JP2730218B2 - Manufacturing method of through-hole plated substrate - Google Patents

Manufacturing method of through-hole plated substrate

Info

Publication number
JP2730218B2
JP2730218B2 JP27590489A JP27590489A JP2730218B2 JP 2730218 B2 JP2730218 B2 JP 2730218B2 JP 27590489 A JP27590489 A JP 27590489A JP 27590489 A JP27590489 A JP 27590489A JP 2730218 B2 JP2730218 B2 JP 2730218B2
Authority
JP
Japan
Prior art keywords
hole
copper
substrate
plating
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27590489A
Other languages
Japanese (ja)
Other versions
JPH03139898A (en
Inventor
殷正 川上
和弘 安藤
里愛子 中野
暁 牧之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP27590489A priority Critical patent/JP2730218B2/en
Publication of JPH03139898A publication Critical patent/JPH03139898A/en
Application granted granted Critical
Publication of JP2730218B2 publication Critical patent/JP2730218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Chemically Coating (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な気相法によるスルーホールメッキ基
板の製造法であり、孔径が小さく、アスペクト比の大き
い孔にも均一なメッキが付着したスルーホールメッキ基
板を製造できるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a method for producing a through-hole plated substrate by a novel gas phase method, and uniform plating adheres to a hole having a small hole diameter and a large aspect ratio. A plated through-hole plated substrate can be manufactured.

〔従来の技術およびその課題〕[Conventional technology and its problems]

両面板、多層板などの分野において、部品の小型化と
表面実装技術の発達などから、直径0.8mmのスルーホー
ルから直径0.20mm程度の小孔を用いた専ら層間導通のみ
を目的としたスルーホールの使用が要求されてきてい
る。しかし、従来から行われている無電解メッキ法によ
るスルーホールメッキでは、無電解メッキ液が液体であ
ることから、直径0.35mm以下、例えば0.20mm程度の小孔
となると、孔内部までメッキ液が均一に浸透せず、か
つ、流動も困難であることから、均一に銅膜を孔内壁に
形成することは極めて困難であった。
In the fields of double-sided boards, multilayer boards, etc., due to the miniaturization of components and the development of surface mounting technology, through holes with a diameter of 0.8 mm to small holes of about 0.20 mm are used exclusively for interlayer conduction only. Is being demanded. However, in conventional through-hole plating by the electroless plating method, since the electroless plating solution is a liquid, when the diameter becomes 0.35 mm or less, for example, a small hole of about 0.20 mm, the plating solution reaches the inside of the hole. It is extremely difficult to uniformly form a copper film on the inner wall of the hole because it does not uniformly penetrate and the flow is difficult.

一方、蟻酸銅をセラミックスに塗布し、非酸化性の雰
囲気中で加熱処理すると銅被膜が付着した物品が得られ
ることは知られているが、この方法では、強固に銅膜が
接着したものを信頼性よく製造することは困難であっ
た。また、この方法を熱可塑性樹脂や熱硬化性樹脂製の
物品に適用した例はなく、専ら無電解メッキ法が用いら
れていた。
On the other hand, it is known that when copper formate is applied to ceramics and heat-treated in a non-oxidizing atmosphere, an article with a copper coating is obtained. It was difficult to manufacture it with high reliability. In addition, there is no example in which this method is applied to articles made of a thermoplastic resin or a thermosetting resin, and an electroless plating method is exclusively used.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、ポリイミドに接着剤を使用することな
く強固に接着した銅膜を形成する方法について、種々の
銅化合物を用い鋭意検討した結果、蟻酸銅を用いる方法
を先に見出した。さらに検討を続けた結果、この方法は
本質的に気相法であることから、スルーホールメッキに
も好適に応用できることを見出し、これに基づいて本発
明を完成させるに至った。
The present inventors have conducted intensive studies on a method for forming a copper film firmly bonded to polyimide without using an adhesive, using various copper compounds, and as a result, have previously found a method using copper formate. As a result of further study, they have found that this method is essentially a vapor phase method and can be suitably applied to through-hole plating, and based on this, the present invention has been completed.

すなわち、本発明は、銅張板或いは両面銅張の多層板
に、多数のスルーホールを形成して、スルーホール基板
(1)とし、蟻酸銅を該スルーホールの5cm以内の位置
に配置或いは保持し、圧力30Torr以下の減圧下に165℃
以上で該スルーホール基板(1)の変形劣化温度以下の
範囲の所定温度に加熱し、かつ、蟻酸銅を少なくとも温
度130℃〜165℃まで間は1℃/分以上の速度で昇温し、
保持することを特徴とするスルーホール壁に厚さ0.1μ
m以上の銅膜を形成してなるスルーホールメッキ基板の
製造法である。
That is, according to the present invention, a large number of through holes are formed in a copper-clad board or a double-sided copper-clad multilayer board to form a through-hole board (1), and copper formate is arranged or held at a position within 5 cm of the through-hole. 165 ° C under reduced pressure of 30 Torr or less
As described above, the through-hole substrate (1) is heated to a predetermined temperature in a range not more than the deformation deterioration temperature, and the temperature of the copper formate is raised at a rate of 1 ° C./min or more between at least 130 ° C. to 165 ° C.,
0.1μ thickness on through hole wall characterized by holding
This is a method of manufacturing a through-hole plated substrate formed with a copper film of m or more.

また、本発明においては、該スルーホール基板(1)
と蟻酸銅とを加熱処理するメッキ領域の全表面積あたり
の蟻酸銅の量が0.003〜0.3g/cm2であること、蟻酸銅の
温度130〜165℃の間の昇温速度が1〜50℃/分であるこ
と、該スルーホール基板(1)と蟻酸銅とを加熱保持間
が1〜60分の範囲から選択されること、該圧力が5Torr
以下であることである。
In the present invention, the through-hole substrate (1)
And the amount of copper formate per total surface area of the plating area to be heat-treated with copper formate is 0.003 to 0.3 g / cm 2 , and the rate of temperature rise between 130 to 165 ° C. of copper formate is 1 to 50 ° C. / Min, the time between heating and holding the through-hole substrate (1) and copper formate is selected from the range of 1 to 60 minutes, and the pressure is 5 Torr.
It is as follows.

