adhesion to matrix resins can be obtained, and can be usefully used in applications such as aerospace structural materials and automobile parts. Furthermore, since the method of the present invention does not substantially use an electrolyte, there is no need for a washing step, no need to treat washing waste water, and the process is extremely simple and generates harmful gases during drying, which improves productivity and economic efficiency. However, it is an extremely excellent and useful process, and the filli value for nib j'14 is large.

本発明の方法は、陰極としての銅板、黒鉛板吟を備えた
水が入る槽(通電槽)さえあれば良く、その前後にロー
ラー等を介して炭素れ;維を陽極にして通電し、この通
電槽を出た炭素繊維は水の絞りローラーを経て直ちにサ
イジング剤を付けて製品とすることが出来る極めて簡単
な方法である。。
The method of the present invention requires only a tank containing water (current-carrying tank) equipped with a copper plate and a graphite plate as cathodes. This is an extremely simple method in which the carbon fibers that come out of the energizing tank pass through a water squeezing roller and are immediately coated with a sizing agent to form a product. .

本発明において、通電槽で用いる水は、実質的に電解質
を含まない水であって、!’=すえば、浮遊固体の少疫
い一般河川の水、井戸水、工業用水、工業用水を一部処
理した軟水、水道水等が含まれる。
In the present invention, the water used in the energized tank is water that does not substantially contain electrolytes, and! ' = Includes water from ordinary rivers with a small amount of suspended solids, well water, industrial water, soft water partially treated with industrial water, tap water, etc.

更に、本発明の目的を充分に達成する上で、上記水中に
含丑れる主要なイオンであるNH4+ Na +に+、
 Ca”、 My”、 HCO;”、 Ct + SO
,’ +の総和が500mV t 以下であるととがよ
り望ましい。
Furthermore, in order to fully achieve the purpose of the present invention, NH4+ Na +, which is the main ion contained in the water, +,
Ca”, My”, HCO;”, Ct + SO
, ' + is more preferably 500 mV t or less.

本発明の方法において、連続的に走行する炭素繊糺を陽
極として通電する方法は例えはカーボンローラー等を介
して接触的に行っても良いし、非接触的に通電する等従
来公知の方法で良い。又この51ノ電は、通電槽の前後
2ケ所で行なっても良いが、場合によっては1ケ所又は
3ケ所以上で行なっても良い。
In the method of the present invention, the method of energizing the continuously running carbon fiber glue as an anode may be carried out in a contact manner, for example through a carbon roller, or by a conventionally known method such as non-contact energization. good. Further, the 51 electrifications may be performed at two locations before and after the energizing tank, but may be performed at one location or three or more locations depending on the case.

本発明の方法において、加えるべき′a;、気は、炭素
繊維の種類、処理速度、処理すべき程度等によって変化
するが通常は、電流とし7て約10mAから5 A 4
’4 n’i−テあり ’1l−i;圧としては約1.
5■から200Vて、0る。これ以下であるとマトリッ
クス樹脂との接2’i向上がngめられず本発明の目的
に合わなくなる。又これ以上では炭素%Q’i維に余分
のエネルギーを力【1えるだけで炭素fjλ紺に損傷を
与える要因にもなり実用的でない、。
In the method of the present invention, the amount of air to be added varies depending on the type of carbon fiber, processing speed, degree of processing, etc., but usually the current is about 10 mA to 5 A 4
'4 with n'i-te '1l-i; pressure is about 1.
5 ■ 200V, 0. If it is less than this, it will not be possible to improve the contact 2'i with the matrix resin and the object of the present invention will not be met. In addition, if it is more than this, it is not practical because just adding extra energy to the carbon% Q'i fiber causes damage to the carbon fjλ navy blue.

次に本発明を実施例によって8+明するが、本発明を限
定するものではない。
Next, the present invention will be explained by examples, but the present invention is not limited thereto.

実施例1 アクリ゛ル系株維を最終的に13500cで焼成して得
た炭素繊維(強度ass Ky/mr! 、、弾性率2
3.5 T /mrr1′、単19.糾itj径7゜5
μ)の12,000フイラメントの束を用いて糸速1.
5 m1分で連続的に表面処理した。
Example 1 Carbon fiber obtained by finally firing acrylic stock fiber at 13500c (strength ass Ky/mr!, elastic modulus 2
3.5 T/mrr1', single 19. Diameter 7゜5
μ) using a bundle of 12,000 filaments at a yarn speed of 1.
The surface was treated continuously for 5 ml/min.

