JPS63165580A - Surface electrolytic treatment of carbon fiber - Google Patents

Surface electrolytic treatment of carbon fiber

Info

Publication number
JPS63165580A
JPS63165580A JP31373386A JP31373386A JPS63165580A JP S63165580 A JPS63165580 A JP S63165580A JP 31373386 A JP31373386 A JP 31373386A JP 31373386 A JP31373386 A JP 31373386A JP S63165580 A JPS63165580 A JP S63165580A
Authority
JP
Japan
Prior art keywords
carbon fibers
electrolytic treatment
water
concentration
surface electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31373386A
Other languages
Japanese (ja)
Other versions
JP2730691B2 (en
Inventor
岡島 泰三
山田 鉄男
恵介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61313733A priority Critical patent/JP2730691B2/en
Publication of JPS63165580A publication Critical patent/JPS63165580A/en
Application granted granted Critical
Publication of JP2730691B2 publication Critical patent/JP2730691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分舒〕 本発明は炭素繊維の表面電解処理方法に関するものであ
るう 〔従来の技術〕 最近、構造材料として注目を集めている炭素繊維は各種
マトリックス例えば、エポキシ樹脂、不飽和ポリエステ
ル樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリアミ
ド樹脂、ポリアセタール樹脂、ポリスルホン樹脂等の熱
可塑性樹脂などの各11樹脂との複合材料として使用さ
れる。
[Detailed Description of the Invention] [Industrial Application] The present invention relates to a surface electrolytic treatment method for carbon fiber. [Prior Art] Carbon fiber, which has recently attracted attention as a structural material, can be used in various matrices. For example, it is used as a composite material with each of the 11 resins, such as thermosetting resins such as epoxy resins, unsaturated polyester resins, and phenol resins, and thermoplastic resins such as polyamide resins, polyacetal resins, and polysulfone resins.

通常、炭素繊維とこれら樹脂との接着性を高めるなめに
炭素繊維の表面処理が必要であり、各種の方法が提案さ
れている。このうち、水酸化ナトリウム、水酸化カリウ
ム、硫酸、リン酸などの電解質水溶液中で炭素繊維に通
電する、いわゆる電解表面処理方法は経済的観点から有
用視されており、例えば特公昭ダ7−’40//9号公
報や箱公昭5r−aoozz号公報で公知のものである
Normally, surface treatment of carbon fibers is required to improve the adhesion between carbon fibers and these resins, and various methods have been proposed. Among these, the so-called electrolytic surface treatment method, in which carbon fibers are energized in an aqueous electrolyte solution such as sodium hydroxide, potassium hydroxide, sulfuric acid, or phosphoric acid, is considered useful from an economic standpoint. These are known from Publications No. 40//9 and Hakokosho 5R-Aozz.

これら電解質のうち、特に水酸化ナトリウムは高導電性
を有し、従って1!解処理が低電圧かつ、短時間で行な
えるなどの利点を有するので広く使用されている。
Among these electrolytes, sodium hydroxide in particular has high conductivity, and therefore 1! It is widely used because it has the advantage that solution processing can be performed at low voltage and in a short time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、水酸化ナトリウムは電解処理後の炭素繊
維中に残存し易く、通常水洗で除去を図っているが完全
に除去するのが困難とされておジ、残存電解質の除去が
不十分であると、伺られる炭素繊維の耐熱酸化性が劣つ
7+2.シ、樹脂マトリックスを硬化するために用いら
れる、触媒が失活して硬化不良を呈したシ、得られる接
合材の物性を悪くするなどの問題が指摘されている。さ
らに水洗工程から出てくる多看の排水をいかに処理する
かという問題がある。
However, sodium hydroxide tends to remain in carbon fibers after electrolytic treatment, and although it is usually removed by washing with water, it is said to be difficult to completely remove, and the removal of residual electrolyte may be insufficient. , 7+2. The heat oxidation resistance of carbon fiber is poor. Problems have been pointed out, such as deactivation of the catalyst used to cure the resin matrix, resulting in poor curing, and deterioration of the physical properties of the resulting bonding material. Furthermore, there is the problem of how to treat the large amount of wastewater that comes out of the washing process.

従来技術によれば、このような電解処理後の炭素繊維中
に残存するtFM質を除去するための方法が種々示され
ているが、必ずしも好−2掌とは云えない。
According to the prior art, various methods have been proposed for removing the tFM substance remaining in carbon fibers after such electrolytic treatment, but these methods cannot necessarily be said to be favorable.

例えば、特公昭ダター2デタ01−1!公報には電解質
溶液を包含する炭素繊維を洗浄液中で陰極および/ま虎
は1場極の傍を通過せしめ、電解質を除去する方法が示
されている。
For example, Tokko Sho Data 2 Data 01-1! The publication describes a method in which carbon fibers containing an electrolyte solution are passed through a cathode and/or a cathode in a cleaning solution to remove the electrolyte.