更に、該スルーホール基板(1)が、減圧下に予め所
定温度とされた加熱領域に連続的或いは間欠的に供給さ
れ、該加熱領域から取り出されること、該スルーホール
基板(1)と蟻酸銅とが、蟻酸銅を薄く塗布或いは敷い
た板状体の上に、該スルーホール基板(1)の少なくと
も周囲部相当部に薄い隔離片を介して重ねた構成として
供給されること、該スルーホール基板(1)が、スルー
ホール孔明け後、スミア除去処理をされず、整面された
ものであることであり、さらに得られたスルーホールメ
ッキ基板を、引続いて電解メッキすること、その電解メ
ッキが電解銅メッキであり、かつ、銅層厚さが5μm以
上となるまで0.1μm/秒以下のメッキ速度を用いるによ
るスルーホールメッキ基板の製造法である。
Further, the through-hole substrate (1) is continuously or intermittently supplied to a heating region at a predetermined temperature under reduced pressure and is taken out from the heating region. Are supplied on a plate-like body on which copper formate is thinly applied or laid, at least at a portion corresponding to a peripheral portion of the through-hole substrate (1) via a thin isolating piece. The substrate (1) is not subjected to a smear removal treatment after drilling the through-holes, but has been flattened. Further, the obtained through-hole plated substrate is subsequently subjected to electrolytic plating. This is a method for manufacturing a through-hole plated substrate by using electrolytic copper plating and using a plating rate of 0.1 μm / sec or less until the copper layer thickness becomes 5 μm or more.

以下、本発明について説明する。 Hereinafter, the present invention will be described.

本発明のスルーホール基板(1)とは、銅張板或いは
両面銅張の多層板の所定位置、すなわち、所望のプリン
ト配線パターンのスルーホール位置に基準孔に基づいて
多数(通常1〜5万個/m2程度)のスルーホール孔明け
をしてなるものである。
The through-hole substrate (1) of the present invention means a large number (usually 10,000 to 50,000) at a predetermined position of a copper-clad board or a double-sided copper-clad multilayer board, that is, a through-hole position of a desired printed wiring pattern based on a reference hole. those formed by the through holes drilled in pieces / m 2 or so).

スルーホール基板(1)の変形劣化温度とは165℃以
上の所定温度下に保持した時に、特に、寸法変化により
孔相互の位置がずれて実用に供しなくなる限界温度であ
り、これはスルーホール基板(1)の残留応力などによ
って変化するものであり、本発明においては、スルーホ
ール孔明け前にアニール処理などして寸法安定性を向上
させておくことが好ましい。また、通常、スルーホール
孔明け時にスミヤの発生があるが、マトリックス樹脂が
エポキシ樹脂系などの場合、これを取り除く処理をする
必要はないものである。さらに、スルーホール基板
(1)は、洗浄液を用いて表面清浄化、乾燥などの整面
を行うことが好ましい。整面用溶液としては、酸性或い
はアルカリ性の脱脂剤水溶液、揮発性の有機溶剤、酸や
アルカリを含む揮発性の有機溶剤溶液による洗浄が例示
され、好適には、高温、高濃度又は長時間などの過酷な
条件下での処理では樹脂が侵されるような成分溶液或い
は成分を含む溶液を用い、これを低温、低濃度又は短時
間で用い表面状態が殆ど変化しない範囲で洗浄処理する
ことが好ましく、例えば光沢性の樹脂表面に適用した場
合、目視によりその光沢性が失われない範囲の条件で洗
浄処理する。なお、整面としては、通常の蒸着法等に使
用されている例えば、プラズマ処理し、直ちにメッキ処
理することも可能であるが、設備・操作性などが劣り、
本発明ではこれらを用いる必要は特にない。
The deformation deterioration temperature of the through-hole substrate (1) is a limit temperature at which the holes are displaced due to a dimensional change and cannot be put to practical use when held at a predetermined temperature of 165 ° C. or higher. It varies depending on the residual stress of (1) and the like. In the present invention, it is preferable to improve the dimensional stability by performing an annealing process or the like before drilling a through-hole. In addition, smearing usually occurs when drilling a through-hole. However, when the matrix resin is an epoxy resin or the like, it is not necessary to perform a treatment for removing the smear. Further, it is preferable that the through-hole substrate (1) is subjected to surface preparation such as surface cleaning and drying using a cleaning liquid. Examples of the surface preparation solution include an acidic or alkaline aqueous solution of a degreasing agent, a volatile organic solvent, and washing with a volatile organic solvent solution containing an acid or an alkali. In the treatment under severe conditions, it is preferable to use a component solution or a solution containing the component that the resin is attacked, and to use the solution at a low temperature, a low concentration or in a short time, and to perform a cleaning process within a range where the surface state hardly changes. For example, when the composition is applied to a glossy resin surface, the washing treatment is performed under conditions within a range in which the gloss is not lost visually. In addition, as the flat surface, for example, a plasma treatment that is used in a normal vapor deposition method or the like, it is also possible to immediately perform a plating process, but equipment and operability are poor,
In the present invention, these need not be used.

スルーホール基板(1)を製造する銅張板或いは内層
プリント配線を持つ多層板とは、通常、熱硬化性樹脂或
いは半田耐熱性を有する熱可塑性樹脂をマトリックス樹
脂とし、ガラス(E−、T−、D−、S−、石英−ガラ
ス)、全芳香族ポリアミド、フッ素樹脂などの超耐熱性
樹脂、アルミナ、シリカ、窒素硼素、窒化アルミ、炭化
珪素などのセラミックス、セルロースなどからなる繊維
質の織布、不織布、ペーパーなどを基材(=Base Mater
ial)としてプリプレグを得、これを電解或いは圧延銅
箔と一体化してなる銅張板、或いはこのような銅張板に
プリント配線を形成した内層用プリント配線板をプリプ
レグと銅箔等と共に一体化した多層板である。
A copper-clad board or a multilayer board having an inner layer printed wiring for manufacturing the through-hole board (1) is usually made of a thermosetting resin or a thermoplastic resin having solder heat resistance as a matrix resin and a glass (E-, T- , D-, S-, quartz-glass), wholly aromatic polyamide, super heat-resistant resin such as fluororesin, ceramics such as alumina, silica, nitrogen boron, aluminum nitride, silicon carbide, etc. Base material (= Base Mater
ial) and obtain a prepreg and integrate it with an electrolytic or rolled copper foil, or a printed wiring board for an inner layer in which printed wiring is formed on such a copper-clad board together with a prepreg and a copper foil. It is a multilayer board.

