JP3409920B2 - Lead dioxide electrode for electrolysis and method for producing the same - Google Patents

Lead dioxide electrode for electrolysis and method for producing the same

Info

Publication number
JP3409920B2
JP3409920B2 JP12979094A JP12979094A JP3409920B2 JP 3409920 B2 JP3409920 B2 JP 3409920B2 JP 12979094 A JP12979094 A JP 12979094A JP 12979094 A JP12979094 A JP 12979094A JP 3409920 B2 JP3409920 B2 JP 3409920B2
Authority
JP
Japan
Prior art keywords
lead
lead dioxide
substrate
layer
dioxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12979094A
Other languages
Japanese (ja)
Other versions
JPH07316863A (en
Inventor
孝之 島宗
保夫 中島
正生 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP12979094A priority Critical patent/JP3409920B2/en
Publication of JPH07316863A publication Critical patent/JPH07316863A/en
Application granted granted Critical
Publication of JP3409920B2 publication Critical patent/JP3409920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解用二酸化鉛電極及
びその製造方法に関し、より詳細には20A/dm2 以下
の比較的低電流密度で使用する主として水処理や排水処
理に使用する電解処理用二酸化鉛陽極及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead dioxide electrode for electrolysis and a method for producing the same, and more particularly to an electrolysis mainly used for water treatment and wastewater treatment, which is used at a relatively low current density of 20 A / dm 2 or less. The present invention relates to a lead dioxide anode for treatment and a method for manufacturing the same.

【0002】[0002]

【従来技術とその問題点】廃水規制の強化により廃水処
理は深刻な問題となっている。特に廃水中の金属成分は
従来主として中和沈澱法により酸化物−水酸化物スラッ
ジとして沈澱させ廃棄していた。しかしこの方法では廃
棄量が増大しかつ金属が有価物である場合にも金属成分
の回収が不可能であるという問題点があった。一方廃水
中の有機物はCODやTOCとして廃水中に残留し、そ
の分解のために高価な過酸化水素、オゾン又は次亜塩素
酸等を必要とし、更に次亜塩素酸を使用すると有毒な有
機塩化物を生成するという二次公害の可能性も指摘され
ている。
2. Description of the Related Art Wastewater treatment has become a serious problem due to the tightening of wastewater regulations. In particular, the metal components in the waste water have been conventionally precipitated mainly as an oxide-hydroxide sludge by the neutralization precipitation method and discarded. However, this method has a problem that the amount of waste increases and the metal component cannot be recovered even when the metal is a valuable resource. On the other hand, the organic matter in the wastewater remains as COD and TOC in the wastewater and requires expensive hydrogen peroxide, ozone, hypochlorous acid, etc. for its decomposition. It has also been pointed out that there is a possibility of secondary pollution, which is the generation of things.

【0003】これらの問題点の一部を解決するために電
解による廃水処理が提案されている。廃水を三次元的広
がりを有する陰極を使用して処理すると廃水中の金属と
前記陰極との会合をチャンスが増大し、低電流密度で廃
水中の金属イオンを陰極表面に電着させ回収することが
可能になる。この処理のみでは完全な廃水の浄化ができ
ない場合でも、イオン交換樹脂等による最終処理を行う
ことにより完全な廃水浄化を達成でき、しかもこの電解
処理では中和沈澱法では処理できない金属キレートも処
理できるという特徴がある。一方廃水中のCOD、BO
D及びTOCは酸化性の大きい陽極を使用して電解を行
うことにより分解して処理できる。即ち陽極処理及び陰
極処理を組み合わせることにより金属除去又は回収と有
機物分解を同時に行うことができ、実際に金属除去と有
機物分解を同時に行える処理装置が市販されている。
In order to solve some of these problems, electrolytic wastewater treatment has been proposed. Treating wastewater with a cathode having a three-dimensional spread increases the chances of association between the metal in the wastewater and the cathode, and collects the metal ions in the wastewater by electrodeposition on the cathode surface at a low current density. Will be possible. Even if the wastewater cannot be completely purified by this treatment alone, a complete wastewater purification can be achieved by performing the final treatment with an ion exchange resin, etc., and metal chelates that cannot be treated by the neutralization precipitation method can also be treated by this electrolytic treatment. There is a feature called. On the other hand, COD and BO in wastewater
D and TOC can be decomposed and treated by electrolysis using a highly oxidizable anode. That is, by combining anodizing and cathodic treatment, metal removal or recovery and organic substance decomposition can be performed simultaneously, and a treatment device that can actually perform metal removal and organic substance decomposition simultaneously is commercially available.

【0004】従来の電解による廃水処理装置の陽極電流
密度は10A/dm2 以下であり、それを越えると酸素発
生が主となり電流の供給量ほどには目的である有機物分
解が進行しなくなる。有機物分解用の陽極物質としては
鉛や鉛合金及び二酸化鉛が最適であるが、鉛や鉛合金は
溶出速度が二酸化鉛の約100 倍である数mg/AHに達
し二次汚染の問題が生ずるため、通常は二酸化鉛が使用
される。白金メッキチタン等も陽極としての電位が高い
ため有望であるが、価格が高く電位の割には酸化力が弱
いため、その使用は限られている。
The anode current density of a conventional wastewater treatment apparatus by electrolysis is 10 A / dm 2 or less, and if it exceeds that, oxygen generation mainly occurs and the target decomposition of organic matter does not proceed as much as the current supply amount. Lead, lead alloys and lead dioxide are the most suitable anode materials for the decomposition of organic substances, but lead and lead alloys have a dissolution rate of several mg / AH, which is about 100 times that of lead dioxide. Therefore, lead dioxide is usually used. Platinum-plated titanium is also promising because it has a high potential as an anode, but its use is limited because it is expensive and its oxidizing power is weak relative to the potential.