魚@電極板をfrf&えた長さ1mの通電槽に工業用水
を入れ、この通電槽の前後にカーボンローラーを介して
炭素l1m、! 、t=Illを陽極に、通電槽の黒鉛
を陰極として、5■、100 mA通電し/c:。この
炭素繊維は水を絞り的ちに通常のサイジング剤を付着さ
せ乾燥した。このようにして旬られた炭素繊維の引張強
度は383 Kg/m i  で弾性率は23.5T/
mrII′であつた。更に樹脂との接着性を見るためエ
ポキシ樹脂(エピコー)82B100重量部)および三
弗化ホウ素モノメチルアミン(3重量部)のメチルエチ
ルケトン溶液中に含浸させ、一方向のプリプレグを作成
しノζ。この一方向プリプレグを一方向に積層し130
’CX 10分、175℃×2時間で熱イv1化さぜ、
繊維含有率60弼の平板状複分村を作成した。次いでイ
ンストロンを用いて層間剪断強度(1,L。
Fish @ Pour industrial water into a 1 m long energized tank with frf & electrode plates, and add 1 m of carbon via carbon rollers before and after this energized tank! , t=Ill is used as an anode, graphite in the current-carrying tank is used as a cathode, and a current of 5 100 mA is applied/c:. The carbon fibers were squeezed with water, then coated with a conventional sizing agent and dried. The tensile strength of the carbon fiber thus prepared is 383 Kg/m i and the elastic modulus is 23.5 T/m i
It was mrII'. Furthermore, in order to check the adhesion with the resin, a unidirectional prepreg was prepared by impregnating an epoxy resin (Epicor) 82B (100 parts by weight) and boron trifluoride monomethylamine (3 parts by weight) in a methyl ethyl ketone solution. This unidirectional prepreg is laminated in one direction and 130
'CX 10 minutes, 175℃ x 2 hours to heat up to v1,
A flat composite village with a fiber content of 60 ml was created. Then, the interlaminar shear strength (1, L) was measured using an Instron.

S、S)を三点曲げショートビーム法でL/D=4の条
件で測矩した。得られたコンボジンlボイドもなく硬化
も満足すべきもので、ILSSは8.6Kg/rnrl
で、比較のため表面処理を行なわなかった炭素わ4・1
維を使用して同様の実験をイイなった値6.1Kf/n
l ni’と比較して明らかに接着性の111j上が認
められた。
S, S) were rectangularly measured using the three-point bending short beam method under the condition of L/D=4. The resulting convodine had no voids and was cured satisfactorily, with an ILSS of 8.6 Kg/rnrl.
For comparison, carbon wafer 4.1 without surface treatment was used.
A similar experiment using fibers yielded a good value of 6.1Kf/n.
111j was clearly found to be more adhesive than lni'.

実施例2 実施例1゛に準じる方法で、炭水W・eftとして引張
強度392 h/m I+12、弾性率26.5 T/
mn1’のものを用いて、又通電槽に軟水を用いて笑l
験した。表面処理された炭素繊維の引張強度は395局
/111 to’、弾性率26.4 T/mn?で、1
.L、S、Sは8.4Kg/m、(であり、表面処理を
しないものの値5.9Ky/mn?より明らかに優れて
いた。
Example 2 Using a method similar to Example 1, the tensile strength was 392 h/m I+12 as carbon water W・ef, and the elastic modulus was 26.5 T/
Using mn1', and using soft water in the energizing tank lol
I tried it. The tensile strength of the surface-treated carbon fiber is 395 knots/111 to', and the elastic modulus is 26.4 T/mn? So, 1
.. L, S, and S were 8.4 Kg/m (), which was clearly superior to the value of 5.9 Ky/mn without surface treatment.

比較例 比較のだめ実施例1の炭素繊維を用いて、同じ方法で、
通電4”+’lに電解質としてカセイソーダ及び炭酸ア
ンモニウムを用いて5係水溶液で電解処理した。得られ
た二種の炭素繊維を実施例1の方法で一方向ブリグレグ
及び複合材を作成した。カセイソーダ液で処理したもの
は硬化不良を起し良好な成形品が得られなかった。、ま
た炭酸アンモニウムを用いたザンプルは成形品にボイド
が発生しやすく、ILSSを測定したが6.5〜7.6
1(7/rr+ro”と信わ1件の良いデータは荀られ
なかった。これらはいづ〕1.もttj、 IW質の付
71′fが悪影響を与えていると考えらh、る。
Comparative Example Using the carbon fiber of Comparative Example 1, in the same manner,
Electrolytic treatment was performed with a 5-module aqueous solution using caustic soda and ammonium carbonate as electrolytes in a 4"+'l current. The two types of carbon fibers obtained were used to create a unidirectional brig leg and a composite material by the method of Example 1. Caustic soda The sample treated with the liquid caused curing failure and a good molded product could not be obtained. Also, samples using ammonium carbonate tended to have voids in the molded product, and the ILSS was measured to be 6.5 to 7. 6
1 (7/rr+ro), but one good data was not recorded.It is believed that these are the negative effects of IW quality addition 71'f.

