JP2724539B2 - Insulator cleaning equipment - Google Patents

Insulator cleaning equipment

Info

Publication number
JP2724539B2
JP2724539B2 JP5347683A JP34768393A JP2724539B2 JP 2724539 B2 JP2724539 B2 JP 2724539B2 JP 5347683 A JP5347683 A JP 5347683A JP 34768393 A JP34768393 A JP 34768393A JP 2724539 B2 JP2724539 B2 JP 2724539B2
Authority
JP
Japan
Prior art keywords
water discharge
insulator
water
cleaning
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5347683A
Other languages
Japanese (ja)
Other versions
JPH07192562A (en
Inventor
康明 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP5347683A priority Critical patent/JP2724539B2/en
Publication of JPH07192562A publication Critical patent/JPH07192562A/en
Application granted granted Critical
Publication of JP2724539B2 publication Critical patent/JP2724539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Insulators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 この発明は碍子を活線下で洗浄
できる碍子洗浄装置、特に、碍子の周囲に配置された放
水装置に放水ノズルを取付け、この複数の放水ノズルか
ら一斉に洗浄水を放水して碍子を洗浄する碍子洗浄装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulator cleaning device capable of cleaning insulators under a live line, and more particularly, to attaching a water discharge nozzle to a water discharge device disposed around the insulator, and simultaneously cleaning water from the plurality of water discharge nozzles. The present invention relates to an insulator cleaning device that discharges water to wash an insulator.

【0002】[0002]

【従来の技術】 塩分などの汚損物により碍子の表面が
汚損されると、耐電圧が低下してフラッシオーバの原因
となり、送配電に支障を来すことがある。このため、碍
子の洗浄が行われるが、これには送電を中止して洗浄す
るの他、送電を止めること無く活線状態で洗浄すること
が行われている。この活線状態での碍子洗浄装置の内、
碍子の周囲に配管された放水配管に複数の放水ノズルを
取付け、この複数の放水ノズルから一斉に洗浄水を放水
して碍子全体を洗浄する碍子洗浄装置が実公昭51ー1
3690号公報などによって知られている。
2. Description of the Related Art When the surface of an insulator is contaminated by contaminants such as salt, the withstand voltage is reduced, causing a flashover, which may hinder power transmission and distribution. For this reason, the insulator is cleaned. For this purpose, the power transmission is stopped and the cleaning is performed. In addition, the cleaning is performed in a live state without stopping the power transmission. Of the insulator cleaning equipment in this live state,
A plurality of water discharge nozzles are attached to the water discharge pipe provided around the insulator, and the washing water is discharged simultaneously from the plurality of water discharge nozzles to wash the entire insulator.
It is known from, for example, US Pat.

【0003】 この種碍子洗浄装置では、洗浄中の耐電
圧(以下、洗浄耐電圧という。)を霧中耐電圧より低く
ならないように高く維持したまま、碍子に付着した汚損
物を十分に洗い流す必要がある。ここで、ステーション
ポスト碍子や碍管などのように縦方向に長尺に設置され
た碍子では、洗浄初期に汚損物を含んだ導電性の初期洗
浄水が流下して、耐電圧の低下を免れることができな
い。特に碍子の笠から流下する落下水が多く、笠と笠と
の間を落下水が連結する状態となると、洗浄耐電圧が大
幅に低下することになる。
In this type of insulator cleaning apparatus, it is necessary to sufficiently wash away contaminants adhering to the insulator while maintaining the withstand voltage during cleaning (hereinafter, referred to as cleaning withstand voltage) so as not to be lower than the withstand voltage in fog. is there. In the case of insulators that are installed vertically long, such as station post insulators and insulator pipes, the initial washing water containing contaminants flows down at the beginning of washing, and the withstand voltage cannot be reduced. Can not. In particular, a large amount of falling water flows down from the insulator cap, and when the falling water is connected between the caps, the cleaning withstand voltage is greatly reduced.

【0004】 洗浄耐電圧を高めるためには放水ノズル
からの放水量を減らして碍子への注水量をへらすことが
有効な方法であることが従来より知られていた。しかし
ながら、屋外に設置された碍子を洗浄する際には、ノズ
ルからの放水流が風によって偏向されたり、散乱される
ことがあり、特に放水量が少ないほど風による影響を強
く受けやすい。
It has been known that an effective method for increasing the withstand voltage for cleaning is to reduce the amount of water discharged from the water discharge nozzle to reduce the amount of water injected into the insulator. However, when cleaning an insulator installed outdoors, a water discharge flow from a nozzle may be deflected or scattered by wind, and the smaller the amount of water discharge, the stronger the effect of wind.

【0005】 このため、一般に碍子洗浄装置として
は、7〜15m/secの風速の下においても放水を碍
子に当てて、付着した汚損物を十分に洗い流す必要があ
るために、放水量を減らして洗浄耐電圧を上げることは
できなかった。
[0005] For this reason, in general, as an insulator cleaning device, it is necessary to apply water discharge to the insulator even under a wind speed of 7 to 15 m / sec to sufficiently wash away the adhered contaminants. The washing withstand voltage could not be increased.

【0006】 これら相反する条件の下では、洗浄耐電
圧を高めることが困難なために、洗浄される碍子自体
を、例えば笠と笠の間隔を広げるなど、洗浄耐電圧を高
く設計した碍子についてのみ、活線下の洗浄を行なうこ
とができるのに留まっているのが実情である。
Under these contradictory conditions, it is difficult to increase the cleaning withstand voltage. Therefore, the insulator to be cleaned is used only for insulators designed to have a high cleaning withstand voltage, for example, by increasing the distance between shades. However, the fact is that cleaning under hot lines can be performed.

【0007】[0007]

【発明が解決しようとする課題】 このように、従来の
洗浄装置により活線下で洗浄を行うには、洗浄耐電圧を
高く設計した碍子である必要があり、洗浄耐電圧を考慮
していない碍子に適用することができなかった。また、
係る設計がなされた洗浄耐電圧の高い碍子では笠と笠の
間隔を広くしたり、水切り笠を介装したりして碍子の大
型化・複雑化を招いている。
As described above, in order to perform cleaning under a hot wire with a conventional cleaning apparatus, the insulator must be designed to have a high withstand voltage, and the withstand voltage is not taken into consideration. It could not be applied to insulators. Also,
In the insulator designed with such a high cleaning withstand voltage, the gap between shades is widened, or a draining shade is interposed, resulting in an increase in size and complexity of the insulator.

【0008】 そこで、発明者らは洗浄耐電圧を高める
ことによって、活線下で洗浄できる碍子の適用範囲広げ
るとともに、碍子洗浄装置を小型化することを目的とし
ている。
Accordingly, the inventors of the present invention aim at increasing the cleaning withstand voltage, thereby expanding the applicable range of insulators that can be cleaned under hot wires, and reducing the size of the insulator cleaning device.

【0009】[0009]

【課題を解決するための手段及び作用】 この発明は、
特にステーションポスト碍子、碍管などの縦方向に配設
される碍子に好適に適用できる。
Means and Action for Solving the Problems The present invention provides
In particular, the present invention can be suitably applied to insulators provided in the vertical direction, such as station post insulators and insulator pipes.

【0010】 活線下の洗浄において、洗浄耐電圧が大
幅に下がる理由として、 洗浄時に汚損物を大量に含
んだ導電性の洗浄水が流下すること、および 碍子の
笠から流下する落下水が多くなると、碍子の笠と笠との
間を落下水が連結する状態となる、ことがその原因であ
る。従って、碍子に衝突する放水流の速度(以下、衝突
速度という。)を大きくして、碍子に衝突して飛び散る
水の割合を高く、落下水の割合を低くできれば洗浄耐電
圧を高めることができる。
[0010] The reason why the cleaning withstand voltage is greatly reduced in the cleaning under a live line is that conductive cleaning water containing a large amount of contaminants flows down during the cleaning, and that the falling water flowing down from the insulator cap often drops. This is because falling water is connected between the insulator caps. Therefore, if the rate of the water flow colliding with the insulator (hereinafter referred to as the collision speed) is increased to increase the rate of water splattered and scattered by the insulator, and the rate of falling water can be reduced, the cleaning withstand voltage can be increased. .

【0011】 このためには、放水装置のノズル元圧を
高めることにより、放水初速度を大きくすることができ
ると考えられるが、配管などを高圧に耐える耐圧構造と
するためには放水装置が大型化してしまうことになる。
For this purpose, it is considered that the initial water discharge speed can be increased by increasing the nozzle base pressure of the water discharge device. However, in order to make the piping and the like have a pressure-resistant structure that can withstand high pressure, the water discharge device must be large. It will become.

【0012】 このためには、ノズル元圧が低いにもか
かわらず、放水初速度を高めたり、放水流の速度減衰が
少ない放水水流とすることが衝突速度を高め、洗浄耐電
圧を高めることになる。放水ノズルからの放水初速度は
ノズルの流量係数cに比例する。ここで、流量係数は、
Q=c・A・Vにより定義される係数cである(Q:実
際の流量(m3/sec) A:ノズル出口の面積
(m2) v:理論放水初速度(m/sec))。
[0012] In order to achieve this, it is necessary to increase the initial velocity of the water discharge or to use a water discharge stream with a small attenuation of the water discharge stream, even though the nozzle source pressure is low, in order to increase the collision speed and increase the cleaning withstand voltage. Become. The initial velocity of water discharge from the water discharge nozzle is proportional to the flow coefficient c of the nozzle. Here, the flow coefficient is
Q = c · A · V is a coefficient c (Q: actual flow rate (m 3 / sec) A: nozzle outlet area (m 2 ) v: theoretical initial water discharge velocity (m / sec)).

【0013】 また、実際の放水初速度Va(m/se
c)とすると、実際の流量QはA・Vaとなり、c=V
a/Vから放水初速度は放水ノズルの流量係数cに比例
し、流量係数cを大きくすれば実際の放水初速度Vaを
大きくできる。
The actual initial velocity of water discharge Va (m / sec)
c), the actual flow rate Q is A · Va, and c = V
From a / V, the initial water discharge speed is proportional to the flow coefficient c of the water discharge nozzle, and the actual water discharge initial velocity Va can be increased by increasing the flow coefficient c.

【0014】 請求項1記載の発明では、碍子の周囲に
配置された放水装置に放水ノズルを取付け、この複数の
放水ノズルから一斉に洗浄水を放水して碍子を洗浄する
碍子洗浄装置において、放水ノズルの内側流路には、流
入側の入口部と、放水側の出口部と、入口部と出口部と
の間を縮径する縮径部とが設けられ、出口部の口径
(d)に対して入口部の口径(D)をD/d=2〜5と
設定され、また、縮径部の出口部に連なる部分が曲面に
より出口部に滑らかに連続し、さらに入口部に整流板が
設けられていて、これらの前記各放水ノズルがそれぞれ
の碍子の洗浄する部位に向けて固定されている。
According to the first aspect of the present invention, a water discharge nozzle is attached to a water discharge device disposed around the insulator, and the plurality of water discharge nozzles simultaneously discharges cleaning water to wash the insulator. An inlet portion on the inflow side, an outlet portion on the water discharge side, and a reduced diameter portion for reducing the diameter between the inlet portion and the outlet portion are provided in the inner flow path of the nozzle, and the diameter of the outlet portion (d) is reduced. On the other hand, the diameter (D) of the inlet portion is set to D / d = 2 to 5, and the portion connected to the outlet portion of the reduced diameter portion smoothly continues to the outlet portion by a curved surface. Each of the water discharge nozzles is fixed to a portion of the insulator to be cleaned.

【0015】 この出口部の口径(d)に対して入口部
の口径(D)をD/d=2〜5と設定され、また、縮径
部の出口部に連なる部分が曲面により出口部に滑らかに
連続することで、流量係数を上げることができて、低い
ノズル元水圧で放水初速度を高めることができる。ま
た、この出口部での乱流の発生を押さえて層流化された
棒状の放水流を得ることができる。放水ノズルの内側流
路の入口部に整流板を設けることにより、入口部での乱
流の発生を緩和して層流化された棒状の放水流を得るこ
とができる。
The diameter (D) of the inlet portion is set to D / d = 2 to 5 with respect to the diameter (d) of the outlet portion, and a portion connected to the outlet portion of the reduced diameter portion is formed on the outlet portion by a curved surface. By continuing smoothly, the flow coefficient can be increased, and the initial velocity of water discharge can be increased with a low nozzle base water pressure. Further, the generation of turbulent flow at the outlet can be suppressed to obtain a laminar rod-shaped water discharge flow. By providing a flow straightening plate at the inlet of the inner flow path of the water discharge nozzle, it is possible to reduce the occurrence of turbulent flow at the inlet to obtain a laminarized rod-shaped water discharge.

【0016】 なお、ノズル元水圧は、碍子の各部に棒
状の洗浄水を十分に放水できる水圧が必要であり、碍子
高さ、放水位置等から適宜選択される。
Note that the nozzle base water pressure needs to be such that the rod-shaped washing water can be sufficiently discharged to each part of the insulator, and is appropriately selected from the insulator height, the water discharge position, and the like.

【0017】[0017]

【発明の効果】 請求項1記載の発明では、碍子の周囲
に配置された放水装置に放水ノズルを取付け、この複数
の放水ノズルから一斉に洗浄水を放水して碍子を洗浄す
る碍子洗浄装置において、放水ノズルの内側流路には、
流入側の入口部と、放水側の出口部と、入口部と出口部
との間を縮径する縮径部とが設けられ、出口部の口径
(d)に対して入口部の口径(D)をD/d=2〜5と
設定され、また、縮径部の出口部に連なる部分が曲面に
より出口部に滑らかに連続し、さらに入口部に整流板が
設けられていて、これらの前記各放水ノズルがそれぞれ
の碍子の洗浄する部位に向けて固定されている。
According to the first aspect of the present invention, there is provided an insulator cleaning apparatus in which a water discharge nozzle is attached to a water discharge device disposed around the insulator, and the plurality of water discharge nozzles simultaneously discharges cleaning water to wash the insulator. , In the inner channel of the water discharge nozzle,
An inlet portion on the inflow side, an outlet portion on the water discharge side, and a reduced diameter portion for reducing the diameter between the inlet portion and the outlet portion are provided, and the diameter (D) of the inlet portion with respect to the diameter (d) of the outlet portion is provided. ) Is set to D / d = 2 to 5, and a portion connected to the outlet portion of the reduced diameter portion smoothly continues to the outlet portion by a curved surface, and a flow straightening plate is provided at the inlet portion. Each water discharge nozzle is fixed to a portion of each insulator to be cleaned.

【0018】この構成により、ノズル元圧を高くするこ
と無く、碍子に衝突する放水流の衝突速度を大きくする
ことができ、碍子に衝突して飛び散る水の割合を高くで
きて、碍子洗浄耐電圧の高い洗浄装置とすることができ
る。また、同時に放水の到達距離を伸ばすことができる
ため、消費水量の少ない碍子洗浄装置とすることができ
る。
According to this configuration, it is possible to increase the collision speed of the water discharge stream colliding with the insulator without increasing the nozzle base pressure, to increase the ratio of the water splattered by colliding with the insulator, and to improve the insulator cleaning withstand voltage. The cleaning device can have a high cleaning performance. Further, since the reaching distance of the water discharge can be extended at the same time, it is possible to provide an insulator cleaning device that consumes less water.

【0019】[0019]

【実施例】 以下、この発明の実施例を図1から図9に
基づいて説明する。まず、試験を行うために、多くの放
水ノズル1を製作した。図1〜図4は製作した放水ノズ
ル1の代表例を示している。図1は実施例1〜実施例6
の放水ノズル1の断面図であって、基部の外周に取付ネ
ジ部11が設けられて配管に連結可能とされている。こ
の放水ノズル1の内側流路は入口径Dとされた長さLの
入口部12と、出口径dとされた長さlの出口部13
と、この入口部12と出口部13との間を縮径する縮径
部14が半径Rの曲面をもって出口部13に滑らかに連
続して設けられている。
Embodiments of the present invention will be described below with reference to FIGS. First, in order to perform a test, many water discharge nozzles 1 were manufactured. 1 to 4 show a representative example of the manufactured water discharge nozzle 1. FIG. FIG. 1 shows the first to sixth embodiments.
FIG. 3 is a cross-sectional view of the water discharge nozzle 1 in which a mounting screw portion 11 is provided on an outer periphery of a base portion so as to be connectable to a pipe. An inner flow path of the water discharge nozzle 1 has an inlet portion 12 having a length L having an inlet diameter D and an outlet portion 13 having a length 1 having an outlet diameter d.
And a reduced diameter portion 14 for reducing the diameter between the inlet portion 12 and the outlet portion 13 is provided smoothly and continuously to the outlet portion 13 with a curved surface having a radius R.

【0020】 図2は実施例7〜10の放水ノズル1の
断面図であって、実施例1とほぼ同一構成とされている
が、入口部12の内径が傾斜面により縮径された上で、
その縮径部14の出口部13に連なる部分が曲面により
形成されて、その出口部13に滑らかに連続している。
FIG. 2 is a cross-sectional view of the water discharge nozzle 1 according to the seventh to tenth embodiments. The water discharge nozzle 1 has substantially the same configuration as that of the first embodiment, except that the inner diameter of the inlet 12 is reduced by the inclined surface. ,
The portion of the reduced diameter portion 14 that continues to the outlet 13 is formed by a curved surface and smoothly continues to the outlet 13.

【0021】 図3は、複数の放水ノズル1を一の配管
端末に設ける際に用いるノズル取付管20の例を示した
ものであって、配管端末に取付ける取付ネジ部21と、
その先端曲面に縦方向に所定の角度で複数のノズル取付
孔22(図3においては二個)が取付け可能に設けられ
ている。このノズル取付孔22に実施例1〜10に示す
放水ノズル1を取付けて試験を行った。
FIG. 3 shows an example of a nozzle mounting pipe 20 used when a plurality of water discharge nozzles 1 are provided at one pipe terminal, and includes a mounting screw portion 21 that is mounted to the pipe terminal.
A plurality of nozzle mounting holes 22 (two in FIG. 3) are provided on the curved surface of the tip at a predetermined angle in the vertical direction. A test was performed by attaching the water discharge nozzle 1 shown in Examples 1 to 10 to the nozzle attachment hole 22.

【0022】 また、図4は比較例の放水ノズル1の縦
断面図であって、縦方向に三つの放水口a,b,cが扇
形に設けられている。
FIG. 4 is a longitudinal sectional view of the water discharge nozzle 1 of the comparative example, in which three water discharge ports a, b, and c are provided in a fan shape in the vertical direction.

【0023】 この実施例1〜実施例10及び比較例の
各部の寸法を表1に示す。
Table 1 shows dimensions of each part of Examples 1 to 10 and Comparative Example.

【0024】[0024]

【表1】[Table 1]

【0025】 流量係数と、放水ノズルの入口口径Dと
出口口径dの口径比(D/d)の関係を求めたところ、
図5に示す結果が得られた。
The relationship between the flow coefficient and the diameter ratio (D / d) of the inlet diameter D and the outlet diameter d of the water discharge nozzle was determined.
The result shown in FIG. 5 was obtained.

【0026】 これにより、流量係数は、口径比が1.
5から急速に大きくなり2.0では0.95を越えるこ
とが判明した。また、この口径比が5を越えても流量係
数は大きくなるが、流量係数の上限である1に近づい
て、口径比を大きくすることによる流量係数cの改善効
果が飽和傾向を示す上に出口口径dに対する入口口径D
が大きくなって放水ノズルが大形化する欠点がある。
Accordingly, the flow coefficient is such that the aperture ratio is 1.
It was found that it rapidly increased from 5 and exceeded 0.95 at 2.0. The flow coefficient increases even when the aperture ratio exceeds 5, but approaches the upper limit of 1 of the flow coefficient, and the effect of improving the flow coefficient c by increasing the aperture ratio tends to be saturated, and the outlet coefficient increases. Inlet diameter D for diameter d
However, there is a disadvantage that the size of the water discharge nozzle becomes large and the water discharge nozzle becomes large.

【0027】 次に縮径部14の形状が及ぼす流量係数
cとの関係を知るために、実施例1,実施例3,実施例
4の放水ノズルと、これらの放水ノズル1の縮径部14
を曲面としないで真っ直ぐなテーパとし、出口部13に
角度をもって連続する比較ノズルを製作して試験した。
この結果表2に示す結果が得られた。
Next, in order to know the relationship between the shape of the reduced diameter portion 14 and the flow coefficient c, the water discharge nozzles of the first, third, and fourth embodiments, and the reduced diameter portion 14 of these water discharge nozzles 1
Was formed into a straight taper instead of a curved surface, and a comparative nozzle continuous at an angle to the outlet portion 13 was manufactured and tested.
As a result, the results shown in Table 2 were obtained.

【0028】[0028]

【表2】[Table 2]

【0029】 表2の結果から縮径部14が緩やかにカ
ーブして射出孔に滑らかに連続する内空部とすると流量
係数cを大きくすることが判明した。以上の試験結果を
踏まえて、放水の到達距離の測定を行った。
From the results shown in Table 2, it was found that the flow coefficient c was increased when the diameter-reduced portion 14 was gently curved to form an inner space smoothly continuing to the injection hole. Based on the above test results, the water discharge distance was measured.

【0030】 図1〜図4に示す実施例1〜実施例11
及び比較例の放水ノズル(放水口の数は1つ)を放水装
置にセットし、風速7m/secの環境の下で、垂直方
向に放水した。放水水流が放水ノズルの設置位置から5
0cm変位した垂直距離を垂直到達距離(m)として測
定した。これは、放水流が強風下でも碍子に衝突する必
要があること、及び一定以上の衝突速度をもって放水流
が碍子に衝突しなければ、たとえ碍子に衝突しても洗浄
能力が劣るとともに、落下水量が増加してしまうからで
ある。また、整流板の効果を確認するために、入口部1
1の内空を放射状に4分割し、かつその長さを口径Dと
した整流板を挿入したものについても行った。
Examples 1 to 11 shown in FIGS. 1 to 4
And the water discharge nozzle (the number of water discharge ports was one) of the comparative example was set in the water discharge device, and water was discharged in the vertical direction under an environment of a wind speed of 7 m / sec. The discharge water flow is 5 from the installation position of the discharge nozzle.
The vertical distance displaced by 0 cm was measured as the vertical reach (m). This is because the effluent stream must collide with the insulator even in strong winds.If the effluent stream does not collide with the insulator at a collision speed higher than a certain level, the washing capacity will be poor even if it collides with the insulator and the amount of water falling Is increased. In addition, in order to confirm the effect of the current plate, the entrance 1
The inner space of No. 1 was radially divided into four parts and a straightening plate having a length D was inserted.

【0031】 この結果、図6の放水量(l/mi
n.)と垂直到達距離(m)の関係が得られた。曲線
A、Bは、実施例の放水ノズルをノズル元圧10kgf
/cm2の条件下でおこなったもので、曲線Aは整流板
を装着した例、曲線Bは整流板を装着しなかった例であ
る。また、曲線C、Dは比較例の放水ノズルを整流板を
装着しないでおこなったもので、曲線Cはノズル元圧3
0kgf/cm2の条件下で行った例である。曲線Dは
ノズル元圧10kgf/cm2の条件下でおこなった例
である。
As a result, the water discharge amount (l / mi) in FIG.
n. ) And the vertical reach (m). Curves A and B show the water discharge nozzle of the embodiment with a nozzle base pressure of 10 kgf.
/ Cm 2 , curve A is an example in which a current plate was attached, and curve B was an example in which no current plate was attached. Curves C and D are obtained by mounting the water discharge nozzle of the comparative example without the rectifier plate, and the curve C represents the nozzle base pressure 3
This is an example in which the test was performed under the condition of 0 kgf / cm 2 . Curve D is an example obtained under the condition of a nozzle base pressure of 10 kgf / cm 2 .

【0032】 これにより、同一放水量で比較した場
合、ノズル元圧10kgf/cm2とした場合の各実施
例の放水ノズルは、同じノズル元圧10kgf/cm2
とした比較例よりも垂直到達距離が大きいことが判明し
た。また、ノズル元圧10kgf/cm2として整流板
を設けた実施例の方がノズル元圧30kgf/cm2
した比較例よりも垂直到達距離が大きいことが判明し
た。さらには、整流板を設けることにより垂直到達距離
が伸びることも判明した。これらの結果から、実施例の
放水ノズルを使用することによって、少ない放水量、且
つ低いノズル元圧で放水流を碍子に有効に到達させるこ
とが可能であることが判明し、必要な水量が少なく定格
圧力の低い洗浄装置とすることができることが判った。
以上の結果を踏まえて、洗浄耐電圧試験を行った。
[0032] Thus, when compared with the same water discharge amount, water discharge nozzles of each embodiment when the nozzle base pressure 10 kgf / cm 2, the same nozzle source pressure 10 kgf / cm 2
It was found that the vertical reach was larger than that of the comparative example. It was also found that the example in which the straightening plate was provided with the nozzle source pressure of 10 kgf / cm 2 had a longer vertical reach than the comparative example in which the nozzle source pressure was 30 kgf / cm 2 . Further, it was also found that the provision of the current plate increases the vertical reach. From these results, it was found that by using the water discharge nozzle of the embodiment, it is possible to make the water discharge flow reach the insulator effectively with a small water discharge amount and a low nozzle source pressure, and the required water amount is small. It has been found that a cleaning device having a low rated pressure can be provided.
A cleaning withstand voltage test was performed based on the above results.

【0033】 洗浄耐電圧試験は、図8に示すように、
架台3上に碍管を洗浄用の碍子4として立設した。碍子
4は、有効長4200mm、表面漏洩距離12600m
m、胴径380mmに外径510mmの大笠と外形48
0mmの小笠を交互に設け、大笠間距離を85mmとし
た段違い笠形状のものを使用した。また、この平均直径
は457mmであり、水切り笠無し、下ひだ無しの碍管
であって、定格電圧が400kVである。
In the cleaning withstand voltage test, as shown in FIG.
An insulator tube was erected on a gantry 3 as an insulator 4 for cleaning. The insulator 4 has an effective length of 4200 mm and a surface leakage distance of 12600 m
m, body diameter 380 mm, outer diameter 510 mm, and outer shape 48
Small shades of 0 mm were provided alternately, and a stepped shade with a distance between large shades of 85 mm was used. The average diameter of the insulator tube is 457 mm, and there is no drain hat and no lower pleat, and the rated voltage is 400 kV.

【0034】 この碍子4の側方に図7に示すように、
円周方向に均等に各120゜間隔で三つの放水装置L,
R,Oを配設した。この各放水装置L,R,Oには半径
1.7mと2.5mの二つの配管端末を設けて、縦方向
に同時に洗浄水を放水する複数の放水ノズル1をそれぞ
れ設けており、この複数のノズルから碍子側面の所定位
置に放水できるように縦方向に配置した。
As shown in FIG. 7 beside the insulator 4,
Three water discharge devices L equally spaced at 120 ° intervals in the circumferential direction,
R and O were provided. Each of the water discharge devices L, R, and O is provided with two pipe ends having a radius of 1.7 m and 2.5 m, and is provided with a plurality of water discharge nozzles 1 for simultaneously discharging the wash water in the vertical direction. The nozzles were arranged vertically so that water could be discharged from the nozzle to a predetermined position on the side of the insulator.

【0035】 なお、図8には図7に示される放水装置
L,Oを図面の作成上、左側に合わせて示している。放
水装置LにはL1〜L4、放水装置OにはO1〜O4、
洗浄装置RにはR1〜R4の各4条の放水がなされるよ
うに各放水ノズルを設けるとともに、碍子4へそれぞれ
の放水が段違いに衝突するように放水した。この各放水
ノズル(L1〜L4、O1〜O4、R1〜R4)の出口
口径および水圧10kgf/cm2の時の放水量を表3
に示す。
FIG. 8 shows the water discharge devices L and O shown in FIG. 7 on the left side in the drawing. L1 to L4 for the water discharge device L, O1 to O4 for the water discharge device O,
The cleaning device R was provided with each water discharge nozzle so that each of four lines R1 to R4 was discharged, and the water was discharged so that each water discharge hit the insulator 4 at different levels. Table 3 shows the outlet diameter of each of the water discharge nozzles (L1 to L4, O1 to O4, and R1 to R4) and the water discharge amount at a water pressure of 10 kgf / cm 2.
Shown in

【0036】[0036]

【表3】[Table 3]

【0037】 洗浄耐電圧試験は、洗浄水の固有抵抗5
kΩーcm、ノズル元水圧8.5,10,13,17k
gf/cm2の条件で行った。また、比較のために、比
較例に示す放水ノズルにより、30kg/cm2のノズ
ル元水圧で行った従来から基準とされていた値も併せて
示した。この結果を図9に示す。この図9により、各塩
分付着密度において、実施例の方がノズル元水圧が低い
にも係わらず、従来からの基準値より、塩分付着密度
0.04mg/cm2において74%、塩分付着密度
0.07mg/cm2において67%、塩分付着密度
0.14mg/cm2において36%と、高い洗浄耐電
圧となることが判明した。また、ノズル元水圧が10k
gf/cm2の場合でも塩分付着密度が0.12mg/
cm2で定格線間電圧400kVの場合の目標対地耐電
圧の267kVを越え、試験に供した碍管でも活線洗浄
が可能であることが判明した。また、ノズル元水圧が高
くなる程洗浄耐電圧が高くなる傾向を示し、8.5kg
f/cm2から17kgf/cm2の範囲のノズル元圧の
増加により洗浄耐電圧は大幅に高くなることが判明し
た。
In the cleaning withstand voltage test, the specific resistance of cleaning water 5
kΩ-cm, nozzle base water pressure 8.5, 10, 13, 17k
This was performed under the condition of gf / cm 2 . Further, for comparison, a value which has been conventionally used as a reference and which is obtained by using the water discharge nozzle shown in the comparative example at a nozzle base water pressure of 30 kg / cm 2 is also shown. The result is shown in FIG. According to FIG. 9, in each salt deposition density, although the example had a lower nozzle base water pressure, the salt deposition density was 0.04 mg / cm 2 , 74%, and the salt deposition density was less than the conventional reference value. .07mg / cm 2 at 67%, and 36% in salt deposition density 0.14 mg / cm 2, it was found that a high cleaning withstand voltage. In addition, nozzle base water pressure is 10k
Even in the case of gf / cm 2, the salt deposition density is 0.12 mg / cm 2.
It exceeded the target ground withstand voltage of 267 kV in the case of a rated line voltage of 400 kV in cm 2 , and it was found that hot wire cleaning was possible even with the insulator tube subjected to the test. Also, the higher the nozzle base water pressure, the higher the cleaning withstand voltage tends to be, and 8.5 kg
It was found that the cleaning withstand voltage was significantly increased by increasing the nozzle source pressure in the range of f / cm 2 to 17 kgf / cm 2 .

【0038】 また、この洗浄により、洗浄前の塩分付
着密度0.035mg/cm2の場合に0.002mg
/cm2と94%の洗浄効果があった。また、洗浄前の
塩分付着密度0.29mg/cm2の場合に洗浄後の塩
分付着密度0.005mg/cm2と98.1%の洗浄
効果があった。
In addition, this washing allows 0.002 mg when the salt adhesion density before washing is 0.035 mg / cm 2.
/ Cm 2 and a cleaning effect of 94%. There was also salt deposition density 0.005 mg / cm 2 98.1% of the cleaning effect after washing in the case of salt deposition density 0.29 mg / cm 2 before the cleaning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放水ノズルの平断面図である。FIG. 1 is a plan sectional view of a water discharge nozzle.

【図2】他の放水ノズルの平断面図である。FIG. 2 is a plan sectional view of another water discharge nozzle.

【図3】ノズル取付管縦断面図である。FIG. 3 is a vertical sectional view of a nozzle mounting pipe.

【図4】比較例の放水ノズルの平断面図である。FIG. 4 is a plan sectional view of a water discharge nozzle of a comparative example.

【図5】口径比と流量係数の関係を示すグラフである。FIG. 5 is a graph showing a relationship between an aperture ratio and a flow coefficient.

【図6】放水量と垂直到達距離の関係を示すグラフであ
る。
FIG. 6 is a graph showing a relationship between a water discharge amount and a vertical reaching distance.

【図7】放水装置の配置を説明する説明図である。FIG. 7 is an explanatory diagram illustrating an arrangement of a water discharge device.

【図8】洗浄試験の概略図である。FIG. 8 is a schematic diagram of a cleaning test.

【図9】等価塩分付着密度と洗浄耐電圧の関係を示すグ
ラフである。
FIG. 9 is a graph showing a relationship between equivalent salt adhesion density and cleaning withstand voltage.

【符号の説明】[Explanation of symbols]

1…放水ノズル 12…入口部 13…出口部 14…
縮径部
DESCRIPTION OF SYMBOLS 1 ... Water discharge nozzle 12 ... Inlet 13 ... Outlet 14 ...
Reduced diameter part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 碍子の周囲に配置された放水装置に放水
ノズルを取付け、この複数の放水ノズルから一斉に洗浄
水を放水して碍子を洗浄する碍子洗浄装置において、 前記放水装置に設けられた放水ノズルの内側流路には、
流入側の入口部と、放水側の出口部と、該入口部と該出
口部との間を縮径する縮径部とが設けられ、該出口部の
口径(d)に対して該入口部の口径(D)をD/d=2
〜5と設定され、また、該縮径部の該出口部に連なる部
分が曲面により該出口部に滑らかに連続し、さらに該入
口部に整流板が設けられていて、 これらの前記各放水ノズルがそれぞれの碍子の洗浄する
部位に向けて固定されている ことを特徴とする碍子洗浄
装置。
1. Water is discharged into a water discharge device disposed around an insulator.
Attach nozzles and wash from multiple water discharge nozzles at once
In an insulator cleaning device that discharges water to wash an insulator, an inner flow path of a water discharge nozzle provided in the water discharge device includes:
An inlet portion on the inflow side, an outlet portion on the water discharge side, and a reduced diameter portion for reducing the diameter between the inlet portion and the outlet portion are provided, and the inlet portion has a diameter relative to the diameter (d) of the outlet portion. D / d = 2
To 5 and a portion connected to the outlet portion of the reduced diameter portion.
The minute part smoothly continues to the outlet part by the curved surface,
A flow straightening plate is provided at the mouth, and each of these water discharge nozzles cleans a respective insulator.
An insulator cleaning device fixed to a part .
JP5347683A 1993-12-24 1993-12-24 Insulator cleaning equipment Expired - Lifetime JP2724539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5347683A JP2724539B2 (en) 1993-12-24 1993-12-24 Insulator cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5347683A JP2724539B2 (en) 1993-12-24 1993-12-24 Insulator cleaning equipment

Publications (2)

Publication Number Publication Date
JPH07192562A JPH07192562A (en) 1995-07-28
JP2724539B2 true JP2724539B2 (en) 1998-03-09

Family

ID=18391869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5347683A Expired - Lifetime JP2724539B2 (en) 1993-12-24 1993-12-24 Insulator cleaning equipment

Country Status (1)

Country Link
JP (1) JP2724539B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270317B2 (en) * 2008-11-28 2013-08-21 旭サナック株式会社 Nozzle for cleaning
EP2496905B1 (en) * 2009-11-03 2021-01-06 Westinghouse Electric Company LLC Miniature sludge lance apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527068A (en) * 1978-08-18 1980-02-26 Hirobumi Miyamoto Water jet nozzle
JPH0271887A (en) * 1988-09-05 1990-03-12 Shikoku Koku Kk Cleaner to be loaded on helicopter

Also Published As

Publication number Publication date
JPH07192562A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
JP2724539B2 (en) Insulator cleaning equipment
US3516608A (en) Electrostatic nozzle
CN107321537A (en) A kind of electrical equipment cleaning device with self-cleaning function
JP3866295B2 (en) Powder spraying equipment
CN104036889B (en) A kind of steel tower lightning arrester anti-pollution structure
GB2306795A (en) Apparatus for washing energised insulators
CN207217194U (en) A kind of cables manufacturing blow-drying system and its silencing means
JP3079478B2 (en) Device for neutralizing charged objects
CN211305112U (en) Electrode wire cooling device of electric spark wire cutting machine tool
CN207102995U (en) A kind of electrical equipment cleaning device with self-cleaning function
DE505686C (en) Device for preventing dust deposits on the insulators of electrical gas cleaners
CN207909598U (en) A kind of anti-pollution insulator
JPS588525B2 (en) Insulator live wire cleaning equipment
AU619426B1 (en) Descaling nozzle
JP3992207B2 (en) Insulator cleaning device and insulator cleaning method using the same
JP2681245B2 (en) Insulator cleaning device
US20220297142A1 (en) Finned rod for electrification of sprayed droplets
Dinkelacker et al. Relations between wall pressure fluctuations and velocity fluctuations in turbulent flow
US12030077B2 (en) Electrostatic spray head assembly
CN214718914U (en) Flaw detection device of copper-clad aluminum wire rod not easy to damage
RU192925U1 (en) BIRD-PROTECTED INSULATOR
CN110567545A (en) Flowmeter with flow guide protection frame body
CN219965178U (en) Electrostatic demisting adsorption structure
Velani et al. Integrated design application of lightning protection system in substation
CN213935784U (en) Antifouling disk type porcelain insulator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 16

EXPY Cancellation because of completion of term