【0005】このような廃水処理に最適の二酸化鉛電極
は、通常チタン又はチタン合金基材上に酸化防止並びに
導電性を保持するための中間層を設け、該中間層の上に
二酸化鉛層を形成して構成される。中間層を形成するの
は、二酸化鉛が一種のセラミクスであり導電性は大きい
が極めて脆く二酸化鉛層のみでは十分な強度が得られな
いからであり、高価なチタン材を基材としかつ中間層と
して高価な物質である白金や酸化チタン/タンタル等を
使用しなければならず、二酸化鉛自体は安価であるとし
ても最終的に製造される電極は高価になってしまうとい
う欠点があった。通常二酸化鉛電極は100 A/dm2
上の電流密度でも極めて安定であり、このような高電流
密度用としては前述の中間層を有する仕様でも良いが、
電流密度が小さい例えば廃水処理用としては過剰仕様で
あり、高価であるため用途が限定されていた。
A lead dioxide electrode most suitable for such wastewater treatment is usually provided with an intermediate layer for preventing oxidation and maintaining conductivity on a titanium or titanium alloy substrate, and the lead dioxide layer is provided on the intermediate layer. Formed and configured. The intermediate layer is formed because lead dioxide is a type of ceramics and has high conductivity, but is extremely brittle, and sufficient strength cannot be obtained only with the lead dioxide layer. As a result, expensive materials such as platinum and titanium oxide / tantalum must be used, and even if lead dioxide itself is inexpensive, there is a drawback that the finally manufactured electrode becomes expensive. Normally, a lead dioxide electrode is extremely stable even at a current density of 100 A / dm 2 or more. For such a high current density, the specification having the above-mentioned intermediate layer may be used.
The current density is low, for example, it is an excessive specification for wastewater treatment, and it is expensive, so its use is limited.

【0006】[0006]

【発明の目的】本発明は、上述の従来の二酸化鉛電極の
欠点を解決し、安価で取扱いの容易な主として低電流密
度で使用する特に水処理に適した長寿命の二酸化鉛電極
及びその製造方法を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks of conventional lead dioxide electrodes and is a long-lived lead dioxide electrode which is inexpensive and easy to handle, is used mainly at low current density, and is particularly suitable for water treatment. The purpose is to provide a method.

【問題点を解決するための手段】本発明は、金属鉛を含
浸又はメッキした多孔質炭素基材、該基材上に形成した
α−二酸化鉛層及び該α−二酸化鉛層表面に形成したβ
−二酸化鉛層から成る電解用二酸化鉛電極及びその製造
方法である。
According to the present invention, a porous carbon substrate impregnated with or plated with metallic lead, an α-lead dioxide layer formed on the substrate, and a surface of the α-lead dioxide layer are formed. β
A lead dioxide electrode for electrolysis comprising a lead dioxide layer and a method for producing the same.

【0007】以下本発明を詳細に説明する。従来の二酸
化鉛電極のように基材としてチタン等の弁金属を使用す
ると二酸化鉛の酸化により又高い電位により基材表面が
不働態化してしまい、そのままでは使用できなくなるた
め、白金やチタン−タンタル酸化物+白金等から成る耐
食性の薄層を表面層として生成する必要があった。その
ため弁金属自体高価であることに加えてこれらの表面層
の形成に要するコストも莫大となり、安価に電極を製造
することはできなかった。この問題点に鑑み、本発明で
は基材として安価な炭素材料を使用する。該炭素材料の
形状は最終的な電極の形状に応じて、板状、棒状、網
状、多孔状等の適宜形状とすることができる。又その表
面状態は平滑であっても良いが多孔質として後述の鉛等
との親和力を向上指せることが望ましい。
The present invention will be described in detail below. When a valve metal such as titanium is used as the base material like the conventional lead dioxide electrode, the surface of the base material becomes passivated due to the oxidation of lead dioxide and also due to the high potential, and it cannot be used as it is.Platinum or titanium-tantalum It was necessary to form a thin corrosion resistant layer of oxide + platinum, etc., as the surface layer. Therefore, in addition to the valve metal itself being expensive, the cost required for forming these surface layers also becomes enormous, and the electrode could not be manufactured at low cost. In view of this problem, an inexpensive carbon material is used as the base material in the present invention. The shape of the carbon material can be an appropriate shape such as a plate shape, a rod shape, a net shape, or a porous shape, depending on the shape of the final electrode. The surface state may be smooth, but it is desirable that the surface state is porous to improve the affinity with lead, which will be described later.

【0008】二酸化鉛の比重はα−二酸化鉛及びβ−二
酸化鉛とも約9であり極めて重いため、これらの二酸化
鉛層を基材上に保持するためには炭素基材として物理的
強度が大きい炭素材料を使用することが不可欠であり、
例えば繊維状の炭素を焼結した所謂カーボンペーパー
(炭素紙又は炭素抄紙)として市販されているものが良
く、特に導電性及び耐食性を向上させるために前記カー
ボンペーパーはグラファイト化処理することが望まし
い。
Since the specific gravity of lead dioxide is about 9 for both α-lead dioxide and β-lead dioxide, they are extremely heavy, and therefore have a large physical strength as a carbon base material for holding these lead dioxide layers on the base material. It is essential to use carbon materials,
For example, what is commercially available as so-called carbon paper (carbon paper or carbon paper) obtained by sintering fibrous carbon is preferable, and it is particularly desirable that the carbon paper is graphitized in order to improve conductivity and corrosion resistance.