以上の実施例から見て、本願発明は、マトリックス((
I]脂との接71゛c性を向上させしかも、水洗工程が
不要の単純で経杭性に富む優れた方法であることがわか
る。
In view of the above embodiments, the present invention has a matrix ((
I] It can be seen that this is a simple and excellent method that improves the contact with fat and does not require a water washing step, and has excellent pileability.

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維を陽極として、実質的に電解質を含まない水中
に連続的に供給し、水中の陰極との間に電気を通じる事
を特徴とする炭素繊維の表面処理方法
A method for surface treatment of carbon fibers, characterized in that carbon fibers are continuously supplied as anodes into water that does not substantially contain electrolyte, and electricity is passed between the carbon fibers as anodes and the cathodes in the water.
JP20605882A 1982-11-26 1982-11-26 Surface treatment of carbon fiber Granted JPS59100762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20605882A JPS59100762A (en) 1982-11-26 1982-11-26 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20605882A JPS59100762A (en) 1982-11-26 1982-11-26 Surface treatment of carbon fiber

Publications (2)

Publication Number Publication Date
JPS59100762A true JPS59100762A (en) 1984-06-11
JPS6347823B2 JPS6347823B2 (en) 1988-09-26

Family

ID=16517160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20605882A Granted JPS59100762A (en) 1982-11-26 1982-11-26 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS59100762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600572A (en) * 1984-06-22 1986-07-15 Toray Industries, Inc. Ultrahigh strength carbon fibers
JPS63165580A (en) * 1986-12-26 1988-07-08 三菱化学株式会社 Surface electrolytic treatment of carbon fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832993A (en) * 1971-08-26 1973-05-04
JPS4832994A (en) * 1971-09-03 1973-05-04
JPS4842812A (en) * 1971-09-30 1973-06-21

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832993A (en) * 1971-08-26 1973-05-04
JPS4832994A (en) * 1971-09-03 1973-05-04
JPS4842812A (en) * 1971-09-30 1973-06-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600572A (en) * 1984-06-22 1986-07-15 Toray Industries, Inc. Ultrahigh strength carbon fibers
JPS63165580A (en) * 1986-12-26 1988-07-08 三菱化学株式会社 Surface electrolytic treatment of carbon fiber

Also Published As

Publication number Publication date
JPS6347823B2 (en) 1988-09-26

Similar Documents

Publication Publication Date Title
US4401533A (en) Surface-treatment of carbon fiber
CN108625151A (en) A kind of surface treatment method of high-strength carbon fiber
EP0204943A1 (en) Process for the surface modification of polyvinylidene fluoride articles
CN107098445A (en) It is a kind of to utilize selective electrodialysis separating magnesium and the method reclaimed for waste water ammonium magnesium phosphate from seawater
US4839006A (en) Surface treatment process for carbon fibers
KR900010090A (en) Carbon fiber with modified surface and method for manufacturing same
JPS59100762A (en) Surface treatment of carbon fiber
US3746506A (en) Carbon fiber treatment
US4394224A (en) Treatment of titanium prior to bonding
US3865705A (en) Process for modifying the surface characteristics of carbon substrates and composite articles produced from the treated substrates
JPS59116469A (en) Surface treatment of carbon fiber
US3657082A (en) Treatment of fibrous materials
US4702793A (en) Method for manufacturing a laminated layered printed wiring board using a sulfuroxy acid and an oxiding treatment of the metallic wiring patterns to insure the integrity of the laminate product
JPH0544154A (en) Surface treatment of carbon fiber
JP3755255B2 (en) Carbon fiber and method for producing the same
KR100572995B1 (en) Manufacturing process of nickel-plated carbon fibers by electroplating method
US4729820A (en) Multielectrolyte shear treatment of carbon fibers
KR20000073687A (en) Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
JP2943073B2 (en) Method for producing surface-modified carbon fiber
US3876444A (en) Method of treating high strength carbon fibers
US3455794A (en) Tin oxide sol,process for preparing same,and process for electrodepositing tin utilizing said sol
King et al. Anodic oxidation of pitch-precursor carbon fibers in ammonium sulfate solutions: Batch screening treatment results
JPS63264967A (en) Method for modifying carbon fiber
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JPS61275470A (en) Surface treatment of carbon fiber