ところが、かかる方法では電解処理のために通電するに
加えて、電解質除去のためにさらに通電する必要があり
、電力消費が多くなるなどの欠点を有している。
However, in this method, in addition to applying electricity for electrolytic treatment, it is necessary to apply electricity further for removing the electrolyte, which has the disadvantage of increasing power consumption.

又、萄開昭to−4toerり1号公報には、炭素繊維
を電解表面処理した後、ついで熱風による乾燥を行う方
法において、電解表面処理工程で雪解質として乾燥時に
発散又は分解して消失するものを使用することにより1
解質の残存付着を少なくする方法が開示されている。し
かしこの方法も水洗工程が必要であシ、水洗排水の処理
とか、場合によっては乾燥時に分解ガスの処理が必要で
あり、又高温で分解させるにはその分余分のエネルギー
が必要であり経済的でない。
In addition, in a method in which carbon fibers are subjected to electrolytic surface treatment and then dried with hot air, Hokaisho To-4toer Publication No. 1 describes that in the electrolytic surface treatment process, carbon fibers are dispersed or decomposed and disappear as melted snow during drying. 1 by using something that
A method of reducing residual solute deposition is disclosed. However, this method also requires a washing process, treatment of washing wastewater, and in some cases treatment of decomposed gas during drying, and decomposition at high temperatures requires extra energy, making it uneconomical. Not.

さらに、肴公昭!!−おりJ′ダ号公報には、黒鉛線維
を電解表面処理する際に、雪解質として250℃以下の
温度で加熱し虎時に分解してガス状生成物を生ずること
の出来る重炭酸アンモニウム等のアンモニウム化合物を
使用し、電解処理済の繊維を2jO℃以下の温度で熱処
理して、その繊維から残留電解質を除去する方法が開示
されているものの、周知のように重炭酸アンモニウムは
35〜60℃に加熱するとアンモニア、炭酸ガス及び水
に分解し、臂にアンモニアは腐食性が高く、かつ毒性の
高い物質であることから、装置上耐腐食性の対策が必要
となったり、排ガスの環境対策を講じたすせねばならな
いなどの装置的もしくはコスト的に問題がめる。
In addition, Kimiaki Sae! ! - Ori J'da Publication describes ammonium bicarbonate, etc., which can be used as snow melt when electrolytically surface-treating graphite fibers, and can be heated at temperatures below 250°C and decomposed to produce gaseous products. Although a method has been disclosed in which the residual electrolyte is removed from the fiber by heat-treating the electrolytically treated fiber at a temperature of 200° C. or less using an ammonium compound of 35 to 60 When heated to ℃, it decomposes into ammonia, carbon dioxide gas, and water.Ammonia is a highly corrosive and highly toxic substance, so it is necessary to take measures to prevent corrosion on equipment, and to take environmental measures for exhaust gas. This poses problems in terms of equipment and cost, such as having to take steps to do so.

号 このような観点から、鳴開昭jターフo 07 t a
”Y″′′公報、河川水、井戸水、工業用水あるいは水
道水など実質的に電解質を含まない水中で炭素繊維に通
電する方法が提案されている。しかしこの方法は水洗工
程が不要で、又乾燥時に有害なガスが出ないという利点
を有するもの\、上記のような水の中に微量含まれるN
H4+、Na+、K+、Ca2+、Mg2+、aco3
−1C’l−1s04′−などのイオンの濃度やイオン
の種類に時間的あるいは季節的変動があり、これに対応
して水の電気伝導度が変動する念め、凍素繊維の表面電
屑処理効果にバラツキを生じ、したがって炭素繊維と7
トリツクス樹脂との接着性にバラツキが出て品質上の問
題になるという鼎点があった。
From this point of view, Akira Narukai Turf o 07 t a
``Y'''' proposes a method of energizing carbon fibers in water that does not substantially contain electrolytes, such as river water, well water, industrial water, or tap water. However, this method does not require a water washing process and has the advantage of not emitting harmful gases during drying.
H4+, Na+, K+, Ca2+, Mg2+, aco3
-1C'l-1s04'- There are temporal or seasonal changes in the concentration and type of ions, and the electrical conductivity of water changes accordingly, so the surface electrical debris of cryocarbon fibers This causes variations in the treatment effect, and therefore carbon fiber and 7
The problem was that the adhesion with the Trix resin varied, causing quality problems.