【0009】この炭素基材上に直接二酸化鉛層を形成す
ると二酸化鉛層の一部が破壊し、露出した炭素基材が選
択的に反応し二酸化炭素として揮散し基材の酸化による
消耗のため電極全体の寿命が短くなってしまう。これを
回避するため本発明では前記炭素基材に金属鉛を含浸さ
せるかその表面に金属鉛層をメッキする。該炭素基材へ
の鉛の含浸は該基材を溶融鉛中に浸漬させて行うことが
好ましく、メッキの場合は硼フッ化鉛浴等を使用して前
記基材に鉛を電気メッキする。なお炭素基材が多孔質で
ない場合には含浸は不適当であり電気メッキにより鉛を
基材表面にメッキする。
When a lead dioxide layer is formed directly on this carbon substrate, a part of the lead dioxide layer is destroyed, and the exposed carbon substrate reacts selectively to volatilize as carbon dioxide, which is consumed by oxidation of the substrate. The life of the entire electrode is shortened. In order to avoid this, in the present invention, the carbon base material is impregnated with metallic lead or the surface thereof is plated with a metallic lead layer. Impregnation of the carbon substrate with lead is preferably performed by immersing the substrate in molten lead, and in the case of plating, the substrate is electroplated with lead using a lead borofluoride bath or the like. If the carbon substrate is not porous, impregnation is not appropriate and lead is plated on the substrate surface by electroplating.

【0010】溶融鉛の含浸の条件は特に限定されない
が、基材と溶融鉛間の濡れ性を良好に保持すれば鉛が基
材の孔中に進入して鉛が炭素基材中に保持される。前記
濡れ性の向上のためには含浸に先立ってメタノールやエ
タノール等のアルコールその他の有機溶媒で基材表面の
洗浄を行い表面張力を低下させて基材と鉛との親和力を
高めることが望ましい。含浸時の温度は鉛が液状として
存在すれば特に限定されないが300 ℃より若干高めにし
て鉛の粘性を小さくして濡れ性を高めておくことが望ま
しい。この状態で溶融鉛と炭素基材を接触させると該炭
素基材が鉛を十分に吸収し、そのアンカー効果と相まっ
て十分強固でしかも十分な導電性を有する含浸鉛層が形
成される。一方電気メッキを使用する場合には市販の硼
フッ化浴鉛メッキ液を使用でき、その代表的な浴として
は、鉛として150 g/リットル、硼フッ酸150 g/リッ
トル、ペプトン2〜4g/リットルを含む浴等がある。
これらの浴を使用し、鉛を陽極として温度20〜25℃、電
流密度約3A/dm2 で約1時間メッキを行うことによ
り約40〜50μmの厚さを有するメッキ層を形成できる。
The conditions for impregnating the molten lead are not particularly limited, but if the wettability between the base material and the molten lead is kept good, the lead enters the pores of the base material and the lead is held in the carbon base material. It In order to improve the wettability, it is desirable to wash the surface of the base material with an organic solvent such as alcohol such as methanol or ethanol before impregnation to reduce the surface tension and increase the affinity between the base material and lead. The temperature at the time of impregnation is not particularly limited as long as lead exists in a liquid state, but it is desirable to raise it slightly above 300 ° C. to reduce the viscosity of lead and improve the wettability. When the molten lead and the carbon base material are brought into contact with each other in this state, the carbon base material sufficiently absorbs lead, and in combination with the anchor effect, an impregnated lead layer having sufficient strength and sufficient conductivity is formed. On the other hand, in the case of using electroplating, a commercially available borofluoride bath lead plating solution can be used, and as a typical bath, 150 g / liter of lead, 150 g / liter of borofluoric acid, and 2 to 4 g / peptone of peptone are used. There are baths containing liters.
A plating layer having a thickness of about 40 to 50 μm can be formed by using these baths and using lead as an anode at a temperature of 20 to 25 ° C. and a current density of about 3 A / dm 2 for about 1 hour.

【0011】形成されるメッキ層の厚さは特に限定され
ないが10μmより薄いと貫通孔の生成を完全には防止で
きなくなる。貫通孔が生成しても通常の使用には支障は
生じないが使用が長期間に渡ると電解液による炭素基材
の腐食が生ずることもあるため、前記メッキ層の厚さは
10μm以上であることが望ましい。又メッキ層の厚さが
100 μmより厚くなると重量が増加してメッキ層表面に
形成される二酸化鉛層が剥離しやすくなるため、前記メ
ッキ層の厚さは100 μm以下であることが望ましい。前
記メッキ操作の電解時間を調節することにより所望厚さ
のメッキ層を得ることができる。
The thickness of the plating layer formed is not particularly limited, but if it is less than 10 μm, the formation of through holes cannot be completely prevented. Even if a through hole is formed, it does not hinder normal use, but the carbon base material may be corroded by the electrolytic solution over a long period of use.
It is preferably 10 μm or more. Also, the thickness of the plating layer
If the thickness is more than 100 μm, the weight increases and the lead dioxide layer formed on the surface of the plating layer is easily peeled off. Therefore, the thickness of the plating layer is preferably 100 μm or less. A plating layer having a desired thickness can be obtained by adjusting the electrolysis time of the plating operation.