ここに、熱硬化性樹脂としては、フェノール樹脂、ジ
アリルフタレート樹脂、エポキシ樹脂、ポリアミン−ビ
スマレイミド樹脂、ポリマレイミド−エポキシ樹脂、ポ
リマレイミド−イソシアネート樹脂、シアナト樹脂、シ
アネート−エポキシ樹脂、シアネート−ポリマレイミド
樹脂、シアネート−エポキシ−ポリマレイミド樹脂等の
熱硬化性樹脂;これの熱硬化性樹脂類とポリアミド(ナ
イロン)、芳香族ポリエステル、ポリエーテルイミド、
ポリエーテルエーテルケトン、ポリサルホン、ポリフェ
ニレンエーテルなどのエンジニアリングプラスチックと
を配合し、さらに適宜触媒類を添加してなる熱硬化性の
所謂「IPN」;ポリエチレンなどのポリオレフィン、1,2
−ポリブタジエンなどの樹脂に架橋剤としての有機過酸
化物、更に適宜ラジカル重合性の多官能性の化合物、熱
硬化性樹脂などを配合してなる架橋硬化性の樹脂類など
が挙げられ、半田耐熱性を有する熱可塑性樹脂として
は、ポリエチレン−2,6−ナフタレート、ポリオキシベ
ンゾイルポリエステル、P−ヒドロキシ安息香酸、フタ
ル酸、ビスフェノールなどを主要モノマーとする全芳香
族ポリエステルやこれらにポリエチレンテレフタレート
等をグラフトしてなる芳香族ポリエステル液晶ポリマ
ー、ポリエーテルイミド、ポリスルホン、ポリサルホ
ン、ポリエーテルサルホン、ポリエーテルエーテルケト
ン、ポリフェニレンエーテル、ポリフェニレンサルファ
イド、ポリイミド、ポリベンツイミダゾール、ポリフェ
ニレンサルファイド、全芳香族ポリアミドなどが挙げら
れる。
Here, as the thermosetting resin, phenol resin, diallyl phthalate resin, epoxy resin, polyamine-bismaleimide resin, polymaleimide-epoxy resin, polymaleimide-isocyanate resin, cyanate resin, cyanate-epoxy resin, cyanate-polymaleimide Resins, thermosetting resins such as cyanate-epoxy-polymaleimide resins; thermosetting resins and polyamides (nylons), aromatic polyesters, polyetherimides;
Thermosetting so-called "IPN" obtained by blending with engineering plastics such as polyetheretherketone, polysulfone and polyphenyleneether, and further adding catalysts as appropriate; polyolefins such as polyethylene, 1,2
-A resin such as polybutadiene, an organic peroxide as a cross-linking agent, a cross-linking curable resin obtained by further mixing a radically polymerizable polyfunctional compound, a thermosetting resin, etc., and the like. As the thermoplastic resin having properties, polyethylene-2,6-naphthalate, polyoxybenzoyl polyester, P-hydroxybenzoic acid, phthalic acid, wholly aromatic polyester having a main monomer such as bisphenol, and polyethylene terephthalate, etc. are grafted to these. Aromatic polyester liquid crystal polymer, polyetherimide, polysulfone, polysulfone, polyethersulfone, polyetheretherketone, polyphenyleneether, polyphenylenesulfide, polyimide, polybenzimidazole, polyphenylenesulfide, all Such as family polyamides.

本発明の蟻酸銅とは無水蟻酸銅、蟻酸銅四水和物或い
はこれらの混合物などの蟻酸第二銅化合物であり、いず
れも使用可能であるが、特に無水蟻酸銅の微粉末として
使用することが好ましい。
The copper formate of the present invention is a cupric formate compound such as anhydrous copper formate, copper formate tetrahydrate or a mixture thereof, and any of them can be used. Is preferred.

蟻酸銅の使用量(蟻酸銅の全配置量)は、メッキすべ
きスルーホール基板(1)の孔を含む全表面積、蟻酸銅
の配置用具の全表面積により主に決定されるものであり
0.001g/cm2以上、好ましくは0.002〜0.3g/cm2、特に0.0
02〜0.1g/cm2である。また、メッキするスルーホール基
板(1)と蟻酸銅とを別々に配置或いは保持する場合に
は距離は5cm以内、好ましくは2cm以内、特に1cm以内に
配置或いは保持することがより均一なメッキをするため
に好ましい。
The amount of copper formate used (the total amount of copper formate disposed) is mainly determined by the total surface area including the holes of the through-hole substrate (1) to be plated and the total surface area of the copper formate arrangement tool.
0.001 g / cm 2 or more, preferably 0.002~0.3g / cm 2, particularly 0.0
02 to 0.1 g / cm 2 . When the through-hole substrate (1) to be plated and the copper formate are separately disposed or held, the distance is within 5 cm, preferably within 2 cm, and particularly within 1 cm, and plating is more uniform. Preferred for.

また、配置方法は、蟻酸銅を単にスルーホール基板
(1)の孔に配置する方法と該孔から5cm以内の距離に
離して配置し、孔内を蟻酸銅の蒸気が通過するようにす
る方法とがある。
In addition, the disposition method includes a method of simply disposing copper formate in a hole of the through-hole substrate (1) and a method of disposing the copper formate at a distance within 5 cm from the hole so that copper formate vapor passes through the hole. There is.

スルーホール孔内のメッキのみの観点からはスルーホ
ール基板(3)に無水蟻酸銅を分散させた分散液を塗布
し、減圧下に加熱処理することにでもよいが、膜形成に
関与しなかった無水蟻酸銅から生成した銅分が無水蟻酸
銅塗布部に付着したスルーホールメッキ基板となり、銅
粉除去工程が必要となるので、蟻酸銅配置具を用い、別
々に供給するのが好ましい。
From the standpoint of plating only in the through-holes, a dispersion in which copper formate is dispersed may be applied to the through-hole substrate (3) and heat-treated under reduced pressure, but this did not contribute to film formation. Since the copper generated from the anhydrous copper formate becomes a through-hole plated substrate adhered to the coated area of the anhydrous copper formate and requires a copper powder removing step, it is preferable to supply them separately using a copper formate arranging tool.

前者の配置方法としては、スルーホール基板(1)の
全面に刷毛塗り、スクリーン印刷、ロールコート、浸漬
などの方法で蟻酸銅を塗布した後、ロール、スキージな
どを用いて孔内に蟻酸銅を押し込み、必要に応じて表面
の蟻酸銅を除き、乾燥する方法などが例示される。ま
た、後者の方法としては、処理温度に耐える板状体、例
えば金属、樹脂、その他のシート或いはフィルムなどに
蟻酸銅を配置し、蟻酸銅と直接接触しないようにスルー
ホール基板(1)を重ねた構成とする方法が挙げられ、
例えば、板状体の表面に多数の穴、溝などを形成してこ
の穴、溝内に蟻酸銅を配置し、その上にスルーホール基
板(1)を重ねた構成;蟻酸銅を薄く塗布或いは敷いた
板状体の上に、該スルーホール基板(1)の少なくとも
周囲相当部に薄い隔離物を介して重ねる方法;この隔離
物として内部に糸或いは線の径がスルーホール孔径の1/
2以下のものを平行にさらにクロスさせて張る方法、又
は網糸或いは網線の結合部の広さ或いは径がスルーホー
ル孔径の1/2以下の網を張る方法などが例示され、何れ
の場合にも適宜、水平配置或いは垂直配置を選択してメ
ッキ処理する。
As the former arrangement method, copper formate is applied to the entire surface of the through-hole substrate (1) by brush coating, screen printing, roll coating, dipping, or the like, and then copper formate is applied to the holes using a roll, squeegee, or the like. For example, a method of indenting, removing copper formate on the surface as necessary, and drying is exemplified. In the latter method, copper formate is disposed on a plate-like body that can withstand the processing temperature, for example, a metal, resin, other sheet or film, and the through-hole substrate (1) is stacked so as not to come into direct contact with copper formate. And a method to configure
For example, a structure in which a large number of holes, grooves, and the like are formed on the surface of a plate-like body, copper formate is arranged in these holes and grooves, and a through-hole substrate (1) is stacked thereon; A method in which a thin insulator is overlapped on the laid plate-like body at least at a portion corresponding to the periphery of the through-hole substrate (1);
(2) The method of stretching by crossing the following ones in parallel, or the method of stretching the mesh with the width or diameter of the connecting part of the mesh thread or net wire less than 1/2 of the through hole hole diameter, etc. In addition, a horizontal arrangement or a vertical arrangement is appropriately selected for plating.