上記の電気伝導度の変動を、たとえばある工業用水につ
いて表わすと、時間的(2g時間)には平均値に対する
振れ@が±6θ〜10%、季節的(1年)には平均値に
対する振れ幅が±7Q〜り0%であると報告されている
。1次同報告ではM!電気伝導度かりでなく、全研度、
鉄分および酸素消費量などについても時間的および季節
的に大きく変動する様子が示されている〔鈴木静夫著;
工業用水処理、昭和4t3年7月!日 内田老鶴圃新社
発行、Z〜2rページ参照〕参 照量題点を解決するkめの手段〕 そこで、本発明渚等は炭素繊維の表面電解処理に関して
、従来技術の問題点を解決し、工業的にも有利な方法を
見い出すべく検討した。
For example, if we express the above fluctuations in electrical conductivity for a certain industrial water, the fluctuations with respect to the average value are ±6θ to 10% over time (2 g hours), and the fluctuations with respect to the average value are seasonal (1 year). is reported to be ±7Q to 0%. In the first report, M! Not only electrical conductivity, but also total sharpness,
It has also been shown that iron content and oxygen consumption vary greatly over time and season [author: Shizuo Suzuki;
Industrial water treatment, July 1920! Published by Uchida Rokakuba Shinsha, see pages Z to 2r [Kth means for solving the reference quantity problem] Therefore, the present invention Nagisa et al. solved the problems of the conventional technology regarding the surface electrolytic treatment of carbon fibers. We conducted research to find an industrially advantageous method.

とりわけ、従来技術で通常用いられるような数多オーダ
ーの濃度の電解質水溶液の場合、炭素繊維に付着する電
解質の除去の問題もさることながら、電解質水溶液の電
気伝導度が炭素繊維のそれに比べて極めて大きい。その
定め表面電解処理装置を走行する炭素繊維(陽極)と陰
極との間を流れる電流は、該装置の入口部で過大な値と
なジ、それによって炭素繊維の強度がかなり世下する。
In particular, in the case of an aqueous electrolyte solution with a concentration of several orders of magnitude, which is commonly used in conventional technology, there is the problem of removing electrolyte adhering to carbon fibers, and the electrical conductivity of the aqueous electrolyte solution is extremely higher than that of carbon fibers. big. The current flowing between the carbon fiber (anode) running through the surface electrolytic treatment device and the cathode reaches an excessive value at the inlet of the device, thereby considerably reducing the strength of the carbon fiber.

一方低濃度の電解質水溶液の場合、該濃度の絶対値が小
さいが故に、その変動が炭素繊維の電解表面処理効果に
大きな影響を与えることを知得した。
On the other hand, in the case of a low-concentration electrolyte aqueous solution, since the absolute value of the concentration is small, it has been found that fluctuations in the concentration have a large influence on the electrolytic surface treatment effect of carbon fibers.

以上の点に着目して鋭章検肘を行々つた結果、電解質溶
液として実質的に電解質を含まない水に1無機塩を添加
して一定の低濃度に調製した水溶液を用いて、炭素繊維
を表面電解処理することにより、極めて容易に、かつ経
済的にマトリックス樹脂との接着性に優れた高い強度及
び層間剪断強度を有し、また品質の変動が極めて少ない
炭素繊維を得ることを見い出し本発明を完成した。
As a result of conducting extensive research focusing on the above points, we found that carbon fibers were produced by using an aqueous solution prepared by adding an inorganic salt to water that does not substantially contain electrolytes to a certain low concentration as an electrolyte solution. By subjecting it to surface electrolytic treatment, we found that it is possible to easily and economically obtain carbon fibers that have excellent adhesion to matrix resins, high strength and interlaminar shear strength, and have very little variation in quality. Completed the invention.

すなわち、本発明の目的は炭素繊維の表面電解処理に際
して、簡便かつ経済的な方法を採用することにより、マ
トリックス樹脂との接着性に優れた高い強度及び眉間剪
断強度を有し、また品質の変動が極めて少ない状素繊維
を得る表面電解処理方法を提供するものである。そして
、その目的は電解質溶液として実質的に電解質を含まな
い水に無機塩を添加して、無機塩濃度を10〜10θ0
(pの範囲から設定し、濃度設定値に対する変動幅をコ
θチ以下に調製し走水溶液を用いて炭素繊維を表面電解
処理するととくより容易に達成される。
That is, the purpose of the present invention is to provide high strength and glabellar shear strength with excellent adhesion to matrix resin, and to reduce quality fluctuations by employing a simple and economical method for surface electrolytic treatment of carbon fibers. The purpose of the present invention is to provide a surface electrolytic treatment method for obtaining bare fibers with very little amount of oxidation. The purpose is to add inorganic salts to water that does not substantially contain electrolytes as an electrolyte solution to increase the inorganic salt concentration to 10 to 10θ0.
(This can be achieved more easily by setting the range of p, adjusting the range of variation with respect to the concentration setting value to less than θ, and subjecting the carbon fibers to surface electrolytic treatment using a water running solution.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いられる炭素繊維は公知の各穏原料から製造
することが出来、例えば、石炭タールピッチ、石油ピッ
チ、石炭液化物、ポリアクリロニトリル、セルロース、
ポリビニルアルコール等から製造され、1ooo〜20
00C程度で炭素化処理し次炭素繊維、或いは2000
℃以上程度で黒鉛化処理し次黒鉛化繊維のいずれもが使
用出来る。
The carbon fibers used in the present invention can be manufactured from various known mild materials, such as coal tar pitch, petroleum pitch, liquefied coal, polyacrylonitrile, cellulose,
Manufactured from polyvinyl alcohol etc., 1ooo~20
Carbon fiber after carbonization treatment at about 00C or 2000C
Any fiber that is graphitized at temperatures above ℃ or higher and then graphitized can be used.