【0012】次いで含浸鉛又は鉛メッキ層を有する前記
基材表面にα−二酸化鉛層を形成する。このα−二酸化
鉛層は前記鉛メッキ層の表面を酸化して得てもあるいは
電解メッキによって得るようにしてもよい。即ち鉛メッ
キ層を有する基材を水溶液中で陽分極して金属鉛を酸化
することによりα−二酸化鉛層に変換できる。水溶液は
酸性でも塩基性でも良いが望ましくは塩基性とする。即
ち10〜20%の苛性ソーダ浴中で前記炭素基材を陽極とし
1A/dm2 程度の電流密度で30分〜1時間電解すると
酸素発生とともに表面が酸化されα−二酸化鉛層が形成
される。
Next, an α-lead dioxide layer is formed on the surface of the substrate having the impregnated lead or lead plating layer. This α-lead dioxide layer may be obtained by oxidizing the surface of the lead plating layer or by electrolytic plating. That is, a base material having a lead-plated layer can be converted into an α-lead dioxide layer by anodic polarization in a water solution to oxidize metallic lead. The aqueous solution may be acidic or basic, but is preferably basic. That is, when the carbon substrate is used as an anode in a 10 to 20% caustic soda bath at a current density of about 1 A / dm 2 for electrolysis for 30 minutes to 1 hour, oxygen is generated and the surface is oxidized to form an α-lead dioxide layer.

【0013】この陽分極の代わりに電解メッキによりα
−二酸化鉛層を形成するためには、例えば20%程度の苛
性ソーダに酸化鉛(PbO)を飽和溶解した液中で前記
鉛をメッキした炭素基材を陽極として電解を行う。この
電解の代表的な条件は、温度25〜50℃望ましくは40℃、
電流密度0.5 〜2A/dm2 であり、この場合には酸素
発生は起こらず、1A/dm2 の電流密度では約30分程
度でα−二酸化鉛層がほぼ100 %の電流効率で生成す
る。このα−二酸化鉛層は、炭素基材の含浸鉛又は鉛メ
ッキ層と後述する表層のβ−二酸化鉛層の接合を良好に
維持するためのもので、均一であれば薄いほど好まし
い。
Instead of this anodic polarization, the
In order to form the lead dioxide layer, electrolysis is carried out using a carbon substrate plated with lead as an anode in a solution in which lead oxide (PbO) is saturated and dissolved in ca. 20% caustic soda. A typical condition for this electrolysis is a temperature of 25 to 50 ° C, preferably 40 ° C.
The current density is 0.5 to 2 A / dm 2. In this case, oxygen generation does not occur, and at the current density of 1 A / dm 2 , the α-lead dioxide layer is formed with a current efficiency of almost 100% in about 30 minutes. This α-lead dioxide layer is for maintaining good bonding between the impregnated lead or lead-plated layer of the carbon substrate and the surface β-lead dioxide layer described later, and the thinner the more uniform, the better.

【0014】次いでこのα−二酸化鉛層表面にβ−二酸
化鉛層を形成する。該β−二酸化鉛層の厚さは特に限定
されないが安定性を考慮すると50〜200 μmとすること
が望ましく、この程度の厚さのβ−二酸化鉛層を得るた
めの条件は例えば600 〜900g/リットルの硝酸鉛水溶
液中、60℃、2〜4A/dm2 の電流密度で、前記炭素
基材を陽極として1〜2時間電着を行えば良い。β−二
酸化鉛は電着歪が大きくなる傾向があり、これを防止す
るためにβ−二酸化鉛層中にセラミクス粉やフッ素樹脂
を添加することができる。これらの物質は電解液中に懸
濁させ十分攪拌しながら電着を行うことによりβ−二酸
化鉛層中に分散でき、他の電解条件を変える必要はな
い。セラミクス粉及びフッ素樹脂の材質は特に限定され
ず処理される廃水等に対して安定あり導電性を有しない
ことが望ましく、代表的なセラミクス粉としてシリカ、
アルミナ、チタニア、酸化タンタル等が、又代表的なフ
ッ素樹脂として親水性を与えたフッ素樹脂である市販の
テフロンディスパージョン(商品名)等がある。
Next, a β-lead dioxide layer is formed on the surface of this α-lead dioxide layer. The thickness of the β-lead dioxide layer is not particularly limited, but considering stability, it is preferably 50 to 200 μm, and the conditions for obtaining the β-lead dioxide layer having this thickness are, for example, 600 to 900 g. / Liter of lead nitrate aqueous solution at 60 ° C. and a current density of 2 to 4 A / dm 2 for 1 to 2 hours using the carbon substrate as an anode. β-lead dioxide tends to have a large electrodeposition strain, and in order to prevent this, ceramic powder or a fluororesin can be added to the β-lead dioxide layer. These substances can be dispersed in the β-lead dioxide layer by suspending them in an electrolytic solution and performing electrodeposition with sufficient stirring, and it is not necessary to change other electrolysis conditions. The material of the ceramic powder and the fluororesin is not particularly limited and is preferably stable and has no conductivity with respect to the wastewater to be treated, and silica is a typical ceramic powder,
Alumina, titania, tantalum oxide, and the like, and typical Teflon dispersion (trade name), which is a fluororesin having hydrophilicity, is a typical fluororesin.