また、蟻酸銅の配置には蟻酸銅と実質的に反応しない
比較的沸点の低い溶剤に溶解或いは粉末を均一分散させ
た液を刷毛塗、ディッピイング、スプレーコート、バー
コート、ロールコートその他の手段でスルーホール基板
(1)或いは配置具に塗布し、蟻酸銅の分解開始温度以
下、通常130℃以下、特に、110℃以下の温度で加熱或い
は減圧下で乾燥する方法が好適な方法として挙げられ
る。蟻酸銅液を製造するための好適な溶剤或いは分散剤
としては水、アルコール、脂肪族炭化水素、芳香族炭化
水素、その他の好適には沸点200℃以下のものが例示さ
れ、得に、好適に使用される無水蟻酸銅では水を含まな
い有機溶媒、例えば、ヘプタン、ヘキサン、シクロヘキ
サン、オクタン、プロパノール、ブタノール、ヘプタノ
ール、ベンゼン、トルエン、キシレンなどと蟻酸銅微粉
末とを混練してなる分散液を用いるのが好適である。ま
た、蟻酸銅は所望面の略全面に付着していればよく、多
少のバラツキはメッキ面からは特に問題とはならない。
しかし、銅膜となる蟻酸銅の比率(膜化率)からは、よ
り均一に薄く塗布することが好ましい。
In addition, in the arrangement of copper formate, a solution obtained by dissolving or uniformly dispersing the powder in a solvent having a relatively low boiling point which does not substantially react with copper formate is applied by brushing, dipping, spray coating, bar coating, roll coating or other means. A preferred method is to apply it to the through-hole substrate (1) or the disposition tool, and to dry it under heating or reduced pressure at a temperature lower than the decomposition start temperature of copper formate, usually 130 ° C. or lower, particularly 110 ° C. or lower. Suitable solvents or dispersants for producing the copper formate liquid include water, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, and other suitable ones having a boiling point of 200 ° C. or lower. In the anhydrous copper formate used, a water-free organic solvent such as heptane, hexane, cyclohexane, octane, propanol, butanol, heptanol, benzene, toluene, xylene and the like are kneaded with a dispersion obtained by kneading fine powder of copper formate. It is preferred to use. In addition, the copper formate only needs to adhere to substantially the entire surface of the desired surface, and a slight variation does not cause any particular problem from the plating surface.
However, from the ratio of copper formate to be a copper film (film formation ratio), it is preferable to apply the film more uniformly and thinly.

上記したスルーホール基板(1)と蟻酸銅とを加熱処
理してスルーホールメッキする。
The above-mentioned through-hole substrate (1) and copper formate are subjected to heat treatment to perform through-hole plating.

メッキ処理雰囲気は、減圧下が好ましく、減圧度30To
rr以下、好ましくは5Torr以下とする。減圧とする方法
は減圧可能な加熱機器を用いる方法;スルーホール基板
(1)と蟻酸銅とを減圧可能な容器内に収納し容器内の
み減圧とする方法;半連続式或いは連続式加熱機器を用
い、スルーホール基板(1)の導入部に予熱可能な減圧
室、所定温度に加熱された減圧メッキ室、取り出し部に
適宜冷却可能な減圧室を配置する方法などが例示され、
特に半連続式或いは連続式が生産性、加熱時間の短縮な
どの面から好ましい。
The plating treatment atmosphere is preferably under reduced pressure, and the degree of reduced pressure is 30 To.
rr or less, preferably 5 Torr or less. The method of reducing pressure is a method using a heating device capable of reducing pressure; a method of storing the through-hole substrate (1) and copper formate in a container capable of reducing pressure and reducing the pressure only in the container; Examples of the method include a method of arranging a decompression chamber capable of preheating, a decompression plating chamber heated to a predetermined temperature, and a decompression chamber capable of appropriately cooling at a take-out part, in the introduction portion of the through-hole substrate (1).
In particular, a semi-continuous type or a continuous type is preferable in terms of productivity, shortening of heating time, and the like.

加熱は、赤外線、電子線、マイクロ波などの放射線加
熱、電気炉、オープン、オイル加熱、加圧蒸気加熱、ニ
クロム線、その他の手段を適宜選択する。また、寸法変
化を小さくする面から設定温度のバラツキの小さいもの
が好ましい。また、昇温速度を速くし、メッキ時間を短
くして良好な銅膜を得ることは生産性の上からも好まし
い。この場合、予め130℃以下の温度に予熱し、これを
所定温度に設定された加熱部として熱盤を持った加熱機
器に投入する方法;赤外線、特に遠赤外線セラミックヒ
ータなどを用いて加熱する方法;さらに両者を組み合わ
せることなどが挙げられ、特に、後者はメッキ表面のみ
効率良く加熱できる。
For heating, infrared radiation, electron beam, radiation heating such as microwave, electric furnace, open, oil heating, pressurized steam heating, nichrome wire, and other means are appropriately selected. Further, from the viewpoint of reducing the dimensional change, it is preferable that the variation in the set temperature is small. It is also preferable from the viewpoint of productivity to increase the temperature raising rate and shorten the plating time to obtain a good copper film. In this case, a method of preheating to a temperature of 130 ° C. or less in advance and feeding it to a heating device having a hot plate as a heating unit set at a predetermined temperature; a method of heating using an infrared ray, particularly a far-infrared ceramic heater or the like A combination of the two, and in particular, the latter can efficiently heat only the plating surface.