これらの炭素繊維を表面電解処理する際に用rる1!解
質溶液は、実質的に電解質を含まない水に無機塩を添加
して、無機塩濃度を10〜/ 000p%の範囲から設
定し、濃度設定値に対する変動幅f、−20チ以下に調
製し走水溶液である。
1! used when surface electrolytically treating these carbon fibers. The solute solution is prepared by adding inorganic salts to water that does not substantially contain electrolytes, setting the inorganic salt concentration from a range of 10 to 1,000 p%, and adjusting the fluctuation range f from the concentration setting value to -20 cm or less. It is a hydrotactic solution.

実質的に電解質を含まない水とは、具体的には酸、アル
カリ、S機塩、有機塩等の電解質を実質的に含有し々い
ものであり、念とえば脱塩水、蒸留水、凝縮水、イオン
交換処理水などである。この水は電解質溶液における濃
度調製のベースとがるものなので、出来るだけ電気伝導
度は小さい方が望ましい。この水の電気伝導度として1
0μB / car以下、電解質の濃度として10P以
下が好ましい。この水の電気伝導度が10μ8/儒を超
えるか、あるいは電解質の濃度が10ppを超える場合
、この水は無機塩−変調製のベースとなり離く、これに
無機塩を添加して前記一定の低濃度に調製しようとして
も該低濃度に抑えるのが困難になったり、濃度変動の原
因になったりする。
Specifically, water that does not substantially contain electrolytes is water that substantially contains electrolytes such as acids, alkalis, S salts, and organic salts, such as demineralized water, distilled water, and condensed water. , ion exchange treated water, etc. Since this water is the basis for adjusting the concentration in the electrolyte solution, it is desirable that its electrical conductivity be as low as possible. The electrical conductivity of this water is 1
0 μB/car or less, and the electrolyte concentration is preferably 10 P or less. If the electrical conductivity of this water exceeds 10 μ8/F or the concentration of electrolyte exceeds 10 pp, this water becomes an inorganic salt-modulated base, to which an inorganic salt is added to Even if an attempt is made to adjust the concentration, it may be difficult to keep the concentration to such a low level, or it may cause concentration fluctuations.

実質的に電解質を含まない水に添加する無機塩としては
アルカリ土類金属もしくはアルカリ金属のハロゲン化物
、硫酸塩もしくはリン酸塩の7種又は2種以上の混合物
が用いられ、具体的には塩化力ルシクム、塩化マグネシ
ウム、塩化ナトリウム、塩化カリウム、硫酸カルシウム
、硫酸マグネジ9ム、硫酸ナトリウム、硫酸カリラム、
リン酸カルシウム、リン酸マグネシウム、リン酸ナトリ
ウム、リン醸カリウムおよびこれらの混合物々どが用い
られる。
As the inorganic salt added to water that does not substantially contain electrolytes, seven or a mixture of two or more of alkaline earth metal or alkali metal halides, sulfates, or phosphates are used. Magnesium chloride, sodium chloride, potassium chloride, calcium sulfate, magnesium sulfate, sodium sulfate, potassium sulfate,
Calcium phosphate, magnesium phosphate, sodium phosphate, potassium phosphate, and mixtures thereof are used.

本発明において無機塩の代わフに酸、アルカリま念は有
機塩のような雪解質を用いることはでき力い。酸、アル
カリのようが電解質を用いると、炭素繊維の単#l!維
強度を大きく低下させ走り、該繊維に付着し走電解質は
水洗しても落ちにくく、マトリックス樹脂との複合羽と
する場合に、樹脂硬化触媒失活の原因になり易い。
In the present invention, instead of inorganic salts, it is not possible to use acid or alkaline salts such as organic salts. When using electrolytes such as acid or alkali, carbon fiber can be made easily! The running electrolyte that adheres to the fibers is difficult to remove even when washed with water, and is likely to cause deactivation of the resin curing catalyst when used as a composite wing with a matrix resin.

また有機塩を電解質として用いてもマトリックス樹脂と
の接着性が充分に上がらず、■LBB(層間剪断強度)
の値も低いものしか得られないなどの点で、本発明の効
果を期待しか危い。
Furthermore, even if an organic salt is used as an electrolyte, the adhesion with the matrix resin cannot be sufficiently improved, and ■ LBB (interlaminar shear strength)
It is difficult to hope for the effects of the present invention, as only low values can be obtained.

実質的に電解質を含まない水に無機塩を添加して!!I
4裂する水溶液中の無機塩の濃度は、小さ過ぎるのも大
き過き゛るのも望ましくない。″を彦わちこの濃度が小
さ過ぎ゛ると、水溶液の電気伝導度が小さいため炭素繊
、維を陽極酸化するためには高電圧が必要となり操業上
の危険をも次らし念シ、陽極酸化による表面処理装置の
容量を徒らに大きくする必要が出てぐる。一方この濃度
が大き過ぎると、水溶液の電気伝導度が大きいなめ、該
表面処理装置における炭素繊維方向に電流分布を生じ、
該表面処理装置入口付近において電流密度が異常に高く
なシ、炭素繊維の強度劣化を招いたり、炭素繊維に付着
した無機塩の水洗が必要になる。このよう彦点から水溶
液中の無機塩の濃度は、通常10−10θO胛、好まし
くは100〜zooPの範囲で用いられる。
Add inorganic salts to virtually electrolyte-free water! ! I
It is undesirable that the concentration of the inorganic salt in the aqueous solution is neither too low nor too high. If this concentration is too low, high voltage will be required to anodize carbon fibers and fibers due to the low electrical conductivity of the aqueous solution, which may pose an operational hazard. It becomes necessary to unnecessarily increase the capacity of the surface treatment device by oxidation.On the other hand, if this concentration is too large, the electrical conductivity of the aqueous solution is high, causing current distribution in the direction of the carbon fibers in the surface treatment device.
If the current density is abnormally high near the entrance of the surface treatment device, it may cause deterioration of the strength of the carbon fibers, and it becomes necessary to wash away inorganic salts adhering to the carbon fibers. The concentration of the inorganic salt in the aqueous solution from the Hiko point is usually in the range of 10-10θO, preferably in the range of 100 to zooP.

表面電解処理を行なう炭素繊維の性質、あるいは要求さ
れる炭素繊維の性質、用途などに応じて、水溶液中の無
機塩濃度ははソ上記の範囲から任意に選定すればよい。
The concentration of the inorganic salt in the aqueous solution may be arbitrarily selected from the above range depending on the properties of the carbon fibers to be subjected to the surface electrolytic treatment, the required properties of the carbon fibers, the intended use, etc.

水溶液中の無機塩濃度の選定とともに重要なことは、炭
素繊維の電解表面処理操業中に、水溶液中の無機塩濃度
を大きく変動させないで変動幅−1)120%以下であ
る一定値に制御することである。すなわち従来技術にお
いては炭素繊維の雪解表面処理に際して水溶液中の1!
雫質濃度は数チ以上の比較的高い値で実施しているのに
対して、本発明における水溶液中の電解質すなわち無機
塩濃度の絶対値が小さいだけに、その値の変動が炭素繊
維の表面電解処理効果に敏感に影響する。したがって水
溶液中の無機塩濃度全上記の如く一定に好ましくは変動
幅が10−以下の一定値に、制御するl要がある。これ
は例えば表面電解処理装置内の水溶液中の無機塩濃度又
は水溶液の電気伝導度を検出するセンサーと、その検出
値に対応して、脱塩水など実質的に電解質を含まない水
、あるいは所定濃度よシ若干高い無機塩濃度の水溶液を
供給する供給タンクなどを付設することKより、容易に
目的を達成することが出来る。
In addition to selecting the inorganic salt concentration in the aqueous solution, it is important to control the inorganic salt concentration in the aqueous solution to a constant value of 120% or less without greatly changing it during the electrolytic surface treatment operation of carbon fibers. That's true. In other words, in the conventional technology, 1!
The electrolyte concentration in the aqueous solution in the present invention is relatively high, in other words, the inorganic salt concentration is small, so the fluctuation in the value is caused by the surface of the carbon fiber. Sensitive to the electrolytic treatment effect. Therefore, it is necessary to control the total inorganic salt concentration in the aqueous solution to a constant value, preferably with a fluctuation range of 10 - or less, as described above. This includes, for example, a sensor that detects the inorganic salt concentration in an aqueous solution or the electrical conductivity of an aqueous solution in a surface electrolytic treatment device, and a sensor that detects the inorganic salt concentration in an aqueous solution or the electrical conductivity of an aqueous solution, and, corresponding to the detected value, water that does not substantially contain electrolytes, such as demineralized water, or a predetermined concentration. The purpose can be easily achieved by attaching a supply tank or the like for supplying an aqueous solution with a slightly higher inorganic salt concentration.

本発明においては、上述したように実質的に電解質を含
まない水を一旦作って、それをベースにするのが重要で
ある。工業用水、河川水、井戸水等も所定の電気伝導度
に制御することも可能だが、それ以外の諸物性(全硬度
、鉄分、酸素消費1など)の変動は避けられず、本発明
の陽極酸化の電解質としては不適当であり、バラツキの
ない効果は期待出来カいのである。
In the present invention, as mentioned above, it is important to once create water that does not substantially contain electrolytes and use it as a base. Although it is possible to control industrial water, river water, well water, etc. to a predetermined electrical conductivity, fluctuations in other physical properties (total hardness, iron content, oxygen consumption 1, etc.) are unavoidable, and the anodization of the present invention Therefore, it is unsuitable as an electrolyte, and consistent effects cannot be expected.