【0015】これらの粒子の粒径は1〜20μm程度が望
ましく、これを越えると二酸化鉛層の厚さより大きい粒
子が存在することになり、時として貫通孔の原因とな
る。又二酸化鉛層中に撥水性物質を添加して電極表面を
撥水性とし、有機物等の選択分解に適した電極を製造す
ることができる。この電極表面の撥水化のためには前記
電解液中に撥水性物質を添加するとともに該電解液中に
懸濁させるために界面活性剤を加える。界面活性剤の種
類は特に限定されないが、ノニオン系界面活性剤が好適
であり、該界面活性剤に粒径1〜20μmのフッ化グラフ
ァイトやフッ化ピッチ、ポリテトラフルオロエチレン樹
脂(PTFE)、フッ化エチレンプロピレン樹脂(FE
P)等の撥水性物質を懸濁し強く攪拌しながら前記α−
二酸化鉛層表面に撥水性物質を分散させたβ−二酸化鉛
層を形成する。電解条件は界面活性剤の種類により異な
るが、一般的には温度40〜50℃、電流密度1〜4A/d
2 好ましくは1〜2A/dm2 とする。
The particle size of these particles is preferably about 1 to 20 .mu.m, and if it exceeds this value, particles larger than the thickness of the lead dioxide layer are present, sometimes causing through holes. Further, by adding a water repellent substance to the lead dioxide layer to make the electrode surface water repellent, an electrode suitable for selective decomposition of organic substances can be manufactured. In order to make the surface of the electrode water repellent, a water repellent substance is added to the electrolytic solution and a surfactant is added to suspend it in the electrolytic solution. Although the kind of the surfactant is not particularly limited, a nonionic surfactant is suitable, and the surfactant is preferably a graphite fluoride having a particle diameter of 1 to 20 μm, a pitch fluoride, a polytetrafluoroethylene resin (PTFE), a fluorine. Ethylene propylene resin (FE
P) and other water-repellent substances are suspended and the above α-
A β-lead dioxide layer in which a water repellent substance is dispersed is formed on the surface of the lead dioxide layer. The electrolysis conditions differ depending on the type of surfactant, but generally the temperature is 40 to 50 ° C, the current density is 1 to 4 A / d.
m 2 It is preferably 1 to 2 A / dm 2 .

【0016】[0016]

【実施例】次に本発明の二酸化鉛電極を製造する実施例
を記載するが、該実施例は本発明を限定するものではな
い。
EXAMPLES Next, examples for producing the lead dioxide electrode of the present invention will be described, but the examples do not limit the present invention.

【実施例1】王子製紙株式会社製厚さ1.5 mmの焼結カ
ーボンペーパーを基材として使用し、この表面の濡れ性
を良好にするためにエチルエーテル中に15分間浸漬し次
いで自然乾燥させた。この基材を350 ℃の溶融鉛中に浸
漬し、3分間保持後取り出してその表面にヘアドライヤ
ーで熱風を吹き付けて余剰の鉛を除去した。基材表面全
体が薄い鉛層で覆われていた。この鉛層を形成した基材
を40℃の10%苛性ソーダ水溶液中に浸漬して陽極とし、
これをニッケル板陰極に接続し、電流密度1A/dm2
で1時間電解を行った。電解停止後、X線回折で前記基
材の表面状態を観察したところ、緻密なα−二酸化鉛が
約25μmの厚さで覆われていることが分かった。
Example 1 A 1.5 mm thick sintered carbon paper manufactured by Oji Paper Co., Ltd. was used as a base material, which was immersed in ethyl ether for 15 minutes and then naturally dried in order to improve the wettability of the surface. . This base material was dipped in molten lead at 350 ° C., held for 3 minutes, taken out, and hot air was blown onto the surface with a hair dryer to remove excess lead. The entire surface of the substrate was covered with a thin lead layer. The base material on which this lead layer was formed was immersed in a 10% caustic soda aqueous solution at 40 ° C to form an anode,
This was connected to a nickel plate cathode and the current density was 1 A / dm 2
Electrolysis was performed for 1 hour. After the electrolysis was stopped, the surface condition of the substrate was observed by X-ray diffraction, and it was found that the dense α-lead dioxide was covered with a thickness of about 25 μm.

【0017】この基材を更に粒径1〜10μmのシリカ粉
末を懸濁した800 g/リットルの硝酸鉛水溶液を電解液
とし、温度60℃、電流密度4A/dm2 で電解を行っ
た。これにより50μmの厚さのβ−二酸化鉛を形成する
ことができ、電着歪による曲がり等は見られなかった。
このβ−二酸化鉛層を形成した基材を陽極として、60℃
の150 g/リットルの硫酸中で電解を行ったところ、10
A/dm2 の電流密度でも基材によるオーム損の上昇は
なく、この電流密度で2000時間の電解にも全く問題なく
作動した。
This substrate was further electrolyzed at a temperature of 60 ° C. and a current density of 4 A / dm 2 by using an aqueous solution of 800 g / liter lead nitrate in which silica powder having a particle size of 1 to 10 μm was suspended. As a result, β-lead dioxide having a thickness of 50 μm could be formed, and no bending due to electrodeposition strain was observed.
The base material on which this β-lead dioxide layer is formed is used as an anode at 60 ° C.
Electrolysis in 150 g / l of sulfuric acid
Even at a current density of A / dm 2 , there was no increase in ohmic loss due to the base material, and electrolysis for 2000 hours at this current density operated without any problem.

【0018】[0018]

【実施例2】実施例1と同じカーボンペーパーを同様に
前処理し、市販の硼フッ化鉛系の鉛メッキ浴中に陰極と
して接続し、見掛け電流密度3A/dm2 で1時間鉛メ
ッキを行った。これによりカーボンペーパーの基材表面
に1m2 当たり約1kgの鉛メッキが施された。20%苛
性ソーダ水溶液に酸化鉛(PbO)を飽和させた液を電
解液として使用し、前記基材を陽極として40℃、1A/
dm2 で1時間電解を行い、該基材表面にα−二酸化鉛
層を形成させた。α−二酸化鉛の厚さは約35μmであっ
た。
Example 2 The same carbon paper as in Example 1 was pretreated in the same manner, connected as a cathode in a commercially available lead borofluoride-based lead plating bath, and subjected to lead plating at an apparent current density of 3 A / dm 2 for 1 hour. went. As a result, the surface of the carbon paper substrate was plated with about 1 kg of lead per m 2 . A 20% caustic soda aqueous solution saturated with lead oxide (PbO) was used as an electrolytic solution, and the base material was used as an anode at 40 ° C. and 1 A /
Electrolysis was carried out at dm 2 for 1 hour to form an α-lead dioxide layer on the surface of the base material. The thickness of α-lead dioxide was about 35 μm.

【0019】800 g/リットルの硝酸鉛水溶液にノニオ
ン系界面活性剤を10g/リットルとなるように加え、更
に1〜10μmの粒径のフッ化グラファイト粉末を50g/
リットルとなるように懸濁させた。この懸濁液中で前記
基材を、45℃、2A/dm2で2時間電解し、フッ化グ
ラファイトを含む厚さ約50μmのβ−二酸化鉛層を形成
させた。このβ−二酸化鉛層は水には全く濡れ性を示さ
なかった。この電極を3A/dm2 の電流密度で電解に
使用したところ、3000時間経過後も全く問題なく電解を
継続することができた。
A nonionic surfactant is added to an aqueous solution of 800 g / liter of lead nitrate so as to be 10 g / liter, and 50 g / liter of graphite fluoride powder having a particle size of 1 to 10 μm is added.
It was suspended so that the volume became 1 liter. The substrate was electrolyzed in this suspension at 45 ° C. and 2 A / dm 2 for 2 hours to form a β-lead dioxide layer containing graphite fluoride and having a thickness of about 50 μm. This β-lead dioxide layer did not show any wettability with water. When this electrode was used for electrolysis at a current density of 3 A / dm 2 , electrolysis could be continued without any problem even after 3000 hours had passed.

【0020】[0020]

【実施例3】フミン酸5g/リットルを含む150 g/リ
ットルの硫酸水溶液中で実施例1及び実施例2の電極を
それぞれ陽極として電解を行ったところ、実施例2の電
極は実施例1の電極と比較して約3倍の速度でフミン酸
を分解することが分かった。
Example 3 Electrolysis was carried out in an aqueous solution of 150 g / liter of sulfuric acid containing 5 g / liter of humic acid using the electrodes of Examples 1 and 2 as anodes. It was found to decompose humic acid at a rate about 3 times that of the electrode.

【0021】[0021]

【発明の効果】本発明は、金属鉛を含浸又はメッキした
多孔質炭素基材、該基材上に形成したα−二酸化鉛層及
び該α−二酸化鉛層表面に形成したβ−二酸化鉛層から
成る電解用二酸化鉛電極である。本発明の二酸化鉛電極
は基材として多孔質炭素基材を使用し、従来の二酸化鉛
電極で使用されたチタン系基材及び中間層を有しない。
このチタン系基材及び中間層を有する二酸化鉛電極は10
0 A/dm2 以上の電流密度でも極めて安定であるが、
使用する材質が高価であるため電極物質として安価な二
酸化鉛を使用しても電極全体としてはかなり高価になっ
てしまう。100 A/dm2 以上の電流密度での電解に使
用する二酸化鉛電極はかなり高価となっても仕方のない
面があるが、低電流密度での電解操作例えば水処理では
高価な耐食性材料を使用して電極を構成する必要はな
い。
The present invention provides a porous carbon substrate impregnated or plated with metallic lead, an α-lead dioxide layer formed on the substrate, and a β-lead dioxide layer formed on the surface of the α-lead dioxide layer. Is a lead dioxide electrode for electrolysis. The lead dioxide electrode of the present invention uses a porous carbon substrate as a substrate, and does not have the titanium-based substrate and the intermediate layer used in the conventional lead dioxide electrode.
The lead dioxide electrode with this titanium-based substrate and the intermediate layer is 10
It is extremely stable even at a current density of 0 A / dm 2 or more,
Since the material used is expensive, even if inexpensive lead dioxide is used as the electrode material, the cost of the electrode as a whole becomes considerably high. Although the lead dioxide electrode used for electrolysis at a current density of 100 A / dm 2 or more is unavoidably expensive, electrolytic operation at a low current density such as water treatment uses an expensive corrosion-resistant material. Therefore, it is not necessary to configure the electrodes.

【0022】本発明の二酸化鉛電極は低電流密度領域で
使用する電極であり、前述の通り基材として安価な多孔
質炭素材料を使用して、高価なチタン基材や中間層の使
用を回避している。しかしこの多孔質炭素基材表面に直
接α−二酸化鉛層及びβ−二酸化鉛層を形成すると両二
酸化鉛層に形成することのある貫通孔を通して多孔質炭
素基材の消耗が促進される恐れがあるため、本発明では
前記炭素基材とα−二酸化鉛層の間に鉛メッキ層を形成
するか、前記炭素基材に鉛を含浸させるようにしてい
る。この鉛メッキ層や含浸鉛は安価に形成できるため電
極のコスト増は僅かであり低電流密度領域用の安価な二
酸化鉛電極を提供できる。
The lead dioxide electrode of the present invention is an electrode used in a low current density region, and as described above, an inexpensive porous carbon material is used as a base material to avoid the use of an expensive titanium base material or an intermediate layer. is doing. However, if the α-lead dioxide layer and the β-lead dioxide layer are formed directly on the surface of the porous carbon substrate, the consumption of the porous carbon substrate may be promoted through the through holes that may be formed in both the lead dioxide layers. Therefore, in the present invention, a lead plating layer is formed between the carbon base material and the α-lead dioxide layer, or the carbon base material is impregnated with lead. Since the lead plating layer and the impregnated lead can be formed inexpensively, the cost of the electrode is slightly increased and an inexpensive lead dioxide electrode for a low current density region can be provided.