加熱温度は、165℃以上で該スルーホール基板(1)
の変形劣化温度以下の範囲の所定温度、170〜300℃の範
囲でかつ該スルーホール基板(1)の変形劣化温度以下
の範囲の所定温度であり、特に170〜230℃の範囲が好ま
しい。一方、蟻酸銅は温度130℃〜165℃の間を1deg/分
以上、好ましくは1〜50℃/分、特に2〜35℃/分で加
熱し、所定温度で保持する。又、加熱時間は3時間以
下、好ましくは1〜60分間であり、より短時間となるよ
うに工夫するのが好ましい。蟻酸銅の温度130℃〜165℃
の間の昇温速度が1℃/分未満では得られるメッキ膜が
不均一或いは接着強度が劣ったり、さらに銅粉末の生成
量が多く成り易いので好ましくない。また、速くともメ
ッキ膜の生成からは特に問題ないが、メッキ膜が不均一
となる傾向が大きくなるので好ましくない。
Heating temperature is 165 ° C or more and the through-hole substrate (1)
The temperature is in the range of 170 ° C. to 300 ° C. and not higher than the deformation deterioration temperature of the through-hole substrate (1), and particularly preferably in the range of 170 ° C. to 230 ° C. On the other hand, copper formate is heated at a temperature of 130 ° C. to 165 ° C. at a rate of 1 deg / min or more, preferably 1 to 50 ° C./min, particularly 2 to 35 ° C./min, and kept at a predetermined temperature. The heating time is 3 hours or less, preferably 1 to 60 minutes, and it is preferable that the heating time is devised so as to be shorter. Temperature of copper formate 130 ℃ ~ 165 ℃
If the rate of temperature rise during this period is less than 1 ° C./min, the resulting plated film is not uniform or has poor adhesive strength, and the amount of copper powder produced tends to increase, which is not preferable. Although there is no particular problem from the generation of the plating film at the highest, it is not preferable because the tendency of the plating film to become non-uniform increases.

以上の方法で加熱処理した後、室温に冷却してスルー
ホールメッキ基板を得る。
After heat treatment by the above method, the substrate is cooled to room temperature to obtain a through-hole plated substrate.

本発明の方法により製造したスルーホールメッキ基板
は、従来の無電解メッキによる方法などによるスルーホ
ールメッキ基板と同様にその後のプリント配線板製造工
程に使用されるものであり、孔並びにランド相当部程度
のみ残してレジスト層を形成して、電解銅メッキして孔
内部の銅膜を厚くした後、適宜メッキレジスト層を剥離
し、配線パターン用のレジストパターンを形成してエッ
チングする方法;全面に電解銅メッキをして厚くした
後、レジストパターンを形成しエッチングする方法など
によりプリント配線板とする。なお、電解銅メッキを行
う場合は、銅層厚さが5μm以上となるまではメッキ速
度0.1μm/秒以下、特に0.003〜0.05μm/秒の範囲でメッ
キすることが、メッキ応力により局所的に応力集中して
接着強度が低下することを防止する点から好ましく、ま
た、メッキ終了後、必要に応じてアニール処理などして
残留応力を取り除く。
The through-hole plated substrate manufactured by the method of the present invention is used in a subsequent printed wiring board manufacturing process in the same manner as a through-hole plated substrate by a method such as a conventional electroless plating method, and has a hole and a land equivalent portion. A method of forming a resist pattern for the wiring pattern by etching the copper layer inside the hole by forming a resist layer, leaving only the resist layer, and electrolytic copper plating to increase the thickness of the copper film inside the hole; After thickening by copper plating, a printed wiring board is formed by a method of forming a resist pattern and etching. When performing electrolytic copper plating, plating at a plating rate of 0.1 μm / sec or less, particularly in the range of 0.003 to 0.05 μm / sec, until the copper layer thickness becomes 5 μm or more, is locally performed due to plating stress. It is preferable from the viewpoint of preventing the adhesive strength from being reduced due to stress concentration. After plating is completed, residual stress is removed by performing an annealing treatment or the like as necessary.

以上の方法により製造した本発明のスルーホールメッ
キ基板は、電解銅メッキして銅膜の厚さを10μmとした
ときに銅箔剥離強度0.4kg/cm以上、好ましくは0.5kg/cm
以上、特に0.8kg/cm程度の値を示すものである。
The through-hole plated substrate of the present invention produced by the above method, copper foil peel strength 0.4kg / cm or more when electrolytic copper plating and the thickness of the copper film is 10μm, preferably 0.5kg / cm
As described above, the value is particularly about 0.8 kg / cm.

次に、本発明の製造法の一例を添付の装置概念図によ
り説明する。
Next, an example of the manufacturing method of the present invention will be described with reference to the attached device conceptual diagram.

第1図は本発明の半連続法によって、アスペクト比の
大きいスルーホール基板(1)をスルーホールメッキす
る装置の一例であり、第2図は蟻酸銅とスルーホール基
板(1)とのスルーホールメッキ用一体化物の断面図で
ある。
FIG. 1 shows an example of an apparatus for through-hole plating a through-hole substrate (1) having a large aspect ratio by the semi-continuous method of the present invention, and FIG. 2 shows a through-hole between copper formate and the through-hole substrate (1). It is sectional drawing of the integrated material for plating.

第1図は減圧メッキ室(A)、投入用予備真空室
(B)、取り出し用予備真空室(C)からなる。減圧メ
ッキ室Aは、下部加熱器(H1)と内部に被メッキ物品に
応じて上下位置調節可能な上部加熱器(H2)並びに真空
シャター(V1,V2)を備えてなる。予備真空室(B,C)
は、内部に被メッキ物品を投入或いは取り出しするため
の機具(T1,T2)を備えてなるものである。また、これ
ら室(A,B,C)は、減圧するための真空ポンプ(Vacuum
pump)に管で結合され、所望の真空度を保つことが可能
とされる。なお、予備真空室(B,C)には、適宜、予備
加熱装置や冷却装置などを設置するものである。第2図
は、スルーホール基板(1)と同じ大きさの厚み1mmの
アルミニウム板の淵相当部に、アルミニウム隔離板固定
部を設け、その片面全面に無水蟻酸銅を塗布し、乾燥
し、これにスルーホール基板(1)の淵相当部形状で基
準孔の相当位置に基準孔よりやや小さめのピンを設けた
アルミニウム隔離板を固定し、このピンにスルーホール
基板(1)の基準孔を嵌め込みスルーホールメッキ用一
体化物とされたものである。
FIG. 1 comprises a reduced-pressure plating chamber (A), a preliminary vacuum chamber for charging (B), and a preliminary vacuum chamber for removal (C). The reduced-pressure plating chamber A is provided with a lower heater (H1), an upper heater (H2) capable of adjusting the vertical position in accordance with an article to be plated, and a vacuum shutter (V1, V2) inside. Preliminary vacuum chamber (B, C)
Is equipped with tools (T1, T2) for loading or unloading articles to be plated. These chambers (A, B, C) are equipped with a vacuum pump (Vacuum
pump) to allow the desired degree of vacuum to be maintained. In the preliminary vacuum chambers (B, C), a preliminary heating device, a cooling device, and the like are appropriately installed. FIG. 2 shows a fixing portion of an aluminum separator provided at the edge of an aluminum plate having the same size as the through hole substrate (1) and having a thickness of 1 mm. An aluminum separator provided with a pin slightly smaller than the reference hole at a position corresponding to the reference hole in a shape corresponding to the edge of the through-hole substrate (1), and the reference hole of the through-hole substrate (1) is fitted into this pin. This is an integrated product for through-hole plating.

第1図において、第2図に示した一体化物を、投入用
予備真空室Bの扉を開き、投入し、扉を閉じて真空吸引
する。なお、この予備真空室は適宜予備加熱可能として
用いる。所定の真空度に達すると所定温度に加熱された
減圧メッキ室Aの真空シャターV1を開き、投入具T1によ
り、真空メッキ室Aに投入される。ここで、一体化物は
減圧下に急速に加熱され、蟻酸銅は蒸発乃至昇華し、孔
を通過しながら真空ポンプ側に拡散する。このとき、孔
内壁に衝突した蟻酸銅は分解し、銅膜を形成すると共に
蟻酸ガスや蟻酸分解ガスとなる。この時、スミア樹脂が
エポキシ樹脂などの場合、スミアなどを一緒に分解除去
する。この処理中に次のスルーホール基板が予備真空室
Bに投入され、減圧メッキ室Aへの投入を待つ。所定の
処理終了後、真空シャターV2を開き取り出し具T2により
真空メッキ室Aから取り出し、真空シャターV2は閉じ
る。取り出されたスルーホールメッキ基板は必要に応じ
て冷却され、取り出し室Bより取り出す。また、真空メ
ッキ室Aには、次のものが投入される。
In FIG. 1, the integrated material shown in FIG. 2 is opened, the door of the preliminary vacuum chamber B for charging is opened, the door is closed, and vacuum suction is performed. The pre-vacuum chamber is used so that pre-heating can be appropriately performed. When the degree of vacuum reaches a predetermined degree, the vacuum shutter V1 of the reduced-pressure plating chamber A heated to a predetermined temperature is opened, and is put into the vacuum plating chamber A by the charging tool T1. Here, the integrated material is rapidly heated under reduced pressure, and the copper formate evaporates or sublimates, and diffuses to the vacuum pump side while passing through the holes. At this time, the copper formate that collides with the inner wall of the hole is decomposed to form a copper film and to become a formic acid gas or a formic acid decomposition gas. At this time, when the smear resin is an epoxy resin or the like, the smear and the like are decomposed and removed together. During this process, the next through-hole substrate is put into the preparatory vacuum chamber B and waits to be put into the reduced-pressure plating chamber A. After the predetermined processing is completed, the vacuum shutter V2 is opened, taken out of the vacuum plating chamber A by the take-out tool T2, and the vacuum shutter V2 is closed. The taken-out plated through-hole substrate is cooled as required and taken out of the take-out chamber B. Further, the following are charged into the vacuum plating chamber A.

〔実施例〕〔Example〕

以下,実施例によって本発明をさらに具体的に説明す
る。尚、実施例、比較例中の部は特に断らない限り重量
基準である。
Hereinafter, the present invention will be described more specifically with reference to examples. Parts in Examples and Comparative Examples are based on weight unless otherwise specified.

実施例1 無水蟻酸銅粉末100部とブチルアルコール50部とを混
練して無水蟻酸銅粉末が均一に分散した分散溶液(以
下、処理液1という)を得た。
Example 1 100 parts of anhydrous copper formate powder and 50 parts of butyl alcohol were kneaded to obtain a dispersion solution in which the anhydrous copper formate powder was uniformly dispersed (hereinafter referred to as treatment liquid 1).

板厚1.6mm,300mm×300mmの両面銅張のガラス繊維強化
エポキシ樹脂4層板(三菱瓦斯化学(株)製)を用い、
直径0.35mmの貫通孔を5mm間隔で60個を一列とし、列間
隔10mmで30列孔明けした後、アルカリ性脱脂剤水溶液で
温度60℃、10分間洗浄し、乾燥し4層孔明き板を得た。
Using a 4-layer copper fiber-reinforced epoxy resin 4-layer board (manufactured by Mitsubishi Gas Chemical Co., Ltd.) with a board thickness of 1.6 mm and 300 mm x 300 mm,
After forming 30 rows of 0.35mm diameter through holes at 5mm intervals in a row of 5 rows and 30 rows at 10mm intervals, wash with alkaline degreasing agent solution at 60 ° C for 10 minutes and dry to obtain a 4-layer perforated plate. Was.

処理液1を4層孔明き板と同じ大きさのアルミニウム
板の片面に塗布、乾燥して、無水蟻酸銅が約0.02g/cm2
付着したアルミニウム板とした。
Treatment liquid 1 was applied to one side of an aluminum plate having the same size as a four-layer perforated plate, and dried to obtain about 0.02 g / cm 2 of anhydrous copper formate.
The adhered aluminum plate was used.

このアルミニウム板の淵部周囲に厚さ1mm、巾3mmのア
ルミニウムの隔離板を配置し、この上に上記の4層孔明
き板を重ね、予め200℃に予熱した加熱機器の熱盤間に
配置し、直ちに加熱機器内を数Torrまで減圧し、そのま
ま30分間保持した。なお、無水蟻酸銅の温度130〜165℃
までの昇温速度は16℃/分であった。
An aluminum separator with a thickness of 1 mm and a width of 3 mm is placed around the edge of this aluminum plate, and the above-mentioned 4-layer perforated plate is placed on top of this, and placed between the hot plates of the heating equipment preheated to 200 ° C in advance. Then, the pressure inside the heating device was immediately reduced to several Torr, and the pressure was kept for 30 minutes. In addition, the temperature of anhydrous copper formate 130-165 ° C
The heating rate was 16 ° C./min.

加熱機器内を室温に冷却した後、空気を入れ、4層孔
明き板を取り出した。これをそのまま及び電解銅メッキ
して銅箔を厚くした後、透明な液状のエポキシ樹脂で封
止し切断して切断端面を顕微鏡で観察した。
After cooling the inside of the heating device to room temperature, air was introduced, and the four-layer perforated plate was taken out. The copper foil was thickened as it was and by electrolytic copper plating, sealed with a transparent liquid epoxy resin, cut, and the cut end face was observed with a microscope.

その結果、孔内壁部並びに内層の銅箔部には厚さ0.5
〜0.7μmの蟻酸銅によってメッキされた銅膜が密着し
ており、内層の銅箔と付着銅膜とは完全に密着したもの
であった。また、内層銅箔とメッキ銅膜との間に樹脂屑
は全く見出されず、スミアは完全に除去されていた。
As a result, the inner wall of the hole and the inner layer copper foil had a thickness of 0.5
The copper film plated with copper formate of about 0.7 μm was in close contact, and the inner layer copper foil and the adhered copper film were completely in close contact. No resin dust was found between the inner layer copper foil and the plated copper film, and smear was completely removed.