陽極酸化のその他の条件としては、1圧、電流密度、通
wi/に、時間、温度等があシ、これらも炭素繊維の種
類、処理速度、処理すべき程度等によって変化するが退
席は、重圧としてl〜tOV、電流密度として炭素W維
/ cm 描りθ、l〜100mA、通電量として炭素
繊維12当シO0σj〜!00クーロン、時間として数
秒〜数分、温度として営温〜rO℃である。
Other conditions for anodizing include pressure, current density, speed, time, temperature, etc.These also vary depending on the type of carbon fiber, processing speed, degree of processing, etc. The heavy pressure is l~tOV, the current density is carbon W fiber/cm drawing θ, l~100mA, and the amount of current is 12 carbon fibers O0σj~! 00 coulombs, time from several seconds to several minutes, and temperature from normal temperature to rO<0>C.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明するが、本発明
の要旨を超えない限り、本発明は実施例に限定されるも
のではない。
The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the Examples unless it goes beyond the gist of the present invention.

(実施例1) ピッチ繊維をλ、300℃で焼成して得られた糸径10
μの炭素9.碓の3.000本のトウを、第1図に示す
装f11(陽極ロープ3,3′及び陰極板ダの材質:黒
鉛、長さ/ m ’)を用いて、次の条件で連続的に表
面処理した。
(Example 1) Thread diameter 10 obtained by firing pitch fiber at λ, 300°C
μ carbon9. Using the equipment f11 shown in Figure 1 (material of anode ropes 3, 3' and cathode plate: graphite, length/m'), 3,000 tows of Usui were continuously used under the following conditions. Surface treated.

電jlJ[:脱塩水(背気伝導度−μs/副、無機塩濃
度j p) K (1!ao12 @ J H2Oを添
加シテCaC]、2  コ!0pの濃度に調製し走水溶
液。
Electric jlJ [: Demineralized water (back air conductivity - μs/sub, inorganic salt concentration j p) K (1!ao12 @ J H2O added to CaC], 2 Co! Hydrotactic solution prepared to a concentration of 0p).

N気伝傅度は37!μB/cmで、との値を運転中、電
解液中電気伝導度を測定す るセンサーと、脱塩水供給系および CaCl2  ! 00 pp水溶液(脱塩水に1:!
ac12・コH20を添加しm変調製し走水溶液)供給
系から々る糸で自動制御した。
N Kiden Fudo is 37! A sensor that measures the electrical conductivity in the electrolyte during operation, a demineralized water supply system and CaCl2! 00 pp aqueous solution (1:! in demineralized water!
AC12 and COH20 were added to make a m-modulated water running solution) and automatically controlled by a thread running from the supply system.

電 圧: ?V    温 度:30℃坩  流:/j
mA       時  間: 6θsec通’fll
−f):  /、J’ C/ ?−CF     糸 
 速”−/m/分旬6れた炭素繊維の樹脂含浸ストラン
ド引張り強さをJ工5−R−760/に従い、−1六T
LeS(層間剪断強度)をASTM D−23atに従
い測定し、その#a果を第1表に示す。
Voltage: ? V Temperature: 30℃ Crucible flow: /j
mA time: 6θsec
-f): /, J' C/? -CF thread
The tensile strength of the carbon fiber resin-impregnated strands was measured at -16T in accordance with J Engineering 5-R-760/.
LeS (interlaminar shear strength) was measured according to ASTM D-23at, and the results #a are shown in Table 1.

(実施例−) 電M液としてCaCl2 dli度/θθ騨にv!4判
し沈水溶液を使用し、電圧をコ0■と巳な以外は実施例
/と同様に実施し念。
(Example-) CaCl2 dli degree/θθ as an electromagnetic liquid v! The test was carried out in the same manner as in Example 1, except that the 4-size precipitating solution was used and the voltage was set to 0.

得られ九炭素繊維の樹脂含浸ストランド引張り強さ及び
IL8Bを実施例1と同様に測定し、その結果を第1表
に併記する。
The resin-impregnated strand tensile strength and IL8B of the obtained nine carbon fibers were measured in the same manner as in Example 1, and the results are also listed in Table 1.

(実施例り 電解液として脱塩水K MgSO4・H2Oを添加して
Mg5o4 2 ! Oppeの濃度に調製した水溶液
を使用し、電圧をr V %CI!LO12j 00 
fpa水溶液供給系の代わF) K Mg804  !
 0θ−水溶液供給系を自動制御のために使用する以外
は実施例1と同様に実施し念。
(Example: An aqueous solution prepared by adding demineralized water K MgSO4.H2O to a concentration of Mg5o4 2!Oppe was used as the electrolyte, and the voltage was set to r V %CI!LO12j 00
Alternative to fpa aqueous solution supply system F) K Mg804!
The procedure was carried out in the same manner as in Example 1 except that the 0θ-aqueous solution supply system was used for automatic control.

有られた炭素繊維の樹脂含浸ストラ/ド引張シ強さ及び
IL8Bを実施例1と同様に測定し、その結果を第1表
に併記する。
The tensile strength and IL8B of the carbon fibers impregnated with resin were measured in the same manner as in Example 1, and the results are also listed in Table 1.

(比較例1) 表面電解処理を実施しない炭素繊維の樹脂含浸ストラン
ド引張9強さと工LSSを実施例1と同様に測定し、そ
の結JJヲ第1表に併記する。
(Comparative Example 1) The tensile strength and mechanical strength of a carbon fiber resin-impregnated strand without surface electrolytic treatment were measured in the same manner as in Example 1, and the results are also listed in Table 1.

比較例1は名実施例に対するブランクを示すものであり
第1表から明らか力通9、引張)強さは若干大きいもの
の工IISはかカシ小さく、マトリックス樹脂に対する
炭素偵維の接着性がよく力いことが判る。
Comparative Example 1 is a blank for the example, and it is clear from Table 1 that although the strength and tensile strength are slightly higher, the strength of the IIS is smaller, and the adhesion of the carbon fibers to the matrix resin is better. It turns out that it is.

(比較例コ〜2) 電解液として濾過水(夏、冬)、工業用水、河川水(夏
、冬)、井戸水をそれぞれ/ケ月に亘って使用した以外
は実施例1と同様に実施した。各1解液の電気伝導度お
よび、41られた炭素繊維の樹脂含浸ストランド引張り
強さとILS日を/ケ月に亘って実施例/と同様に測定
し、その最低値と最高値を変動幅として第1表に併記す
る。
(Comparative Example C-2) The same procedure as in Example 1 was carried out except that filtered water (summer, winter), industrial water, river water (summer, winter), and well water were used as the electrolytic solution for several months. The electrical conductivity of each dissolved solution, the tensile strength of the resin-impregnated carbon fiber strands, and the ILS date were measured in the same manner as in Example/ for several months, and the lowest and highest values were taken as the fluctuation range. Also listed in Table 1.

第1表から明らかな通り、・これらの水は種類によって
も、′1次季節的にも電気伝導度の値が異々るとともに
溶存イオンの種類も多岐に亘るため、全般的に引張フ強
さ及びrL8Bが低い値であり、たとえ工LSSが比較
的高い値でも、引張り強さがかなり低く、バランスの良
い特性の炭素繊維は得られなかった。また比較例−2〜
7においては、電気伝導度の変動幅が大きいが、それに
伴ない炭素繊維特性の変動幅もまな大きいことがわかる
As is clear from Table 1, the electrical conductivity values of these waters vary depending on the type and season, and the types of dissolved ions are also diverse, so overall the tensile strength is Even though the tensile strength and rL8B were low, and the tensile strength was relatively high, the tensile strength was quite low, and a carbon fiber with well-balanced properties could not be obtained. Also, comparative example-2~
It can be seen that in No. 7, the range of variation in electrical conductivity is large, but the range of variation in carbon fiber properties accompanying this is also large.

〔発明の効果〕〔Effect of the invention〕

本発明によれば表面電解処理後、炭素繊維の水洗を殆ど
必要とせず、強度低下が小さく、層間剪断強度が大きい
品質の安定し念高特性炭素繊維を!#造することが出来
る。この高特性炭素繊維は各種線維強化り合材に非常に
有用である。
According to the present invention, after the surface electrolytic treatment, there is almost no need to wash the carbon fiber with water, and a stable quality carbon fiber with high interlaminar shear strength is produced with little strength loss and high interlaminar shear strength! # Can be built. This high-performance carbon fiber is extremely useful for various fiber-reinforced composite materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる表面電解処理装置の一例を示す
。 l : 炭素繊維 コ :′M、解液槽 液槽3′:陽極ローラ グ : 陰極板 出 願 人  三菱化成工業株式会社 代 理 人  弁理士 要否用  − (ほか7名) あ1 図
FIG. 1 shows an example of a surface electrolytic treatment apparatus used in the present invention. l: Carbon fiber co:'M, decomposition tank liquid tank 3': Anode roller lag: Cathode plate Applicant: Mitsubishi Chemical Industries, Ltd. Representative Patent attorney For necessity - (7 others) A1 Figure

Claims (6)

【特許請求の範囲】[Claims] (1)電解質溶液中に炭素繊維を浸漬し、該炭素繊維を
陽極にして電気分解により表面処理を行なう方法におい
て、電解質溶液として、実質的に電解質を含まない水に
無機塩を添加して、無機塩濃度を10〜1000ppm
の範囲から設定し、濃度設定値に対する変動幅を20%
以下に調製した水溶液を用いることを特徴とする炭素繊
維の表面電解処理方法。
(1) In a method of immersing carbon fibers in an electrolyte solution and performing surface treatment by electrolysis using the carbon fibers as anodes, an inorganic salt is added to water that does not substantially contain electrolyte as the electrolyte solution, Inorganic salt concentration 10-1000ppm
Set from the range of 20% of the variation range for the density setting value.
A method for surface electrolytic treatment of carbon fibers, characterized by using an aqueous solution prepared as follows.
(2)実質的に電解質を含まない水の電気伝導度が10
μs/cm以下である特許請求の範囲第1項記載の炭素
繊維の表面電解処理方法。
(2) The electrical conductivity of water that does not substantially contain electrolytes is 10
The surface electrolytic treatment method for carbon fibers according to claim 1, wherein the surface electrolytic treatment is μs/cm or less.
(3)実質的に電解質を含まない水の電解質の濃度が1
0ppm以下である特許請求の範囲第1項記載の炭素繊
維の表面電解処理方法。
(3) The concentration of electrolytes in water that does not substantially contain electrolytes is 1
The surface electrolytic treatment method for carbon fibers according to claim 1, wherein the surface electrolytic treatment method is 0 ppm or less.
(4)無機塩がアルカリ土類金属もしくはアルカリ金属
のハロゲン化物、硫酸塩もしくはりん酸塩の1種又は2
種以上の混合物である特許請求の範囲第1項記載の炭素
繊維の表面電解処理方法。
(4) The inorganic salt is one or two of alkaline earth metals or alkali metal halides, sulfates, or phosphates.
The method for surface electrolytic treatment of carbon fibers according to claim 1, wherein the method is a mixture of more than one species.
(5)無機塩濃度を100〜500ppmの範囲から設
定する特許請求の範囲第1項記載の炭素繊維の表面電解
処理方法。
(5) The surface electrolytic treatment method for carbon fibers according to claim 1, wherein the inorganic salt concentration is set in the range of 100 to 500 ppm.
(6)濃度設定値に対する変動幅が10%以下である特
許請求の範囲第1項記載の炭素繊維の表面電解処理方法
(6) The surface electrolytic treatment method for carbon fibers according to claim 1, wherein the variation range with respect to the concentration setting value is 10% or less.
JP61313733A 1986-12-26 1986-12-26 Surface electrolytic treatment method for carbon fiber Expired - Fee Related JP2730691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61313733A JP2730691B2 (en) 1986-12-26 1986-12-26 Surface electrolytic treatment method for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313733A JP2730691B2 (en) 1986-12-26 1986-12-26 Surface electrolytic treatment method for carbon fiber

Publications (2)

Publication Number Publication Date
JPS63165580A true JPS63165580A (en) 1988-07-08
JP2730691B2 JP2730691B2 (en) 1998-03-25

Family

ID=18044865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313733A Expired - Fee Related JP2730691B2 (en) 1986-12-26 1986-12-26 Surface electrolytic treatment method for carbon fiber

Country Status (1)

Country Link
JP (1) JP2730691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224459A (en) * 2006-02-24 2007-09-06 Toray Ind Inc Method for producing surface-oxidized carbon fiber bundle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100762A (en) * 1982-11-26 1984-06-11 旭化成株式会社 Surface treatment of carbon fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100762A (en) * 1982-11-26 1984-06-11 旭化成株式会社 Surface treatment of carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224459A (en) * 2006-02-24 2007-09-06 Toray Ind Inc Method for producing surface-oxidized carbon fiber bundle

Also Published As

Publication number Publication date
JP2730691B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US4690738A (en) Method of electrochemically surface treating carbon fibers, fibers treated by the method, and composite materials including such fibers
US4401533A (en) Surface-treatment of carbon fiber
US4704196A (en) Process for surface treatment of carbon fiber
JPS585288B2 (en) Carbon fiber surface electrolytic treatment method and its electrolytic cell
US3746560A (en) Oxidized carbon fibers
JPS63165580A (en) Surface electrolytic treatment of carbon fiber
US3657082A (en) Treatment of fibrous materials
JPH0544154A (en) Surface treatment of carbon fiber
EP0293867A2 (en) Surface treatment process for carbon fibers
CN106319933B (en) Carbon fiber electrically chemical treatment method for surface growth carbon nanotube
US3859187A (en) Electrolytic process for the surface modification of high modulus carbon fibers
CN111139646A (en) Preparation of modified carbon fiber and nylon 6 composite material thereof
US2594124A (en) Electrolytic polishing of metals
JPS61275469A (en) Surface treatment of carbon fiber
KR100317617B1 (en) Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
JPS61275470A (en) Surface treatment of carbon fiber
JPS59116469A (en) Surface treatment of carbon fiber
KR890005015B1 (en) Surface treatment method of carbon fiber
JPH0478747B2 (en)
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JPS6312761A (en) Carbon fiber and composite material using the same
JPS6347823B2 (en)
RU2336227C2 (en) Method of obtaining material based on oxidised graphite for electolysers of aluminium production and material
JPS58104222A (en) Surface treatment of carbon fiber
JPS58132168A (en) Improved surface electrolytic treatment of carbon fiber bundle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees