JPH02303089A - Manufacture of through hole board - Google Patents

Manufacture of through hole board

Info

Publication number
JPH02303089A
JPH02303089A JP1122938A JP12293889A JPH02303089A JP H02303089 A JPH02303089 A JP H02303089A JP 1122938 A JP1122938 A JP 1122938A JP 12293889 A JP12293889 A JP 12293889A JP H02303089 A JPH02303089 A JP H02303089A
Authority
JP
Japan
Prior art keywords
copper
hole
perforated plate
sheet
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1122938A
Other languages
Japanese (ja)
Other versions
JP2707720B2 (en
Inventor
Takamasa Kawakami
川上 殷正
Kazuhiro Ando
和弘 安藤
Riako Nakano
里愛子 中野
Takatsugu Fujiura
隆次 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP12293889A priority Critical patent/JP2707720B2/en
Priority to KR1019890016012A priority patent/KR0137370B1/en
Priority to DE68916180T priority patent/DE68916180T2/en
Priority to EP89120578A priority patent/EP0368231B1/en
Priority to US07/432,811 priority patent/US5106462A/en
Publication of JPH02303089A publication Critical patent/JPH02303089A/en
Application granted granted Critical
Publication of JP2707720B2 publication Critical patent/JP2707720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PURPOSE:To form a copper film having excellent adhesive properties including a hole without adhesive layer at all by treating a hole opening plate formed with many through holes at desired positions of a heat resistant resin film or a thermosetting resin laminated plate in a nonoxidative atmosphere or under reduced pressure under predetermined conditions. CONSTITUTION:A hole opening polyimide sheet 10 formed with many through holes at desired positions of a heat resistant resin film or sheet or a thermosetting resin laminated board is manufactured, and introduced into a through hole circuit board continuously manufacturing apparatus having a reduced pressure plating chamber, a heater, etc. The sheet 10 is held at 165 deg.C or higher to the size variation allowable temperature of the sheet 10 in a nonoxidative atmosphere or under reduced pressure. Copper formate is continuously introduced at 130-165 deg.C at a speed of 1deg/min or more into the heater of the apparatus to raise its temperature. Both are held at an interval of 5cm or less, the sheet 10 is removed, copper of 0.1-5mum is brought into close contact within the hole to obtain a through hole board.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な乾式法による孔壁部にも銅メッキされ
た孔明きのポリイミドフィルム、積層板又は内層配線層
を有する多層プリント配線板などのスルーホール基板の
製造法であり、ハロゲンなどの腐食性を有する元素を全
く含まない純粋な銅膜が形成され、密着性、導電性にも
優れたものであるので、そのままで或いは必要に応じt
銅、ニッケル、その他の金属をメッキしてプリント配線
板として好適に使用されるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a multilayer printed wiring board having a perforated polyimide film, a laminate, or an inner wiring layer in which the hole walls are also plated with copper using a novel dry method. This is a manufacturing method for through-hole boards, such as , which forms a pure copper film that does not contain any corrosive elements such as halogens, and has excellent adhesion and conductivity, so it can be used as is or as needed. According to
It is plated with copper, nickel, or other metals and is suitably used as a printed wiring board.

〔従来の技術およびその課題〕[Conventional technology and its problems]

従来の最も一般的なスルーホールを有する両面板、多層
板などの製造法は、該両面に銅箔を張ったシートや積層
板の所定位置に貫通孔を明け、適宜、活性化した後、無
電解メッキすることにより孔内壁にも銅層を形成し、さ
らに適宜電解メッキして銅の厚さ増加させた後、レジス
トパターンを形成し、エツチングして表面配線網を形成
する方法や両面銅箔張のシートや積層板に代えて表面銅
箔のないものを用いる方法があった。
The most common conventional manufacturing method for double-sided boards and multilayer boards that have through-holes is to make through-holes at predetermined positions in sheets or laminates with copper foil covered on both sides, activate them as appropriate, and then release them. A method of forming a copper layer on the inner wall of the hole by electrolytic plating, increasing the thickness of copper by electrolytic plating as appropriate, forming a resist pattern, and etching to form a surface wiring network, and a double-sided copper foil. There was a method of using a material without copper foil on the surface instead of a laminate sheet or laminate.

これらの方法は無電解メッキ液という不安定で有害な薬
品を含む水溶液を使用することから、この改善策として
、無電解メッキに代えて、金属の蒸着、導電性塗料の塗
布などによる方法が検討されているが、基板と金属との
密着力や生産性、信頼性の点から実用化可能なプロセス
は完成されていない。
Since these methods use an electroless plating solution, which is an unstable aqueous solution containing harmful chemicals, methods such as vapor deposition of metal or application of conductive paint are being considered in place of electroless plating. However, a process that can be put to practical use in terms of adhesion between the substrate and metal, productivity, and reliability has not been completed.

一方、蟻酸銅を物品に塗布し、非酸化性の雰囲気中で加
熱処理すると銅被膜が付着した物品が得られることは知
られているが、従来この方法でプリント配線板用の銅膜
を形成した例はない。この理由は生成した銅膜の接着強
度が不足し、また、多量生産に適した方法もないためで
ある。
On the other hand, it is known that by applying copper formate to an article and heat-treating it in a non-oxidizing atmosphere, it is possible to obtain an article with a copper film attached, but conventionally this method has been used to form copper films for printed wiring boards. There are no examples of this happening. The reason for this is that the adhesive strength of the produced copper film is insufficient, and there is no method suitable for mass production.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の事情に鑑み、簡便な方法により、
経済的に密着強度に優れたスルーホールメッキされたプ
リント配線板用の基板を製造する方法について鋭意検討
した結果、完成したものである。
In view of the above circumstances, the present inventors used a simple method to
This was completed as a result of intensive research into an economical method for producing through-hole plated printed wiring board substrates with excellent adhesion strength.

すなわち、本発明は、耐熱性樹脂フィルム或いはシート
又は熱硬化性樹脂積層板の所望位置に多数の貫通孔を形
成して孔明は板(a)を製造し、該孔明は板(a)を非
酸化性雰囲気或いは減圧下で、温度165℃以上で該孔
明は板(a)の寸法変化許容温度以下の範囲に保持され
た加熱機器中に導入すると共に、蟻酸銅を温度130℃
〜165℃までをldeg、 /分以上の速度で昇温さ
せるように該加熱器中に連続的に導入し、両者を5cm
以下の間隔で所定時間保持した後、該孔明は板(a)を
取り出すことからなる孔内にも厚さ0.1〜5A3の銅
が密着したスルーホール基板の製造法であり、該蟻酸銅
の供給量が、該孔明は板(a)の全表面積あたり0.0
01g/ClIr以上であること、該孔明は板(a)が
、ポリイミドフィルム、積層板又は内層配線層を有する
多層プリント配線板であることであり、さらに該製造法
で製造されたスルーホール基板を引続いて電解銅メッキ
して銅層の厚さを5p以上とするスルーホール基板の製
造法であり、該電解銅メッキ速度を銅層の厚さが5−以
上となるまで0.1m/秒以下の速度とするものである
That is, in the present invention, a large number of through holes are formed at desired positions in a heat-resistant resin film or sheet or a thermosetting resin laminate to produce a plate (a), and the plate (a) is non-woven. In an oxidizing atmosphere or under reduced pressure, at a temperature of 165°C or higher, the copper formate is introduced into a heating device maintained at a temperature below the allowable dimensional change of the plate (a), and copper formate is heated at a temperature of 130°C.
It was continuously introduced into the heater to raise the temperature up to ~165°C at a rate of ldeg/min or more, and the two were separated by 5 cm.
After holding for a predetermined time at the following intervals, the formic acid copper The supply amount is 0.0 per total surface area of plate (a).
01g/ClIr or more, and the above-mentioned pores are that the board (a) is a multilayer printed wiring board having a polyimide film, a laminate board, or an inner wiring layer, and that the through-hole board manufactured by the manufacturing method is This is a method for manufacturing a through-hole board in which the thickness of the copper layer is made 5p or more by electrolytic copper plating, and the electrolytic copper plating speed is set at 0.1 m/sec until the thickness of the copper layer becomes 5p or more. The speed shall be as follows.

以下、本発明について説明する。The present invention will be explained below.

本発明の孔明は板(a)とは、耐熱性樹脂フィルム或い
はシート又は熱硬化性樹脂積層板の所望位置、すなわち
、所望のプリント配線パターンのスルーホール位置に多
数の貫通孔を形成してなるものであって、温度165℃
以上、好ましくは180℃以上において寸法変化が実質
的に許容される範囲、通常寸法変化率0.3%以下、好
ましくは寸法変化率0.1%以下のものであり、さらに
、蟻酸の蒸気によって過度の分解や変色を起こざないも
のである。また、本発明の孔明き板(a)は、必要に応
じて孔明は加工の前にアニール処理等して寸法安定性の
向上を図ること、本発明のメッキ処理に先立って密着力
の向上のための表面処理など適宜行うものである。
The perforated plate (a) of the present invention is formed by forming a large number of through holes at desired positions of a heat-resistant resin film or sheet or thermosetting resin laminate, that is, at desired through-hole positions of a printed wiring pattern. temperature of 165℃
Above, preferably the dimensional change is within a substantially permissible range at 180°C or higher, usually the dimensional change rate is 0.3% or less, preferably the dimensional change rate is 0.1% or less. It does not cause excessive decomposition or discoloration. In addition, the perforated plate (a) of the present invention may be annealed before being processed to improve dimensional stability, if necessary, and adhesion may be improved prior to the plating process of the present invention. Surface treatment etc. shall be carried out as appropriate.

ここに、耐熱性樹脂フィルム或いはシート(以下、単に
シートと記す)としては、ポリイミド、ポリベンツイミ
ダゾール、ポリフェニレンサルファイド、全芳香族ポリ
アミド、ポリエーテルイミド、ポリスルホン、ポリサル
ホン、ポリエーテルサルホン、ポリエーテルエーテルケ
トン、ポリフェニレンエーテル、ポリエチレン−2,6
−ナフタレート、ポリオキシベンゾイル、芳香族液晶ポ
リエステルおよびこれら2種以上を必須成分とする樹脂
組成物からなる群から選択された耐熱樹脂製のシート、
下記のJPNやセミIPN製のシート並びにこれらに無
機或いは有機の充填材を配合したり、下記のベースマチ
イアリアルと複合したものが挙げられ、特にポリイミド
が好適である。
Here, the heat-resistant resin film or sheet (hereinafter simply referred to as a sheet) includes polyimide, polybenzimidazole, polyphenylene sulfide, wholly aromatic polyamide, polyetherimide, polysulfone, polysulfone, polyether sulfone, and polyether ether. Ketone, polyphenylene ether, polyethylene-2,6
- A sheet made of a heat-resistant resin selected from the group consisting of naphthalate, polyoxybenzoyl, aromatic liquid crystal polyester, and a resin composition containing two or more of these as essential components,
Examples include sheets made of JPN and semi-IPN, as well as sheets blended with inorganic or organic fillers, or composites with the base material described below, with polyimide being particularly preferred.

また、積層板とは、フェノール樹脂、エボキシ樹脂、不
飽和ポリエステル樹脂、シアナト樹脂、その他の熱硬化
性樹脂類;これらを適宜二種以上配合してなる組成物:
さらにこれら熱硬化性樹脂、それらの二種以上配合して
なる組成物をポリビニルブチラール、アクリロニトリル
−ブタジェンゴム、多官能性アクリレート化合物その他
の公知の樹脂、添加剤等で変性したもの;架橋ポリエチ
レン、架橋ポリエチレン/エポキシ樹脂、架橋ポリエチ
レン/シアナト樹脂、ポリフェニレンエーテル/エポキ
シ樹脂、ポリフェニレンエーテル/シアナト樹脂、ポリ
エステルカーボネート/シアナト樹脂、その他の変性熱
可塑性樹脂からなる架橋硬化性樹脂組成物イIPN又は
セミIPN)をマトリックス樹脂とし、クラフト紙、リ
ンター紙、ガラス(E、 D、  S、 T、石英その
他各種ガラス製繊維からの)織布・不織布、全芳香族ポ
リアミド、ポリフェニレンサルファイド、ポリエーテル
ニー4ルケトン、ポリエーテルイミド、ポリテトラフロ
ロエチレンなどの耐熱エンプラ製繊維の織布・不織布・
多孔質シート、さらにこれらを適宜混合或いは複合使用
してなる複合繊布・不織布などをベースマチイアリアル
′として複合した絶縁層を有する積層板、該絶縁層上に
金属プリント配線網を形成したプリント配線板を用いて
製造した多層プリント配線板が挙げられる。
In addition, laminates include phenolic resins, epoxy resins, unsaturated polyester resins, cyanato resins, and other thermosetting resins; compositions made by appropriately blending two or more of these resins:
Furthermore, these thermosetting resins, compositions made by blending two or more thereof, modified with polyvinyl butyral, acrylonitrile-butadiene rubber, polyfunctional acrylate compounds, other known resins, additives, etc.; crosslinked polyethylene, crosslinked polyethylene A cross-linked curable resin composition consisting of /epoxy resin, cross-linked polyethylene/cyanato resin, polyphenylene ether/epoxy resin, polyphenylene ether/cyanato resin, polyester carbonate/cyanato resin, and other modified thermoplastic resin (IPN or semi-IPN) as a matrix Resin, kraft paper, linter paper, glass (E, D, S, T, quartz and other various glass fibers) woven and non-woven fabrics, fully aromatic polyamide, polyphenylene sulfide, polyethernylene ketone, polyetherimide , woven fabrics, non-woven fabrics, and heat-resistant engineering plastic fibers such as polytetrafluoroethylene.
A laminate having an insulating layer composed of a porous sheet and a composite fiber/non-woven fabric made by appropriately mixing or combining these materials as a base material, and a printed wiring having a metal printed wiring network formed on the insulating layer. Examples include multilayer printed wiring boards manufactured using boards.

本発明の蟻酸銅とは通常、蟻酸第二銅であり、無水蟻酸
銅、蟻酸銅四水和物、並びにこれらの混合物が挙げられ
、本発明においては特に無水蟻酸銅が好ましい。
The copper formate of the present invention is usually cupric formate, and includes anhydrous copper formate, copper formate tetrahydrate, and mixtures thereof, with anhydrous copper formate being particularly preferred in the present invention.

本発明においては、上記に説明した孔明き板(a)と蟻
酸銅とを同時に或いは別々に、非酸化性雰囲気或いは減
圧下で、温度165℃以上の所定温度に保持された加熱
機器中に導入し、両者を5co+以内の間隔で所定時間
保持し、蟻酸銅を熱分解して生成する金属銅を孔明き板
(a)上並びに孔内壁面に析出させる。この際、蟻酸銅
は温度130〜165℃の間をldeg/分以上の分度
上昇温する。
In the present invention, the above-described perforated plate (a) and copper formate are introduced simultaneously or separately into a heating device maintained at a predetermined temperature of 165° C. or higher in a non-oxidizing atmosphere or under reduced pressure. Then, both are held at an interval of 5 co+ for a predetermined period of time, and metallic copper produced by thermally decomposing copper formate is deposited on the perforated plate (a) and on the inner wall surface of the holes. At this time, the temperature of the copper formate is raised from 130 to 165° C. by 1 deg/min or more.

加熱機器としては、赤外線、電子線、マイクロ波などの
放射線加熱、電気炉、オーブン、オイル加熱、加圧蒸気
加熱、ニクロム線、その他の手段を適宜使用してなるも
のであり、被加熱物品の導入部、加熱部、取り出し部を
持った連続式加熱機が好適であり、孔明き板(a)の樹
脂によっては、加熱処理温度と孔明き板(a)の寸法が
大幅に永久変化する温度とが近接する場合があるので設
定温度のバラツキの小さいものとするのがよい。又、加
熱部としては加熱盤方式が一般的であり、孔明き板(a
)の加熱速度については、寸法変化を最小に止めるよう
に配慮することを除き特に限定はないものである。他方
、蟻酸銅は温度130〜165℃の間を昇温速度1〜b するのが好ましい。ま元、孔明き板(a)と蟻酸銅とは
5cm以内の間隔、好ましくは2cm以内の間隔に保持
し、加熱保持時間は3時間以下、好ましくは1〜60分
である。蟻酸銅の昇温速度が1℃/分未満では得られる
メッキ膜が不均一となったり、接着強度が劣ったものと
成ったりし易く、銅粉末の生成最も多くなるので好まし
くなく、又、昇温速度が速いと銅のメッキ速度は速くな
るが、メッキ膜が不均一となり易いので好ましくない。
Heating equipment uses radiation heating such as infrared rays, electron beams, and microwaves, electric furnaces, ovens, oil heating, pressurized steam heating, nichrome wire, and other means as appropriate. A continuous heating machine with an introduction section, a heating section, and a take-out section is suitable, and depending on the resin of the perforated plate (a), the heat treatment temperature and the temperature at which the dimensions of the perforated plate (a) will significantly change permanently are suitable. Since these temperatures may be close to each other, it is preferable to set the set temperature to a value with small variations. In addition, as the heating part, a heating plate system is common, and a perforated plate (a
) There are no particular limitations on the heating rate, except that care must be taken to minimize dimensional changes. On the other hand, copper formate is preferably heated at a temperature of 130 to 165°C at a heating rate of 1 to b. Initially, the perforated plate (a) and the copper formate are kept at a distance of 5 cm or less, preferably 2 cm or less, and the heating time is 3 hours or less, preferably 1 to 60 minutes. If the heating rate of copper formate is less than 1°C/min, the plated film obtained will tend to be non-uniform or have poor adhesive strength, and copper powder will be produced the most, which is undesirable. If the heating rate is high, the copper plating rate will be high, but this is not preferable because the plating film tends to be non-uniform.

加熱機器中を非酸化性雰囲気とする方法は公知の、N2
. Ar、 CQi、 Co、 +12な゛どのガスを
導入する方法、孔明き板(a)の加熱部の容積を小さく
して加熱部への入口と出口の開口面積を小さくすること
により、不活性ガスを使用することなく蟻酸銅分解ガス
雰囲気に保持する方法;孔明き板(a)の導入部及び取
り出し部をロール等でシールする方法;装置全体を減圧
室或いはボックス内に収納し、孔明き板(a)の導入部
と取り出し部を減圧室を配置する方法などが例示され、
減圧度としては400Torr以下、好ましくは知0T
orr以下、特に30Torr以下が好ましい。
A known method for creating a non-oxidizing atmosphere in the heating equipment is N2
.. By introducing a gas such as Ar, CQi, Co, +12, etc., by reducing the volume of the heating section of the perforated plate (a) and reducing the opening area of the inlet and outlet to the heating section, an inert gas can be introduced. A method of maintaining the perforated plate (a) in an atmosphere of decomposed copper formate gas without using a (a) A method of arranging a decompression chamber at the introduction part and the extraction part is exemplified,
The degree of pressure reduction is 400 Torr or less, preferably 0T.
orr or less, particularly preferably 30 Torr or less.

また、蟻酸銅の導入量は、孔明き板(a)の表面積あた
り、0.001g/−以上、好ましくは0.002〜0
゜1g/caf(6範囲であり、導入方法は特に限定さ
れないが、連続法の場合通常、連続ベルト上に配置した
蟻酸銅を導入する方法が挙げられる。連続ベルト上への
好適な蟻酸銅の配置法としては、蟻酸銅と実質的に反応
しない比較的沸点の低い溶媒に蟻酸銅を溶解或いは粉末
を均一分散させた溶液を準備し、これを連続ベルトに塗
布し、乾燥する方法;連続ベルトとして片面(!!!1
!酸銅配置面)に多数の小さい窪みや溝などの凹凸付き
、或いは網、布などを貼った片面凹凸ベルトを用い、蟻
酸銅粉末を窪み、溝、編み目に塗着させる方法が挙げら
る。
Further, the amount of copper formate introduced is 0.001 g/- or more, preferably 0.002 to 0.00 g/- per surface area of the perforated plate (a).
゜1g/caf (6 range) The introduction method is not particularly limited, but in the case of a continuous method, a method of introducing copper formate placed on a continuous belt is usually mentioned. A suitable method for introducing copper formate onto a continuous belt is The arrangement method involves preparing a solution in which copper formate is dissolved or powder is uniformly dispersed in a solvent with a relatively low boiling point that does not substantially react with copper formate, and applying this to a continuous belt and drying it; One side (!!!1
! One method is to use a single-sided uneven belt with many small depressions and grooves on the surface (on which the acid copper is arranged), or with a net or cloth attached, and to apply the copper formate powder to the depressions, grooves, and stitches.

溶媒を用いる場合の溶媒としては水、アルコール、脂肪
族炭化水素、芳香族炭化水素、その他の好適には沸点1
10℃以下のものが例示され、特に、無水蟻酸銅の場合
には、水を含まない有機溶媒、例えば塩化メチレン、ヘ
プタン、ヘキサン、シクロヘキサン、オクタン、プロパ
ツール、ブタノール、ヘプタツール、ベンゼン、トルエ
ン、キシレンなどと蟻酸銅微粉末とを混練してなる分散
溶液を用いるのが好適である。塗布の方法は、刷毛型、
ディピイング、スプレーコート、バーコード、ロールコ
ート、印刷などその他の塗布手段が例示され、又、乾燥
は蟻酸銅の分解開始温度以下、特に110℃以下の温度
で加熱或いは減圧乾燥する。
When using a solvent, water, alcohol, aliphatic hydrocarbon, aromatic hydrocarbon, and other suitable solvents with a boiling point of 1
Examples include those below 10°C, and in particular, in the case of anhydrous copper formate, organic solvents that do not contain water, such as methylene chloride, heptane, hexane, cyclohexane, octane, propatool, butanol, heptatool, benzene, toluene, It is preferable to use a dispersion solution obtained by kneading xylene or the like with fine copper formate powder. Application methods include brush type,
Other coating methods such as dipping, spray coating, bar coding, roll coating, and printing are exemplified, and drying is carried out by heating or drying under reduced pressure at a temperature below the decomposition start temperature of copper formate, particularly below 110°C.

以上の製造法によって製造された孔内壁にも厚み0.1
〜5−1好ましくは0.2〜3−の銅膜が密着したスル
ーホール基板は、そのままプリント配線板用基板として
使用可能であるが、通常、そのままプリント配線パター
ンの陰パターンをレジストで形成し銅メッキし銅箔厚み
を厚くした後、軽くエツチングする方法(フラッシュエ
ツチング法或いはメツキレシスト法)、又は、銅メッキ
して銅箔厚みを厚くした後、レジストパターンを形成し
エツチングしてプリント配線網を形成する方法(エツチ
ングレジスト法)によって、プリント配線銅箔の厚みが
、5p以上、通常70A3以下、好ましくは8〜35J
Aとしてスルーホールプリント配線板とする。ここに、
電解メッキ法が生産性面等から好ましく、金属層厚みが
5−以上となるまではメッキ速度0.1x/秒以下、特
に0.003〜0.051/秒の範囲でメッキすること
が好ましい。なお、銅メッキに代えて或いは銅メッキの
後にニッケル、金その他金属の無電解メッキ或いは電解
メッキなどを施すことも当然に可能であり、特に電解メ
ッキを適宜族して使用されるものである。又、該メッキ
後、メッキ応力除去のためのアニール処理を施すことは
密着力の向上面から好ましい。
The inner wall of the hole manufactured by the above manufacturing method also has a thickness of 0.1
~5-1 A through-hole substrate with a preferably 0.2 to 3-copper film in close contact with it can be used as it is as a substrate for a printed wiring board, but usually the negative pattern of the printed wiring pattern is formed with a resist as it is. After plating copper and increasing the thickness of the copper foil, lightly etching it (flash etching method or metkiresist method), or after plating copper and increasing the thickness of the copper foil, forming a resist pattern and etching to form a printed wiring network. Depending on the forming method (etching resist method), the thickness of the printed wiring copper foil is 5P or more, usually 70A3 or less, preferably 8 to 35J.
A is a through-hole printed wiring board. Here,
Electrolytic plating is preferred from the viewpoint of productivity, and plating is preferably carried out at a plating rate of 0.1x/sec or less, particularly in the range of 0.003 to 0.051/sec, until the metal layer thickness reaches 5 mm or more. Note that it is naturally possible to perform electroless plating or electrolytic plating of nickel, gold, or other metals instead of or after copper plating, and in particular, electrolytic plating is used as appropriate. Further, after the plating, it is preferable to perform an annealing treatment to remove plating stress from the viewpoint of improving adhesion.

以上、本発明の詳細な説明したが、ことに本発明の製造
法を一例によって説明する。
The present invention has been described in detail above, and in particular, the manufacturing method of the present invention will be explained by way of an example.

第1図は本発明のスルーホール基板の連続法による製造
装置の概念図の一例であり、第2図は減圧メッキ室内の
加熱方法の例、第3図は蟻酸銅粉末を凹凸ベルトに塗着
させて供給する場合の減圧メッキ室周辺を示した例であ
る。
Figure 1 is an example of a conceptual diagram of a continuous method manufacturing device for through-hole substrates of the present invention, Figure 2 is an example of a heating method in a vacuum plating chamber, and Figure 3 is a coating of copper formate powder on an uneven belt. This is an example showing the surroundings of the reduced pressure plating chamber when the plating chamber is supplied at a reduced pressure.

第1図の本製造装置は、真空ロール(Vl〜v4゛)で
減圧可能とし、かつ、被メツキ物品である孔明きポリイ
ミドシート(10)と蟻酸銅付着ベルトとを5CffI
以下の間隔で加熱処理しメッキする減圧メッキ室(A)
、その周囲に蟻酸銅をベルト(20)に付着させ減圧メ
ッキ室Aに供給する周辺機器、メッキされた孔明きポリ
イミドシートの後処理槽(C)を備えてなる。第1図に
おいて、長尺の孔明きポリイミドシー) (10)が真
空ロール(vl)を介して減圧メッキ室Aに導入され、
ここで遠赤外線ヒーター(H3)で所定温度に加熱され
る。また、蟻酸銅液を塗布ロール(C1,C1°)で塗
布され、加熱器(111,Hlo)で乾燥された蟻酸銅
塗布ベルト(21,21’ )が真空ロール(V3. 
V3°)を介して同様に減圧メッキ室A導入され、加熱
器()12. H2°)の間に上記の孔明きポリイミド
シート10と共に所定の間隔で移動し保持される。この
間に蟻酸銅は加熱器H2,82°で所定温度に加熱され
、蒸発してポリイミドシー)10上で分解して銅と還元
性の分解ガスとなり、銅は孔明きポリイミドシート表面
及び孔内壁にも膜を形成し、銅メツキポリイミドスルー
ホール回路基板(11)となる。該回路基板11は減圧
メッキ室八から真空ロール(v2)を経て出て、後処理
槽(C)で処理され、乾燥されて目的物とされる。一方
、蟻酸銅供給ベルト21.21°は減圧ロール(V4.
V4°)を介して減圧メッキ室八から出て、ここで適宜
表面に付着している銅粉などを除去し清浄化され、蟻酸
銅塗布槽(B1、Blo)の蟻酸銅液を塗布ロール(C
1,CI’ )で塗布され、乾燥される。又、乾燥で発
生した溶媒蒸気は、冷却器に導かれ、冷却されて液体と
された後、蟻酸調液調製槽(B)で蟻酸銅粉末(1)と
均一に混合され蟻酸銅塗布槽B1. Bloに循環され
る。なお、真空ポンプ排気は適宜触媒燃焼等されて、水
と炭酸ガスとに変換され排出される。
This manufacturing apparatus shown in FIG. 1 is capable of reducing pressure with a vacuum roll (Vl to v4'), and is capable of handling a perforated polyimide sheet (10) as an article to be plated and a copper formate adhesion belt with a 5CffI
Reduced pressure plating room (A) where heat treatment and plating are performed at the following intervals:
, peripheral equipment for attaching copper formate to a belt (20) and supplying it to the vacuum plating chamber A, and a post-treatment tank (C) for plated perforated polyimide sheets. In FIG. 1, a long perforated polyimide sheet (10) is introduced into a vacuum plating chamber A via a vacuum roll (vl),
Here, it is heated to a predetermined temperature by a far infrared heater (H3). Further, a copper formate coated belt (21, 21') coated with a copper formate solution with a coating roll (C1, C1°) and dried with a heater (111, Hlo) is coated with a vacuum roll (V3.
Similarly, the reduced pressure plating chamber A is introduced through the heater () 12. H2°), it is moved and held at a predetermined interval together with the above-mentioned perforated polyimide sheet 10. During this time, copper formate is heated to a predetermined temperature with heater H2, 82°, evaporates, and decomposes on the polyimide sheet (10) to become copper and reducing decomposition gas, and the copper is deposited on the surface of the perforated polyimide sheet and the inner wall of the hole. A copper-plated polyimide through-hole circuit board (11) is then formed. The circuit board 11 comes out of the vacuum plating chamber 8 via a vacuum roll (v2), is processed in a post-processing tank (C), and is dried to become a target product. On the other hand, the copper formate supply belt 21.21° is a vacuum roll (V4.
It exits the vacuum plating chamber 8 via the vacuum plating chamber 8 via the copper formate coating tank (B1, Blo), where it is cleaned by properly removing copper powder adhering to the surface, and the copper formate solution from the copper formate coating tank (B1, Blo) is applied to the coating roll ( C
1, CI') and dried. In addition, the solvent vapor generated during drying is led to a cooler, cooled and turned into a liquid, and then uniformly mixed with copper formate powder (1) in a formic acid preparation tank (B), and then transferred to a copper formate coating tank B1. .. It is circulated to Blo. Note that the vacuum pump exhaust gas is suitably subjected to catalytic combustion, etc., and converted into water and carbon dioxide gas, which are then discharged.

第2図は、上記の減圧メッキ室に於ける孔明きポリイミ
ドシート10の温度を蟻酸銅粉末よりも高く保つ場合の
一例であり、蟻酸銅塗布ベルト21とポリイミドシート
10との間隙に表面を電気絶縁した加熱線を挿入してな
るものである。
FIG. 2 shows an example of a case where the temperature of the perforated polyimide sheet 10 in the vacuum plating chamber is kept higher than that of the copper formate powder. It is made by inserting an insulated heating wire.

また、第3図は蟻酸銅粉末を片面凹凸ベルトの凹面に塗
着させて減圧メッキ室Aに供給し、かつ、長尺の孔明き
板(a)に代えて、所定寸法の孔明き板(a)をその前
後や両側端などを固定して移送し、メッキする場合を考
慮してダブル真空ロール(V)を入口、出口に設けた場
合を示すものである。
In addition, Fig. 3 shows that copper formate powder is applied to the concave surface of a single-sided uneven belt and supplied to the vacuum plating chamber A, and instead of the long perforated plate (a), a perforated plate of a predetermined size ( This figure shows a case in which double vacuum rolls (V) are provided at the inlet and outlet in consideration of the case where a) is transferred with its front and rear and both ends fixed and plated.

以上、図面により本発明のスルーホール基板の連続製造
法を説明したが、当然に本発明は孔明き板と蟻酸銅とを
別々に所定の間隔をおいて加熱機器中に保持することを
除き、上記の図面に限定されるものではない。例えば、
連続法に代えてバッチ法とすること;蟻酸銅の供給ベル
トの導入移動方向を逆向きとすること;機器の配置を水
平とし、片面側から孔内にも銅メッキを施すこと;さら
に後処理として銅その他金属゛の電解メッキ、アニール
処理その他を施す工程を付加することなどである。また
、上記によって製造した銅スルーホール基板は、必要に
応じて公知の防錆処理を施すことなど適宜実施できるも
のである。
The continuous manufacturing method of a through-hole board according to the present invention has been explained above with reference to the drawings, but naturally the present invention includes the following steps, except that the perforated plate and the copper formate are held separately in a heating device at a predetermined interval. The present invention is not limited to the above drawings. for example,
Use a batch method instead of a continuous method; Reverse the introduction and movement direction of the copper formate supply belt; Place the equipment horizontally, and apply copper plating to the holes from one side; and post-processing. This includes adding processes such as electrolytic plating of copper or other metals, annealing treatment, etc. Further, the copper through-hole substrate manufactured as described above can be appropriately subjected to known anti-corrosion treatment, if necessary.

〔実施例〕〔Example〕

以下、実施例、比較例によって本発明を説明する。尚、
実施例、比較例中の部は特に断らない限り重量基準であ
る。
The present invention will be explained below with reference to Examples and Comparative Examples. still,
Parts in Examples and Comparative Examples are based on weight unless otherwise specified.

実施例1 無水蟻酸銅粉末100部とブチルアルコール50部とを
混練して無水蟻酸銅粉末が均一に分散した分散溶液(以
下、処理液1という)を得た。
Example 1 100 parts of anhydrous copper formate powder and 50 parts of butyl alcohol were kneaded to obtain a dispersion solution (hereinafter referred to as treatment liquid 1) in which the anhydrous copper formate powder was uniformly dispersed.

これを所定のアルミニウムフィルムの片面に塗布、乾燥
して蟻酸銅供給ベルトとした。
This was applied to one side of a predetermined aluminum film and dried to form a copper formate supply belt.

厚さ501.3の長尺ポリイミドシート(東し・デュポ
ン社製、商品名;カプトン)を温度300℃で30分間
加熱処理した後、所定位置に直径0.4mmの貫通孔を
1.25mm間隔で100個を一列として、列間距離1
2.5w間隔で10列明けた後、苛性ソーダ水溶液で表
面処理した。
After heat-treating a long polyimide sheet (manufactured by DuPont Azuma, trade name: Kapton) with a thickness of 501.3 at a temperature of 300°C for 30 minutes, through holes with a diameter of 0.4 mm were formed at predetermined positions at intervals of 1.25 mm. With 100 pieces in a row, the distance between the rows is 1
After opening 10 rows at 2.5W intervals, the surface was treated with a caustic soda aqueous solution.

減圧可能な容器内に、この孔明きポリイミドシート及び
予め蟻酸銅粉末を付着させた蟻酸銅供給ベルトとを保持
・供給・取り出し部を備え、−組きの加熱盤の中央にポ
リイミドシート、その左右に蟻酸銅供給ベルトを移送自
在に配置した装置を用い、ポリイミドシートと蟻酸銅供
給ベルトとを連続的に加熱盤間に供給し、取り出して孔
内も銅メッキされたスルーホール基板とした。
A container that can be depressurized is equipped with a part for holding, supplying, and taking out the perforated polyimide sheet and a copper formate supply belt to which copper formate powder has been attached in advance. Using a device in which a copper formate supply belt is disposed in a freely transferable manner, the polyimide sheet and the copper formate supply belt are continuously supplied between heating plates and taken out to form a through-hole board in which the inside of the hole is also copper plated.

なお、加熱盤の加熱領域の長さは 40cm、容器内の
圧力は0.1〜I Torr、加熱盤温度280℃であ
り、孔明きポリイミドシートの加熱盤間への導入速度は
5cm/分、蟻酸銅供給ベルトの速度は1゜3cm/分
で付着量は0.008 g / co? 、ポリイミド
シートと蟻酸銅との距離は20M1蟻酸銅の昇温速度は
温度130〜165℃の間 16℃/分であった。
The length of the heating area of the heating plate was 40 cm, the pressure inside the container was 0.1 to I Torr, the temperature of the heating plate was 280°C, and the speed at which the perforated polyimide sheet was introduced between the heating plates was 5 cm/min. The speed of the copper formate supply belt was 1°3 cm/min, and the amount of deposit was 0.008 g/co? The distance between the polyimide sheet and the copper formate was 20M1. The heating rate of the copper formate was 16°C/min between 130 and 165°C.

所定長さのメッキが終了した後、容器を解放し、室温に
放冷して、ポリイミド製のスルーホール基板を取り出し
た。
After plating a predetermined length, the container was opened, allowed to cool to room temperature, and the polyimide through-hole substrate was taken out.

この銅膜の厚みは孔内壁部も含めて0.5〜0.7−で
、表面抵抗0.06〜0.1Ω/口であり、孔間の寸法
変化率は0.06%であった。
The thickness of this copper film, including the inner wall of the hole, was 0.5 to 0.7 -, the surface resistance was 0.06 to 0.1 Ω/mouth, and the dimensional change rate between the holes was 0.06%. .

ついで、このポリイミド製のスルーホール基板を電解銅
メッキして銅膜厚さを10J、3とし、200℃で30
分間アニール処理した後、銅箔の接着強度を測定したと
ころ、0.8kg/cmであり、また、銅箔剥離面は光
沢性面であった。
Next, this polyimide through-hole board was electrolytically plated with copper to give a copper film thickness of 10 J.
After annealing for a minute, the adhesive strength of the copper foil was measured to be 0.8 kg/cm, and the surface from which the copper foil was peeled was a glossy surface.

実施例2 実施例1において、ポリイミドシートに代えて厚み0.
4mmの孔明きガラス繊維強化4シアナト樹脂積層板(
三菱瓦斯化学■製、商品名;ニトライトCCL IIL
 810用の銅箔無し積層板)を用い、この両端をポリ
イミド製の止め具で止めて10枚続きとしたものに変更
し、予備加熱を230℃、30分、メッキ熱盤温度を2
30℃とする他は同様としてスルーホール基板を得た。
Example 2 In Example 1, the polyimide sheet was replaced with a thickness of 0.
4mm perforated glass fiber reinforced 4 cyanato resin laminate (
Manufactured by Mitsubishi Gas Chemical ■, product name: Nitrite CCL IIL
Using a laminate (without copper foil for 810), I fixed both ends with polyimide fasteners to make 10 sheets in a row, preheated at 230℃ for 30 minutes, and set the plating hot plate temperature to 2.
A through-hole substrate was obtained in the same manner except that the temperature was 30°C.

この銅膜の厚みは孔内壁部も含めて0.5〜0.7−で
、表面抵抗0.06〜0.1Ω/口であり、孔間の寸法
変化率は0.02%であった。
The thickness of this copper film, including the inner wall of the hole, was 0.5 to 0.7 -, the surface resistance was 0.06 to 0.1 Ω/mouth, and the dimensional change rate between the holes was 0.02%. .

ついで、実施例1と同様にして銅膜厚さ10ccmとし
て銅箔の接着強度を測定したところ、0.8kg/cm
であった。
Next, the adhesive strength of the copper foil was measured in the same manner as in Example 1 with a copper film thickness of 10 ccm, and it was found to be 0.8 kg/cm.
Met.

〔発明の作用および効果〕[Operation and effects of the invention]

以上の如くである本発明の製造法によれば、孔内部も含
めて密着性に優れた銅膜が全く接着剤層等を介さずに形
成され(ポリイミドフィルムにおいては、接着剤層無し
で銅箔接着面は光沢性を有した両面銅張スルーホールポ
リイミドフィルムとなる。)、寸法精度の点においても
優れ、フレキシブル−リジット板まで全てに応用可能な
スルーホール基板が得られる。
According to the manufacturing method of the present invention as described above, a copper film with excellent adhesion, including inside the holes, is formed without any adhesive layer (in the case of polyimide film, copper film is formed without any adhesive layer). The foil adhesion surface becomes a glossy double-sided copper-clad through-hole polyimide film.) A through-hole board is obtained which has excellent dimensional accuracy and can be applied to everything from flexible to rigid boards.

このスルーホール基板は、そのままでも使用可能である
が、特にメッキ後の密着強度も極めて高いことからメッ
キして銅箔厚み5〜12A3という極薄銅箔張スルーホ
ールプリント配線板も極めて容易に製造できるものであ
ることからその工業的意義は極めて高いものである。
This through-hole board can be used as is, but since the adhesion strength after plating is extremely high, it is extremely easy to plate it and manufacture ultra-thin copper foil-clad through-hole printed wiring boards with a copper foil thickness of 5 to 12 A3. Because it can be done, its industrial significance is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のスルーホール回路基板の連続法による
製造装置の概念図の一例であり、第2図は減圧メッキ室
内の加熱方法の例、第3図は蟻酸銅粉末を凹凸ベルトに
塗着させて供給する場合の減圧メッキ室周辺を示した例
である。 特許出願人  三菱瓦斯化学株式会社 代理人(9070)弁理士  小堀 貞文第 1 図 1O°穴明きlリイミFシート ↓ C0′&処理槽 第2図 第3図
Fig. 1 is an example of a conceptual diagram of a manufacturing apparatus for through-hole circuit boards according to the present invention using a continuous method, Fig. 2 is an example of a heating method in a vacuum plating chamber, and Fig. 3 is a diagram showing an example of a heating method in a vacuum plating chamber. This is an example showing the area around the reduced pressure plating chamber when the plating is coated and supplied. Patent applicant Mitsubishi Gas Chemical Co., Ltd. agent (9070) Patent attorney Sadafumi Kobori No. 1 Figure 1 O°Perforated L Reimi F sheet ↓ C0'& Processing tank Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 耐熱性樹脂フィルム或いはシート又は熱硬化性樹脂
積層板の所望位置に多数の貫通孔を形成して孔明け板(
a)を製造し、該孔明け板(a)を非酸化性雰囲気或い
は減圧下で、温度165℃以上で該孔明け板(a)の寸
法変化許容温度以下の範囲に保持された加熱機器中に導
入すると共に、蟻酸銅を温度130℃〜165℃までを
1deg./分以上の速度で昇温させるように該加熱器
中に連続的に導入し、両者を5cm以下の間隔で所定時
間保持した後、該孔明け板(a)を取り出すことからな
る孔内にも厚さ0.1〜5μmの銅が密着したスルーホ
ール基板の製造法。 2 該蟻酸銅の供給量が、該孔明け板(a)の全表面積
あたり0.001g/cm^2以上である請求項1記載
のスルーホール基板の製造法。 3 該孔明け板(a)が、ポリイミドフィルムである請
求項1記載のスルーホール基板の製造法。 4 該孔明け板(a)が、積層板又は内層配線層を有す
る多層プリント配線板である請求項1記載のスルーホー
ル基板の製造法。 5 請求項1記載のスルーホール基板を、引続いて電解
銅メッキして銅層の厚さを5μm以上とするスルーホー
ル基板の製造法。 6 該電解銅メッキを銅層厚さが5μm以上となるまで
0.1μm/秒以下の速度とする請求項5記載のスルー
ホール基板の製造法。
[Claims] 1. A perforated plate (
a), and the perforated plate (a) is kept in a heating device in a non-oxidizing atmosphere or under reduced pressure at a temperature of 165°C or higher and below the permissible temperature for dimensional change of the perforated plate (a). At the same time, copper formate was introduced at a temperature of 130°C to 165°C at 1 degree. The perforated plate (a) is continuously introduced into the heater so as to raise the temperature at a rate of 1/min or more, and after holding both at an interval of 5 cm or less for a predetermined period of time, the perforated plate (a) is taken out. This is a method for manufacturing a through-hole board with a thickness of 0.1 to 5 μm in which copper is adhered. 2. The method for manufacturing a through-hole substrate according to claim 1, wherein the amount of copper formate supplied is 0.001 g/cm^2 or more per total surface area of the perforated plate (a). 3. The method for manufacturing a through-hole substrate according to claim 1, wherein the perforated plate (a) is a polyimide film. 4. The method for manufacturing a through-hole board according to claim 1, wherein the perforated plate (a) is a laminated board or a multilayer printed wiring board having an inner wiring layer. 5. A method for manufacturing a through-hole substrate, which comprises subsequently electrolytically plating the through-hole substrate according to claim 1 to give a copper layer thickness of 5 μm or more. 6. The method for manufacturing a through-hole board according to claim 5, wherein the electrolytic copper plating is performed at a rate of 0.1 μm/sec or less until the copper layer thickness becomes 5 μm or more.
JP12293889A 1988-11-07 1989-05-18 Manufacturing method of through-hole board Expired - Lifetime JP2707720B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12293889A JP2707720B2 (en) 1989-05-18 1989-05-18 Manufacturing method of through-hole board
KR1019890016012A KR0137370B1 (en) 1988-11-07 1989-11-06 Process for the preparation of plastic product plated with cupper
DE68916180T DE68916180T2 (en) 1988-11-07 1989-11-07 Process for the production of copper-clad plastic articles.
EP89120578A EP0368231B1 (en) 1988-11-07 1989-11-07 Process of producing copper plated resin article
US07/432,811 US5106462A (en) 1988-11-07 1989-11-07 Process of producing copper plated resin article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12293889A JP2707720B2 (en) 1989-05-18 1989-05-18 Manufacturing method of through-hole board

Publications (2)

Publication Number Publication Date
JPH02303089A true JPH02303089A (en) 1990-12-17
JP2707720B2 JP2707720B2 (en) 1998-02-04

Family

ID=14848330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12293889A Expired - Lifetime JP2707720B2 (en) 1988-11-07 1989-05-18 Manufacturing method of through-hole board

Country Status (1)

Country Link
JP (1) JP2707720B2 (en)

Also Published As

Publication number Publication date
JP2707720B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR930011767B1 (en) Process for producing copper-clad laminate sheet
FR2497813A1 (en) METHOD FOR REDUCING TENSIONS AND CONSTRAINTS IN SULFONIC POLYMERS BY RADIATION TREATMENT
US4389268A (en) Production of laminate for receiving chemical plating
JPH01259170A (en) Production of metal structure on insulator
JPS59162044A (en) Thick polyimide-metal laminate of large exfoliation strength
KR0137370B1 (en) Process for the preparation of plastic product plated with cupper
KR980002299A (en) Method for producing a metal coated film in the form of a web
JPH02134241A (en) Manufacture of polyimide film flexible printed circuit board
JPH02303089A (en) Manufacture of through hole board
JP2745677B2 (en) Manufacturing method of copper-clad board
DE3828211C2 (en)
US6703186B1 (en) Method of forming a conductive pattern on a circuit board
JP2730218B2 (en) Manufacturing method of through-hole plated substrate
JPH05239657A (en) Production of moisture resistant copper clad substrate
JPH0693455A (en) Production of copper film forming base material
JPH01168867A (en) Production of article coated with copper film
JP4000706B2 (en) Heat treatment method and heat treatment apparatus for sheet-like material
JP2734019B2 (en) Production of copper-plated long paper products
JPH0337878B2 (en)
JPH05259635A (en) Circuit board
JP2734020B2 (en) Manufacturing method of copper-plated resin molded product
JP2745678B2 (en) Production of copper-plated long paper products
JP2023012708A (en) Method for manufacturing printed wiring board, and coating system used to perform the method
JP2605804B2 (en) Polyester film laminate
JPS6220916B2 (en)