【0023】又多孔質炭素基材は繊維状炭素の焼結体等
の物理的強度の高い基材とすることが望ましく、これら
の基材を使用すると比重が高い二酸化鉛を確実に保持し
安定した電極を得ることができる。β−二酸化鉛層中に
セラミクス及び/又はフッ素樹脂粉末を分散させること
もでき、これらの物質はβ−二酸化鉛中に生じやすい電
着歪を効果的に防止する。更にβ−二酸化鉛層中に撥水
性フッ素樹脂及び/又はフッ化グラファイトを分散させ
電極表面を撥水性とすることもできる。電極表面を撥水
化することにより有機物の選択分解に適した電極とする
ことができる。
Further, it is desirable that the porous carbon base material is a base material having a high physical strength such as a sintered body of fibrous carbon. When these base materials are used, lead dioxide having a high specific gravity can be surely held and stabilized. The obtained electrode can be obtained. It is also possible to disperse ceramics and / or fluororesin powder in the β-lead dioxide layer, and these substances effectively prevent electrodeposition strain that tends to occur in β-lead dioxide. Further, a water-repellent fluororesin and / or graphite fluoride can be dispersed in the β-lead dioxide layer to make the electrode surface water-repellent. By making the electrode surface water repellent, the electrode can be made suitable for selective decomposition of organic substances.

【0024】本発明方法は、多孔質炭素基材を溶融鉛中
に浸漬し該基材中に鉛を含浸させた後、鉛イオンを有す
る電解液中で前記基材を陽極として電解してα−二酸化
鉛層を電着し、次いで硝酸鉛含有電解液中で前記基材を
陽極として電解してβ−二酸化鉛層を電着することを特
徴とする電解用二酸化鉛電極の製造方法であり、該方法
により前述の通り安価で低電流密度領域で使用できる二
酸化鉛電極を提供できる。又該方法の基材中への鉛の含
浸に代えて、表面を親水化した多孔質炭素基材の表面に
電着により金属鉛層を形成することもでき、この場合に
も同様な特性の二酸化鉛電極を提供できる。
According to the method of the present invention, a porous carbon substrate is immersed in molten lead to impregnate the substrate with lead, and then the substrate is electrolyzed in an electrolytic solution containing lead ions to form an α A method for producing a lead dioxide electrode for electrolysis, characterized in that a lead dioxide layer is electrodeposited, and then a β-lead dioxide layer is electrodeposited by electrolyzing the above-mentioned substrate in a lead nitrate-containing electrolytic solution as an anode. As described above, the method can provide a lead dioxide electrode that is inexpensive and can be used in a low current density region. Further, instead of impregnating lead in the substrate of the method, a metallic lead layer can be formed on the surface of a porous carbon substrate having a hydrophilic surface by electrodeposition. A lead dioxide electrode can be provided.

フロントページの続き (56)参考文献 特開 昭52−19230(JP,A) 特開 平6−57474(JP,A) 特公 昭45−20164(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 Continuation of the front page (56) References JP-A-52-19230 (JP, A) JP-A-6-57474 (JP, A) JP-B-45-20164 (JP, B1) (58) Fields investigated (Int .Cl. 7 , DB name) C25B 1/00-15/08