実施例2 モデル多層板として、ガラス不織布エポキシ樹脂プリ
プレグを用い、両外層と2層の銅箔層を中間層に有する
厚さ6mmの銅張板を製造した。
Example 2 As a model multilayer board, a 6 mm-thick copper-clad board having both outer layers and two copper foil layers in an intermediate layer was manufactured using a glass nonwoven epoxy resin prepreg.

この銅張板を用い、蟻酸銅を約0.05g/cm2使用する他
は実施例1と全く同様にして孔径0.35mm(アスペクト比
約17)のスルーホール孔にスルーホールメッキした基板
を得、同様に観察した。
Using this copper-clad board, a board was obtained in the same manner as in Example 1 except that about 0.05 g / cm 2 of copper formate was used, and through-hole plating was performed on through-holes having a hole diameter of 0.35 mm (aspect ratio: about 17). Observed similarly.

その結果、孔内壁部並びに内層の銅箔部には厚さ0.5
〜0.7μmの蟻酸銅によってメッキされた銅膜が密着し
ており、内層の銅箔と付着銅膜とは完全に密着したもの
であった。また、内層銅箔とメッキ銅膜との間に樹脂屑
は全く見出されず、スミアは完全に除去されていた。
As a result, the inner wall of the hole and the inner layer copper foil had a thickness of 0.5
The copper film plated with copper formate of about 0.7 μm was in close contact, and the inner layer copper foil and the adhered copper film were completely in close contact. No resin dust was found between the inner layer copper foil and the plated copper film, and smear was completely removed.

実施例3 実施例1において、ガラス繊維強化エポキシ樹脂4層
板に代えて、ガラス繊維強化フッ素樹脂4層板を用い、
メッキ処理温度を250℃とする他は同様とした。
Example 3 In Example 1, a glass fiber reinforced fluororesin four-layer plate was used instead of the glass fiber reinforced epoxy resin four-layer plate,
The procedure was the same except that the plating temperature was 250 ° C.

その結果、孔内壁部並びに内層の銅箔部には厚さ0.5
〜0.7μmの蟻酸銅によってメッキされた銅膜が密着し
ており、内層の銅箔と付着銅膜とは完全に密着したもの
であった。
As a result, the inner wall of the hole and the inner layer copper foil had a thickness of 0.5
The copper film plated with copper formate of about 0.7 μm was in close contact, and the inner layer copper foil and the adhered copper film were completely in close contact.

実施例4 実施例1において、ガラス繊維強化エポキシ樹脂4層
板に代えて、ガラス繊維強化シアナト樹脂4層板(三菱
瓦斯化学(株)製)を用いる他は同様とした。
Example 4 Example 1 was the same as Example 1, except that a glass fiber reinforced cyanate resin four-layer plate (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used instead of the glass fiber reinforced epoxy resin four-layer plate.

その結果、孔内壁部並びに内層の銅箔部には厚さ0.5
〜0.7μmの蟻酸銅によってメッキされた銅膜が密着し
ており、内層の銅箔と付着銅膜とは完全に密着したもの
であった。また、内層銅箔とメッキ銅膜との間に樹脂屑
は全く見出されず、スミアは完全に除去されていた。
As a result, the inner wall of the hole and the inner layer copper foil had a thickness of 0.5
The copper film plated with copper formate of about 0.7 μm was in close contact, and the inner layer copper foil and the adhered copper film were completely in close contact. No resin dust was found between the inner layer copper foil and the plated copper film, and smear was completely removed.

〔発明の作用および効果〕[Action and Effect of the Invention]

以上の如く、本発明の方法によれば、強固に均一に銅
膜が付着したスルーホールメッキが可能となり、しかも
極めて簡便であり、アスペクト比の大きい場合、更に孔
径が異なるものが混在する場合にも隔離片の工夫により
容易に信頼性の高いメッキ膜の形成が可能である。ま
た、通常のスミアが発生するような基板の場合にも、ス
ミア除去工程が不要となり、極めて合理的なスルーホー
ルメッキプロセスであり、さらに従来の無電解法による
スルーホールメッキでは銅膜を形成すことの出来ないフ
ッ素樹脂にも銅膜を形成できるものである。
As described above, according to the method of the present invention, it is possible to perform through-hole plating in which a copper film is firmly and uniformly adhered, and it is extremely simple, in the case of a large aspect ratio, and in the case where those having different hole diameters are mixed. Also, a highly reliable plating film can be easily formed by devising the isolation piece. Also, in the case of a substrate where normal smear occurs, the smear removal step is not required, which is an extremely rational through-hole plating process.In addition, a copper film is formed by the conventional electroless through-hole plating. A copper film can be formed even on a fluorine resin that cannot be used.

この銅メッキ膜は、電気メッキ、無電解メッキ、その
他の手段により銅、ニッケル、クロム、銀、金、その他
のメッキを容易に均一にできるものである。従って、新
規で安価で信頼性の高いスルーホールメッキ法としてそ
の工業的意義は極めて重大なものである。
The copper plating film can easily and uniformly form copper, nickel, chromium, silver, gold, and other plating by electroplating, electroless plating, or other means. Therefore, its industrial significance as a new, inexpensive and highly reliable through-hole plating method is extremely important.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半連続法によって、アスペクト比の大
きいスルーホール基板(1)をスルーホールメッキする
装置の一例であり、第2図は蟻酸銅とスルーホール基板
(1)とのスルーホールメッキ用一体化物の断面図であ
る。
FIG. 1 shows an example of an apparatus for through-hole plating a through-hole substrate (1) having a large aspect ratio by the semi-continuous method of the present invention, and FIG. 2 shows a through-hole between copper formate and the through-hole substrate (1). It is sectional drawing of the integrated material for plating.

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅張板或いは両面銅張の多層板に、多数の
スルーホールを形成して、スルーホール基板(1)と
し、蟻酸銅を該スルーホールの5cm以内の位置に配置或
いは保持し、圧力30Torr以下の減圧下に165℃以上で該
スルーホール基板(1)の変形劣化温度以下の範囲の所
定温度に加熱し、かつ、蟻酸銅を少なくとも温度130℃
〜165℃まで間は1℃/分以上の速度で昇温し、保持す
ることを特徴とするスルーホール壁に厚さ0.μm以上の
銅膜を形成してなるスルーホールメッキ基板の製造法.
1. A large number of through-holes are formed in a copper-clad board or a double-sided copper-clad multilayer board to form a through-hole board (1), and copper formate is placed or held at a position within 5 cm of the through-hole. Heating to a predetermined temperature in the range of 165 ° C. or higher and a temperature lower than the deformation deterioration temperature of the through-hole substrate (1) under a reduced pressure of 30 Torr or lower;
A method for producing a through-hole plated substrate comprising a through-hole wall having a copper film having a thickness of at least 0.1 μm, wherein the temperature is raised at a rate of 1 ° C./min or more and maintained at a temperature of up to 165 ° C. .
【請求項2】該スルーホール基板(1)と蟻酸銅とを加
熱処理するメッキ領域の全表面積あたりの蟻酸銅の量が
0.003〜0.3g/cm2である請求項1記載のスルーホールメ
ッキ基板の製造法.
2. The amount of copper formate per total surface area of a plating area where the through-hole substrate (1) and copper formate are heat-treated is reduced.
0.003~0.3g / cm 2 The process of through-hole plating substrate according to claim 1, wherein.
【請求項3】該蟻酸銅の温度130〜165℃の間の昇温速度
が1〜50℃/分である請求項1記載のスルーホールメッ
キ基板の製造法.
3. The method of manufacturing a through-hole plated substrate according to claim 1, wherein the rate of temperature rise of said copper formate between 130 and 165 ° C. is 1 to 50 ° C./min.
【請求項4】該スルーホール基板(1)と蟻酸銅とを加
熱保持時間が1〜60分の範囲から選択される請求項1記
載のスルーホールメッキ基板の製造法.
4. The method of manufacturing a plated through-hole substrate according to claim 1, wherein the heating and holding time of said through-hole substrate (1) and copper formate is selected from the range of 1 to 60 minutes.
【請求項5】該圧力が5Torr以下である請求項1記載の
スルーホールメッキ基板の製造法.
5. The method according to claim 1, wherein said pressure is 5 Torr or less.
【請求項6】該スルーホール基板(1)が、減圧下に予
め所定温度とされた加熱領域に連続的或いは間欠的に供
給され、該加熱領域から取り出される請求項1記載のス
ルーホールメッキ基板の製造法.
6. The through-hole plated substrate according to claim 1, wherein said through-hole substrate (1) is continuously or intermittently supplied to a heating area at a predetermined temperature under reduced pressure and taken out of said heating area. Manufacturing method of
【請求項7】該スルーホール基板(1)と蟻酸銅とが、
蟻酸銅を薄く塗布或いは敷いた板状体の上に、該スルー
ホール基板(1)の少なくとも周囲部相当部に薄い隔離
片を介して重ねた構成として供給される請求項1記載の
スルーホールメッキ基板の製造法.
7. The method according to claim 1, wherein said through-hole substrate (1) and copper formate are
The through-hole plating according to claim 1, wherein the through-hole plating is supplied as a structure in which a thin isolating piece is overlapped on at least a portion corresponding to a peripheral portion of the through-hole substrate on a plate-like body on which copper formate is thinly applied or spread. Substrate manufacturing method.
【請求項8】該スルーホール基板(1)が、スルーホー
ル孔明け後、スミア除去処理をされず、整面されたもの
である請求項1記載のスルーホールメッキ基板の製造
法.
8. The method for manufacturing a plated through-hole substrate according to claim 1, wherein said through-hole substrate (1) is not subjected to a smear removal treatment after drilling said through-hole, and is surface-regulated.
【請求項9】得られたスルーホールメッキ基板を、引続
いて電解メッキするスルーホールメッキ基板の製造法.
9. A method of manufacturing a through-hole plated substrate, wherein the obtained through-hole plated substrate is subsequently subjected to electrolytic plating.
【請求項10】該電解メッキが電解銅メッキであり、か
つ、銅層厚さが5μm以上となるまで0.1μm/秒以下の
メッキ速度を用いる請求項1記載のスルーホールメッキ
基板の製造法.
10. The method according to claim 1, wherein the electrolytic plating is electrolytic copper plating, and a plating rate of 0.1 μm / sec or less is used until the thickness of the copper layer becomes 5 μm or more.
JP27590489A 1989-10-25 1989-10-25 Manufacturing method of through-hole plated substrate Expired - Lifetime JP2730218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27590489A JP2730218B2 (en) 1989-10-25 1989-10-25 Manufacturing method of through-hole plated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27590489A JP2730218B2 (en) 1989-10-25 1989-10-25 Manufacturing method of through-hole plated substrate

Publications (2)

Publication Number Publication Date
JPH03139898A JPH03139898A (en) 1991-06-14
JP2730218B2 true JP2730218B2 (en) 1998-03-25

Family

ID=17562057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27590489A Expired - Lifetime JP2730218B2 (en) 1989-10-25 1989-10-25 Manufacturing method of through-hole plated substrate

Country Status (1)

Country Link
JP (1) JP2730218B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100178B2 (en) * 2014-01-06 2017-03-22 四国化成工業株式会社 Copper film forming agent and method for forming copper film
CN109321857B (en) * 2018-08-29 2023-06-02 广州倬粤动力新能源有限公司 Zinc wire processing method and equipment

Also Published As

Publication number Publication date
JPH03139898A (en) 1991-06-14

Similar Documents

Publication Publication Date Title
US4389268A (en) Production of laminate for receiving chemical plating
CN109564899B (en) Support substrate, laminate with support substrate, and method for manufacturing package substrate for mounting semiconductor element
US4110147A (en) Process of preparing thermoset resin substrates to improve adherence of electrolessly plated metal deposits
JPH01259170A (en) Production of metal structure on insulator
KR0137370B1 (en) Process for the preparation of plastic product plated with cupper
US4254186A (en) Process for preparing epoxy laminates for additive plating
JP2730218B2 (en) Manufacturing method of through-hole plated substrate
JP2009102432A (en) Copper compound
KR960010822B1 (en) Method for porducing copper film-formed articles
JP2002347172A (en) Method for producing laminated sheet
US6703186B1 (en) Method of forming a conductive pattern on a circuit board
US5176743A (en) Formulation of activating substrate surfaces for their electroless metallization
JP2745677B2 (en) Manufacturing method of copper-clad board
JP4360981B2 (en) Method for producing copper thin film
JPH0693455A (en) Production of copper film forming base material
JPH05239657A (en) Production of moisture resistant copper clad substrate
JPH02303089A (en) Manufacture of through hole board
JPH01168867A (en) Production of article coated with copper film
JP2004249641A (en) Manufacturing method for laminate
JP2751335B2 (en) Manufacturing method of copper-plated resin molded product
JPH0453188A (en) Manufacture of through hole printed wiring board
JP2734019B2 (en) Production of copper-plated long paper products
JPS6220916B2 (en)
JP2745678B2 (en) Production of copper-plated long paper products
JP2024014399A (en) Bismaleimide resin composition and prepreg