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属鉛を含浸又はメッキした多孔質炭素
基材、該基材上に形成したα−二酸化鉛層及び該α−二
酸化鉛層表面に形成したβ−二酸化鉛層から成る電解用
二酸化鉛電極。
1. An electrolysis comprising a porous carbon substrate impregnated or plated with metallic lead, an α-lead dioxide layer formed on the substrate, and a β-lead dioxide layer formed on the surface of the α-lead dioxide layer. Lead dioxide electrode.
【請求項2】 多孔質炭素基材が繊維状炭素の焼結体で
ある請求項1に記載の二酸化鉛電極。
2. The lead dioxide electrode according to claim 1, wherein the porous carbon substrate is a sintered body of fibrous carbon.
【請求項3】 β−二酸化鉛層中にセラミクス及び/又
はフッ素樹脂粉末を分散させた請求項1に記載の二酸化
鉛電極。
3. The lead dioxide electrode according to claim 1, wherein ceramics and / or fluororesin powder is dispersed in the β-lead dioxide layer.
【請求項4】 β−二酸化鉛層中に撥水性フッ素樹脂及
び/又はフッ化グラファイトを分散させ表面を撥水性と
した請求項1に記載の二酸化鉛電極。
4. The lead dioxide electrode according to claim 1, wherein a water-repellent fluororesin and / or graphite fluoride is dispersed in the β-lead dioxide layer to make the surface water-repellent.
【請求項5】 多孔質炭素基材を溶融鉛中に浸漬し該基
材中に鉛を含浸させた後、鉛イオンを有する電解液中で
前記基材を陽極として電解してα−二酸化鉛層を電着
し、次いで硝酸鉛含有電解液中で前記基材を陽極として
電解してβ−二酸化鉛層を電着することを特徴とする電
解用二酸化鉛電極の製造方法。
5. A porous carbon base material is immersed in molten lead to impregnate the base material with lead, and then the base material is electrolyzed in an electrolyte solution containing lead ions to form α-lead dioxide. A process for producing a lead dioxide electrode for electrolysis, which comprises electrodepositing a layer, and then electrolyzing the β-lead dioxide layer by electrolyzing the substrate in a lead nitrate-containing electrolytic solution using the substrate as an anode.
【請求項6】 表面を親水化した多孔質炭素基材の表面
に電着により金属鉛層を形成し、鉛イオンを有する電解
液中で前記基材を陽極として電解してα−二酸化鉛層を
電着し、次いで硝酸鉛含有電解液中で前記基材を陽極と
して電解してβ−二酸化鉛層を電着することを特徴とす
る電解用二酸化鉛電極の製造方法。
6. An α-lead dioxide layer, which is obtained by forming a metallic lead layer on the surface of a porous carbon substrate having a hydrophilic surface by electrodeposition and electrolyzing the substrate in an electrolytic solution containing lead ions using the substrate as an anode. And electrodepositing the β-lead dioxide layer by electrolytically using the above substrate as an anode in a lead nitrate-containing electrolytic solution, to produce a lead dioxide electrode for electrolysis.
【請求項7】 表面を親水化した多孔質炭素基材の表面
に電着により金属鉛層を形成し、該金属鉛層を陽分極し
てその表面にα−二酸化鉛層を形成し、次いで硝酸鉛含
有電解液中で前記基材を陽極として電解してβ−二酸化
鉛層を電着することを特徴とする電解用二酸化鉛電極の
製造方法。
7. A lead metal layer is formed by electrodeposition on the surface of a porous carbon substrate having a hydrophilic surface, and the lead metal layer is positively polarized to form an α-lead dioxide layer on the surface, A method for producing a lead dioxide electrode for electrolysis, which comprises electrolyzing a β-lead dioxide layer by electrolyzing the substrate as an anode in a lead nitrate-containing electrolytic solution.
JP12979094A 1994-05-19 1994-05-19 Lead dioxide electrode for electrolysis and method for producing the same Expired - Fee Related JP3409920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12979094A JP3409920B2 (en) 1994-05-19 1994-05-19 Lead dioxide electrode for electrolysis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12979094A JP3409920B2 (en) 1994-05-19 1994-05-19 Lead dioxide electrode for electrolysis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07316863A JPH07316863A (en) 1995-12-05
JP3409920B2 true JP3409920B2 (en) 2003-05-26

Family

ID=15018300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12979094A Expired - Fee Related JP3409920B2 (en) 1994-05-19 1994-05-19 Lead dioxide electrode for electrolysis and method for producing the same

Country Status (1)

Country Link
JP (1) JP3409920B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064721C (en) * 1998-10-27 2001-04-18 中国科学院广州化学研究所 Plastic filter screen coating film electrode and making method thereof
JP5428176B2 (en) * 2008-03-27 2014-02-26 国立大学法人 新潟大学 Ozone generating electrode
CN102043004B (en) * 2009-10-14 2013-10-30 同济大学 Preparation method of PbO2 electrode with high oxygen evolution potential and long service life
CN102534654A (en) * 2010-12-17 2012-07-04 北京有色金属研究总院 Method for manufacturing lead dioxide electrode plate on metal substrate
CN102677093B (en) * 2012-05-30 2015-04-22 合肥工业大学 Lead dioxide powder porous electrode and preparation method thereof
CN103205780B (en) * 2013-04-15 2017-04-26 昆明理工恒达科技有限公司 Grate type titanium-based PbO2 electrode for nonferrous metal electrodeposition and preparation method of grate type titanium-based PbO2 electrode
CN109095567A (en) * 2018-08-17 2018-12-28 广东工业大学 A kind of carbon paper substrate lead dioxide electrode and its preparation method and application
CN112159987A (en) * 2020-09-03 2021-01-01 广东臻鼎环境科技有限公司 Sandwich structure composite lead electrode and preparation method thereof

Also Published As

Publication number Publication date
JPH07316863A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
KR890003513B1 (en) Electrode for electro chemical processes and method for preparing the same
KR910001140B1 (en) Electrode and method for preparing thereof
JP3409920B2 (en) Lead dioxide electrode for electrolysis and method for producing the same
MXPA02010706A (en) Cathode for electrochemical regeneration of permanganate etching solutions.
de Moura et al. Large disk electrodes of Ti/TiO 2-nanotubes/PbO 2 for environmental applications
JP2019119930A (en) Chlorine generating electrode
JP2023095833A (en) Electrode for chlorine generation
JP2000256898A (en) Copper plating method of wafer
Su et al. Electrochemical reclamation of silver from silver-plating wastewater using static cylinder electrodes and a pulsed electric field
US5391280A (en) Electrolytic electrode and method of production thereof
Zeng et al. Electrodeposition of Ni-Mo-P alloy coatings
CN111763979A (en) Preparation method of long-life anode material
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JP3257831B2 (en) Lead dioxide electrode and method for producing the same
JPH0417689A (en) Electrode for electrolyzing water and production thereof
Chialvo et al. Electrocatalytic activity of nickel black electrodes for the hydrogen evolution reaction in alkaline solutions
CN114525537B (en) Rapid micro-nano reconstruction processing method for copper metal and application thereof
JPS589988A (en) Electrolytic cell
JP2722262B2 (en) Electrode for electrolysis and method for producing the same
CN111762850B (en) Titanium alloy composite material
Panek et al. Electrochemical Production and Characterization of Ni-Based Composite Coatings Containing Mo Particles
JP2024010642A (en) Electrode for generating chlorine
JPS6261676B2 (en)
JP2001262388A (en) Electrode for electrolysis
JP2938164B2 (en) Electrode for electrolysis and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees