JP2681245B2 - Insulator cleaning device - Google Patents

Insulator cleaning device

Info

Publication number
JP2681245B2
JP2681245B2 JP4188693A JP4188693A JP2681245B2 JP 2681245 B2 JP2681245 B2 JP 2681245B2 JP 4188693 A JP4188693 A JP 4188693A JP 4188693 A JP4188693 A JP 4188693A JP 2681245 B2 JP2681245 B2 JP 2681245B2
Authority
JP
Japan
Prior art keywords
insulator
cleaning
water
nozzle
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4188693A
Other languages
Japanese (ja)
Other versions
JPH06231640A (en
Inventor
康明 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4188693A priority Critical patent/JP2681245B2/en
Publication of JPH06231640A publication Critical patent/JPH06231640A/en
Application granted granted Critical
Publication of JP2681245B2 publication Critical patent/JP2681245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Insulators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は縦方向に長尺とされた
碍子の洗浄装置、特に活線状態で洗浄する洗浄装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cleaning device for insulators which is elongated in the vertical direction, and more particularly to a cleaning device for cleaning in a live state.

【0002】[0002]

【従来の技術】電路と大地間の絶縁のために設置される
碍子は、塩分などの汚損物により表面が汚損されると、
耐電圧が低下してフラッシオーバの原因となり、送配電
に支障を来すことがある。このため、碍子の洗浄が行わ
れるが、これには送電を中止して洗浄するの他、送電を
止めること無く活線状態の下で洗浄することが行われて
いる。この活線状態の下での碍子洗浄装置には、種々の
タイプのものが知られており、いずれの碍子洗浄装置で
も、洗浄中に耐電圧の低下を免れることはできず、この
洗浄の際の耐電圧(以下、洗浄耐電圧という。)を可能
な限り高めて、洗浄中に閃絡を生じないようにする必要
がある。すなわち、霧中耐電圧より低くならないように
高く維持したまま、碍子に付着した汚損物を十分に洗い
流す必要がある。係る碍子洗浄装置では、洗浄水が均等
に行き渡るように、洗浄水を被洗浄碍子の軸中心に向け
て注水するようにされている。
2. Description of the Related Art Insulators installed for insulation between an electric line and the ground, when the surface is contaminated by contaminants such as salt,
The withstand voltage may decrease and cause flashover, which may interfere with power transmission and distribution. For this reason, the insulator is cleaned, and in addition to stopping the power transmission for cleaning, the insulator is also cleaned under the live line condition without stopping the power transmission. Various types of insulator cleaning devices under this hot-line condition are known, and any insulator cleaning device cannot avoid a decrease in withstand voltage during cleaning. It is necessary to increase the withstand voltage (hereinafter referred to as the wash withstand voltage) of the device as much as possible so that flashover does not occur during the wash. That is, it is necessary to sufficiently wash away the contaminants attached to the insulator while maintaining the voltage higher than the withstand voltage in the fog so as not to be lower than the withstand voltage. In such an insulator cleaning apparatus, the cleaning water is poured toward the axial center of the insulator to be cleaned so that the cleaning water is evenly distributed.

【0003】[0003]

【発明が解決しようとする課題】ここで、耐張碍子のよ
うに横方向に長尺配置された碍子では、洗浄耐電圧は余
り低下しないため、比較的活線状態の下での洗浄が容易
である。しかし、ステーションポスト碍子や碍管などの
ように縦方向に長尺に設置された碍子を洗浄する際に
は、汚損物を洗ってこれを含んで導電性の高くなった洗
浄水は、碍子表面を流下する落下水となり、この落下水
により大幅な洗浄耐電圧の低下を免れることができな
い。一方、落下水の導電性を低くするために、注水量を
増加してその汚損物濃度を低く押さえることも考えられ
るが、これでは落下水が笠と笠との間を連結する状態と
なって流下して、洗浄耐電圧を大幅に低下させることに
なる。このため、活線状態の下で洗浄できる洗浄装置の
種類が制限されたり、碍子自体の笠と笠の間隔を広げる
などして高い洗浄耐電圧設計とされた碍子についての
み、活線状態の下での洗浄を行なっていたのが実情であ
る。
Here, in the case of an insulator arranged laterally in a long direction such as a tension insulator, the cleaning withstand voltage does not drop so much that cleaning under a hot line condition is relatively easy. Is. However, when cleaning insulators such as station post insulators and porcelain tubes that are installed in a long lengthwise direction, the cleaning water that has become highly conductive by washing the contaminants and cleaning the contaminants does not clean the insulator surface. It becomes the falling water that flows down, and it is inevitable that the cleaning withstand voltage will drop significantly due to this falling water. On the other hand, in order to reduce the conductivity of the falling water, it may be possible to increase the amount of water injected to keep the concentration of pollutants low, but this will make the falling water connect between the shades. When it flows down, the cleaning withstand voltage is significantly reduced. For this reason, the types of cleaning equipment that can be cleaned under hot line conditions are limited, and only the insulators with a high cleaning withstand voltage design, such as widening the space between the caps of the insulators themselves, can be cleaned under live condition. The fact is that they were washed in.

【0004】このように、従来の洗浄装置では、活線下
で洗浄を行うことのできる洗浄装置の種類に制約がある
ばかりか、洗浄できる碍子にも制約があった。また、洗
浄耐電圧を高めた設計のなされた碍子では笠と笠の間隔
を広くしたり、水切り笠を介装したりして碍子の大型化
・複雑化を招いている。さらに、洗浄中に閃絡を生じる
危険性を避けるために、洗浄耐電圧の大幅な低下を招か
ない碍子洗浄装置の開発が要望されていた。この発明
は、これらの課題を解決するため、洗浄耐電圧の高い碍
子洗浄装置とすることを目的としている。
As described above, in the conventional cleaning device, not only is there a restriction on the type of cleaning device that can be cleaned under a hot line, but there is also a restriction on the insulator that can be cleaned. In addition, in the insulator designed to have higher cleaning withstand voltage, the gap between the shades is widened or a drainage shade is interposed, which causes the insulator to become large and complicated. Furthermore, in order to avoid the risk of flashover during cleaning, there has been a demand for the development of an insulator cleaning device that does not cause a significant decrease in cleaning withstand voltage. In order to solve these problems, the present invention aims to provide an insulator cleaning apparatus having a high cleaning withstand voltage.

【0005】[0005]

【課題を解決するための手段】このため、この発明で
は、縦方向に長尺設置された被洗浄碍子に、洗浄水を注
水するノズル口を配設した碍子洗浄装置において、平面
的に見て被洗浄碍子の中心軸点からそのノズル口とを結
ぶ線に対して、その中心軸点から10〜30゜の角度位
置にある碍子の胴表面部位に向けて注水するノズル口を
配設している。
Therefore, according to the present invention, in an insulator cleaning apparatus in which a nozzle opening for injecting cleaning water is provided in an insulator to be cleaned which is installed in a longitudinal direction in a longitudinal direction, the insulator cleaning apparatus is viewed in plan. A nozzle port for pouring water toward the body surface portion of the insulator, which is at an angle position of 10 to 30 ° from the central axis point, is arranged with respect to the line connecting the central axis point of the insulator to be cleaned to the nozzle port. There is.

【0006】[0006]

【作用】まず、この発明の原理を図1に基づいて模式的
に説明すると、今、半径rの碍子の胴に対して、この中
心軸線上の点(中心軸点)Oからmだけ離れた点P(中
心からの角度θをなす。以下、θを「注水点角度」とい
う。)に水流が力Fで注水されると仮定する。すると、
力Fの円周方向の分力f1(=F・sinθ)により、
水流の一部は表面を後側へ回り込みながら落下水となっ
て流れ落ちる。また、一部の水流は、図示しないが碍子
表面で吹き飛ばされて飛散水となる。
First, the principle of the present invention will be schematically explained with reference to FIG. 1. Now, with respect to the body of the insulator having a radius r, it is separated from the point (center axis point) O on the center axis by m. It is assumed that the water flow is injected by the force F at a point P (which forms an angle θ from the center; hereinafter, θ is referred to as a “water injection point angle”). Then
Due to the component force f1 (= F · sin θ) of the force F in the circumferential direction,
A part of the water flow goes around the surface to the rear side and falls as falling water. Further, although not shown, a part of the water flow is blown off on the surface of the insulator to become water splashes.

【0007】従来の碍子洗浄装置では、図1の矢線Aで
示すように被洗浄碍子の中心軸Oに向かって配置され、
洗浄水を均等に行き渡るように注水されていた。このた
め、噴射された水流のエネルギーは、被洗浄碍子に衝突
した際に失われ、ほとんどの洗浄水が落下水となって、
被洗浄碍子の表面を流下し、洗浄耐電圧の大幅な低下を
招いている。
In the conventional insulator cleaning apparatus, as shown by an arrow A in FIG. 1, the insulator is disposed toward the central axis O of the insulator to be cleaned.
Water was poured so that the wash water was evenly distributed. Therefore, the energy of the injected water flow is lost when it collides with the insulator to be cleaned, and most of the cleaning water becomes falling water,
This causes the surface of the insulator to be cleaned to flow down, resulting in a significant decrease in cleaning withstand voltage.

【0008】一方、被洗浄碍子の中心軸とノズル口とを
結ぶ線に対して角度θをなすように斜め位置に注水する
と、その角度θが大きくなるにつれて飛散する水量が増
加して落下水量は減少する。このことは、洗浄耐電圧を
低下させる落下水量を減少させ、洗浄耐電圧が高められ
る。なお、注水角度を大きくし過ぎると、落下水量は減
少するが、洗浄水が碍子表面の全体に行き渡らなくなり
洗浄能力が低下するため、注水点角度は10〜30゜が
望ましい。
On the other hand, when water is poured at an oblique position so as to form an angle θ with respect to the line connecting the central axis of the insulator to be cleaned and the nozzle port, the amount of water scattered increases as the angle θ increases, and Decrease. This reduces the amount of falling water that lowers the wash withstand voltage and increases the wash withstand voltage. It should be noted that if the water injection angle is too large, the amount of falling water decreases, but the cleaning water does not reach the entire surface of the insulator and the cleaning ability decreases, so the water injection point angle is preferably 10 to 30 °.

【0009】また、噴射ノズル装置は被洗浄碍子の胴径
の大きさにより、その数、その配置が選択されるが、小
型の被洗浄碍子では反対側(180゜)の二方向からの
注水とし、また、大型の被洗浄碍子では三方向(120
゜間隔)又は四方向(90゜間隔)からの注水となるよ
うにして、被洗浄碍子の表面が十分に洗浄されるように
する。
Further, the number and arrangement of the injection nozzle device are selected depending on the size of the body diameter of the insulator to be cleaned, but in the case of a small insulator to be cleaned, water is injected from two directions on the opposite side (180 °). In addition, for a large insulator to be cleaned, three directions (120
(Every 90 degrees) or four directions (90 degrees) so that the surface of the insulator to be cleaned is sufficiently cleaned.

【0010】なお、ノズル元水圧は、被洗浄碍子の各部
に棒状の洗浄水を十分に注水できる水圧であればよく、
被洗浄碍子高さ、注水位置等から適宜選択できる。ま
た、ノズル元水圧が高い程洗浄耐電圧がやや高くなる傾
向があるため、洗浄耐電圧の絶対値が不足する形状の被
洗浄碍子に対しては、30kgf/cm2などにノズル
元水圧を高くすることが望ましい。
The nozzle base water pressure may be a water pressure sufficient to inject the rod-shaped cleaning water into each part of the insulator to be cleaned,
It can be appropriately selected from the height of the insulator to be cleaned and the position of water injection. Further, the higher the nozzle base water pressure is, the higher the cleaning withstand voltage tends to be. Therefore, for the insulator to be cleaned having a shape in which the absolute value of the cleaning withstand voltage is insufficient, the nozzle base water pressure is increased to 30 kgf / cm2 or the like. Is desirable.

【0011】[0011]

【発明の効果】以上説明したように、この発明では、平
面的に見て被洗浄碍子の中心軸点からそのノズル口とを
結ぶ線に対して、その中心軸点から10〜30゜の角度
位置にある碍子の胴表面部位に向けて注水するノズル口
を配置しているので、洗浄耐電圧の高い洗浄装置とする
ことができ、活線下で安全な洗浄ができるとともに、従
来活線下で洗浄できなかった洗浄耐電圧の低い碍子に対
しても活線洗浄できる効果を奏する。
As described above, according to the present invention, an angle of 10 to 30 ° from the center axis point of the line connecting the center axis point of the insulator to be cleaned with the nozzle port in plan view. Since the nozzle port for pouring water toward the body surface part of the insulator at the position is arranged, it can be used as a cleaning device with a high withstand voltage for cleaning. The effect of being able to perform live-line cleaning is achieved even for insulators with a low cleaning withstand voltage that could not be cleaned with.

【0012】[0012]

【実施例】以下、この発明を、いわゆるノズル固定式の
碍子洗浄装置と摺動式の碍子洗浄装置に適用した例につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a so-called nozzle fixing type insulator cleaning device and a sliding type insulator cleaning device will be described below.

【0013】<ノズル固定式の碍子洗浄装置>ノズル固
定式の碍子洗浄装置に適用した例を図2から図7に基づ
いて説明すると、図2に示すように、変電所内に設けら
れた架台1上に碍子2が立設され、この碍子2の頭部に
は電線3が支持架設されている。そして、碍子2の側方
には噴射ノズル装置4,4が左右対称位置の二箇所に配
設されている。この一の噴射ノズル装置に縦方向に複数
のノズル口が設けられており、この複数のノズル口から
所定間隔で同時に洗浄水を噴射し、また、他方の噴射ノ
ズル装置4からも同様に噴射して、同時に注水する装置
である。なお、一の噴射ノズル装置4からの注水点と他
のそれとは互い違いになるように注水して、全噴射ノズ
ル装置4により碍子2に所定間隔(以下、「注水点間
隔」という。)毎に注水されるようにされている。この
ノズル固定式の洗浄装置は、比較的洗浄耐電圧の低下が
少ないものとして、洗浄耐電圧を考慮して設計された碍
子についてのみ、活線状態の下で洗浄が行われている。
このタイプの洗浄装置において、被洗浄碍子A及び被洗
浄碍子Bに対して下記の試験を行った。なお、この試験
においては、複数のノズル口からの洗浄水が被洗浄碍子
の縦方向に注水される各間隔も落下水量に関係するもの
として、この影響も併せて試験した。
<Nozzle-fixed Insulator Cleaning Device> An example of application to a nozzle-fixed insulator cleaning device will be described with reference to FIGS. 2 to 7. As shown in FIG. 2, a pedestal 1 installed in a substation is shown. An insulator 2 is erected on the top of the insulator 2, and an electric wire 3 is supported and erected on the head of the insulator 2. Further, the injection nozzle devices 4 and 4 are disposed laterally of the insulator 2 at two symmetrical positions. This one jet nozzle device is provided with a plurality of nozzle ports in the vertical direction, and the cleaning water is jetted simultaneously from the plurality of nozzle ports at a predetermined interval, and the other jet nozzle device 4 similarly jets the wash water. It is a device that simultaneously injects water. It should be noted that water is injected so that the water injection point from one injection nozzle device 4 and that of the other are alternated, and all the injection nozzle devices 4 inject the insulator 2 at predetermined intervals (hereinafter, referred to as "water injection point intervals"). It is supposed to be filled with water. In this nozzle fixed type cleaning device, the cleaning withstand voltage is relatively low, and only the insulator designed in consideration of the cleaning withstand voltage is cleaned under the hot line condition.
In this type of cleaning device, the following tests were carried out on the cleaned insulator A and the cleaned insulator B. In addition, in this test, each interval at which cleaning water from a plurality of nozzle openings is poured in the longitudinal direction of the insulator to be cleaned is also related to the amount of dropped water, and this effect was also tested.

【0014】(被洗浄碍子及び噴射ノズル装置の配置)
被洗浄碍子Aは、定格電圧230kVのステーションポ
スト碍子であって、有効長1700mm、表面漏洩距離
4800mm、平均直径220mm、また図3に示す各
部の寸法としては、a:50mm、b:40mm、c:
10mm、d:67mm、e:27mmであった。この
被洗浄碍子Aを架台2上に立設し、碍子の最下部から水
平位置で1500mm離れた左右対称位置に噴射ノズル
装置4,4を設置し、左右の噴射ノズル装置4,4から
の注水は一側方からの注水点に対して他方の注水点がそ
の中間となるように調整した(図2参照)。
(Arrangement of insulator to be cleaned and jet nozzle device)
The insulator to be cleaned A is a station post insulator having a rated voltage of 230 kV, an effective length of 1700 mm, a surface leakage distance of 4800 mm, an average diameter of 220 mm, and the dimensions of each part shown in FIG. 3 are a: 50 mm, b: 40 mm, c. :
It was 10 mm, d: 67 mm, and e: 27 mm. This insulator to be cleaned A is erected on the pedestal 2 and the jet nozzle devices 4 and 4 are installed at left and right symmetrical positions horizontally separated by 1500 mm from the bottom of the insulator, and water is injected from the left and right jet nozzle devices 4 and 4. Was adjusted so that the water injection point from one side was in the middle of the water injection point of the other (see Fig. 2).

【0015】被洗浄碍子Bは、定格電圧230kVの碍
管であって、有効長2400mm、表面漏洩距離780
0mm、平均直径 450mm、また図3に示す各部の
寸法としては、a:42.5mm、b:32.5mm、
c:10mm、d:65mm、e:38mmであった。
この被被洗浄碍子2を架台上に立設し、碍子の最下部か
ら水平位置で2100mm離れた円周位置にそれぞれが
120゜間隔となるよう3箇所に噴射ノズル装置を設置
し、各ノズル口からの注水はそれぞれ他側方からの注水
点に対してその注水点がその中間となるように調整し
た。
The insulator B to be cleaned is an insulator tube having a rated voltage of 230 kV, an effective length of 2400 mm, and a surface leakage distance of 780.
0 mm, average diameter 450 mm, and as dimensions of each part shown in FIG. 3, a: 42.5 mm, b: 32.5 mm,
It was c: 10 mm, d: 65 mm, and e: 38 mm.
The insulator 2 to be cleaned is erected on a pedestal, and spray nozzle devices are installed at three locations at 120 ° intervals at circumferential positions 2100 mm apart horizontally from the lowermost part of the insulator. The water injection from each side was adjusted so that the injection point was in the middle of the injection point from the other side.

【0016】(注水点の間隔と洗浄耐電圧)注水点間隔
と洗浄耐電圧との関係を求めるため、清浄な被洗浄碍子
Aに対して注水した。噴射ノズル装置を調整して、注水
点間隔を10、20、30、40、50、60cmと
し、ノズル元水圧が30kgf/cm2で、試験を行っ
た。図4に示す結果が得られ、この結果注水点間隔が広
くなるにしたがって落下水量比が減少するが、40cm
を越えると落下水量比の減少が僅かになることが判明し
た。なお、従来から推奨されている注水点間隔が50c
mの場合には約50%の落下水量比を示している。
(Interval between water injection points and cleaning withstand voltage) In order to obtain the relationship between the interval between water injection points and the cleaning withstand voltage, water was poured onto a clean insulator A to be cleaned. The injection nozzle device was adjusted so that the water injection point intervals were 10, 20, 30, 40, 50, and 60 cm, and the nozzle base water pressure was 30 kgf / cm 2 for the test. The results shown in Fig. 4 were obtained, and as a result, the ratio of the amount of falling water decreased as the water injection point spacing became wider, but 40 cm
It was found that the water drop ratio decreased slightly when the value exceeded. The water injection point interval recommended from the past is 50c.
In the case of m, a falling water amount ratio of about 50% is shown.

【0017】また、注水点間隔と洗浄耐電圧比とは図5
に示す関係が得られた。この図5によれば、注水点間隔
が10cmの洗浄耐電圧を基準として、間隔が広くなる
につれて洗浄耐電圧は増加し、30cmを最大としてそ
れより広がると減少する結果が得られた。なお、従来か
ら推奨されている注水点間隔が50cmの場合に、10
cmの場合より低く、また、注水点間隔が48cmと1
0cmの場合の洗浄耐電圧がほぼ等しくなった。
The water injection point interval and the cleaning withstand voltage ratio are shown in FIG.
The relationship shown in is obtained. According to FIG. 5, the cleaning withstand voltage with the water injection point interval of 10 cm was used as a reference, and the cleaning withstand voltage increased as the interval was widened, and the result was obtained when the maximum was 30 cm and decreased with the increase. In addition, if the water injection point interval recommended from the past is 50 cm, 10
It is lower than the case of cm, and the water injection point interval is 48 cm and 1
The cleaning withstand voltage in the case of 0 cm was almost equal.

【0018】(塩分付着密度と洗浄耐電圧との関係)試
験は、被洗浄碍子A及び被洗浄碍子Bについて、注水点
間隔25cmとし、ノズル元水圧30kgf/cm2、
注水角度0゜の条件の下で行った。なお、総注水量は被
洗浄碍子Aでは、32×103cm3/min、被洗浄碍
子2では、50×103cm3/minとした。その結
果、図6又は図7の実施例1及び実施例2の結果が得ら
れた。
(Relationship between salt adhesion density and cleaning withstand voltage) The test was carried out for the insulators A and B to be cleaned with a water injection point interval of 25 cm, a nozzle base water pressure of 30 kgf / cm 2,
It was carried out under the condition that the water injection angle was 0 °. The total amount of water injected was 32 × 10 3 cm 3 / min for the insulator to be cleaned A and 50 × 10 3 cm 3 / min for the insulator to be cleaned 2. As a result, the results of Example 1 and Example 2 in FIG. 6 or 7 were obtained.

【0019】なお、比較例1及び比較例2として被洗浄
碍子A及びBについて、従来から推奨されている注水間
隔50cm、ノズル元水圧30kgf/cm2、注水角
度を0゜として実施例1、実施例2と同様に試験を行っ
た。なお、総注水量は比較例1では16×103cm3/
min、比較例2では25×103cm3/minであっ
た。この結果も図6及び図7に併せて示す。実施例1及
び実施例2から、各汚損密度において、実施例1、実施
例2ともに比較例1、比較例2より約20kV高い洗浄
耐電圧となることが判明した。
As Comparative Examples 1 and 2, for the insulators A and B to be cleaned, the water injection interval of 50 cm, the nozzle base water pressure of 30 kgf / cm 2, and the water injection angle of 0 °, which have been conventionally recommended, are used in Examples 1 and 1. The test was conducted in the same manner as in 2. In addition, the total amount of water injection is 16 × 10 3 cm 3 / in Comparative Example 1.
min, and in Comparative Example 2 it was 25 × 10 3 cm 3 / min. The results are also shown in FIGS. 6 and 7. From Example 1 and Example 2, it was found that the cleaning withstand voltage was about 20 kV higher than that of Comparative Example 1 and Comparative Example 2 at each soil density.

【0020】(注水点角度と洗浄耐電圧の関係)清浄な
被洗浄碍子Aについて、注水点角度0〜50゜に変化さ
せて落下水量の変化を求めた。この際、注水間隔25c
m、ノズル元水圧30kgf/cm2とした。その結
果、図8の結果が得られた。この結果から、注水点角度
を大きくすればするほど落下水量比が減少する結果が得
られた。さらに、この清浄な被洗浄碍子Aについて、注
水点角度0゜と10゜の2つについて洗浄耐電圧の試験
を行ったところ、注水点角度0゜で360kVであった
洗浄耐電圧が注水点角度10゜では440kVとなり、
大幅に洗浄耐電圧が高くなった。
(Relationship between Water Injection Point Angle and Cleaning Withstanding Voltage) With respect to a clean insulator A to be cleaned, the water injection point angle was changed to 0 to 50 ° to determine the change in the amount of dropped water. At this time, water injection interval 25c
m, and the nozzle original water pressure was 30 kgf / cm 2. As a result, the result shown in FIG. 8 was obtained. From this result, it was found that the larger the water injection point angle, the smaller the drop water ratio. Further, when the cleaning dielectric strength A of this cleaned insulator A was tested at two water injection point angles of 0 ° and 10 °, the cleaning withstand voltage was 360 kV at the water injection point angle of 0 °. It becomes 440kV at 10 °,
The cleaning withstand voltage increased significantly.

【0021】次に、各塩分付着密度と洗浄耐電圧との関
係を被洗浄碍子A及び被洗浄碍子2について試験を行
い、図6及び図7の実施例3及び実施例4に示す結果が
得られた。なお、この試験は注水角度を10゜とした他
は、比較例1又は比較例2と同じ条件の下で行った。こ
の結果、注水点角度0゜の比較例よりも洗浄耐電圧が共
に約30kV上昇した。
Next, the relationship between the salt deposition density and the cleaning withstand voltage was tested on the insulators A and 2 to be cleaned, and the results shown in Examples 3 and 4 of FIGS. 6 and 7 were obtained. Was given. This test was conducted under the same conditions as in Comparative Example 1 or Comparative Example 2 except that the water injection angle was 10 °. As a result, the cleaning withstand voltage was increased by about 30 kV as compared with the comparative example in which the water injection point angle was 0 °.

【0022】(ノズル元水圧と洗浄耐電圧との関係)次
に、ノズル元水圧と洗浄耐電圧との関係を求めるため、
ノズル元水圧10kgf/cm2(実施例5、6)及び
30kgf/cm2(実施例7、8)の2つについて試
験を行った。他の条件は共に注水点間隔25cm、注水
点角度10゜とした。この結果、図6又は図7に実施例
5、7と実施例6、8に示されるように、30kgf/
cm2の方がノズル元水圧10kgf/cm2よりやや高
い洗浄耐電圧となる結果が得られた。そして、ノズル元
水圧10kgf/cm2の実施例5、実施例6でも、比
較例1、比較例2よりも洗浄耐電圧が約35〜50kV
高くなる結果が得られた。
(Relationship between Nozzle Base Water Pressure and Cleaning Withstanding Voltage) Next, in order to obtain the relationship between nozzle base water pressure and cleaning withstanding voltage,
Tests were carried out on two nozzle pressures of 10 kgf / cm @ 2 (Examples 5 and 6) and 30 kgf / cm @ 2 (Examples 7 and 8). In all other conditions, the water injection point interval was 25 cm and the water injection point angle was 10 °. As a result, as shown in FIGS. 6 and 7 in Examples 5 and 7 and Examples 6 and 8, 30 kgf /
It was found that the cleaning withstand voltage of cm2 was slightly higher than the nozzle original water pressure of 10 kgf / cm2. Also, in Examples 5 and 6 where the nozzle base water pressure is 10 kgf / cm2, the cleaning withstand voltage is about 35 to 50 kV as compared with Comparative Examples 1 and 2.
Higher results were obtained.

【0023】以上説明した試験結果から、ノズル固定式
の碍子洗浄装置では、注水点間隔を20cmから40c
mとすることにより、洗浄耐電圧が高くなり、特に30
cmで最も高くなる。この理由としては、注水間隔が過
度に狭くなると、碍子全体に対する注水量が増大すると
ともに、対向する他の噴射ノズル装置からの注水と被洗
浄碍子表面でぶつかり合って、飛散水の割合が減少して
落下水の増大を招き洗浄耐電圧が低下するものと思われ
る。一方、注水間隔が過度に広くなると、一のノズル口
からの注水による汚損物を含んだ落下水が、その下方の
注水によりすぐに吹き飛ばされずに、碍子近傍に滞留す
る時間が長くなるため、洗浄耐電圧が低くなると思われ
る。この両者の相反する関係により、30cmの注水間
隔が最も高い洗浄耐電圧となるものと思われる。
From the test results described above, in the insulator cleaning device of the nozzle fixed type, the water injection point interval is 20 cm to 40 c.
By setting m, the cleaning withstand voltage becomes high, especially 30
It becomes the highest in cm. The reason for this is that if the water injection interval becomes too narrow, the amount of water injected to the entire insulator increases, and at the same time, the water injected from the other jet nozzle device facing the other surface collides with the surface of the insulator to be cleaned, and the proportion of the scattered water decreases. It is thought that the water withstand voltage increases and the cleaning withstand voltage decreases. On the other hand, if the water injection interval becomes excessively wide, the falling water containing contaminants due to water injection from one nozzle port will not be immediately blown off by the water injection below it, but will stay for a long time near the insulator, so cleaning It seems that the withstand voltage becomes low. Due to the contradictory relationship between the two, it is considered that the water injection interval of 30 cm has the highest cleaning withstand voltage.

【0024】<摺動式ノズルの碍子洗浄装置>次に、こ
の発明をいわゆる摺動式ノズルの碍子洗浄装置に適用し
た例を図9,図10に基づいて説明する。この摺動式ノ
ズルの碍子洗浄装置は、一のノズル口から洗浄水を噴射
し、これによる注水点を一端から他端へ順次移動する碍
子洗浄装置である。この碍子洗浄装置は前述したノズル
固定式のものと較べて、一のノズル口から洗浄水を噴射
すれば足り、注水量が少なく設備費も安いことから、耐
張碍子などのように横方向に長尺配置された碍子に広く
採用されている。
<Sliding Nozzle Insulator Cleaning Device> An example in which the present invention is applied to a so-called sliding nozzle insulator cleaning device will be described with reference to FIGS. 9 and 10. This insulator cleaning device for a sliding nozzle is an insulator cleaning device that sprays cleaning water from one nozzle port and sequentially moves the water injection point from one end to the other end. Compared to the fixed nozzle type described above, this insulator cleaning device only needs to spray cleaning water from one nozzle port, and since the amount of water injection is small and the equipment cost is low, it can be used in the lateral direction like a tension insulator. Widely used for insulators that are long.

【0025】しかし、この碍子洗浄装置を縦方向に長尺
配置した被洗浄碍子に適用すると、下部から順次上部へ
移動していく過程で、洗浄された汚損物を含んだ水が被
洗浄碍子の表面を流れ落ちることになる。このため、注
水点より上部では乾燥状態、下部では汚損物を含んだ落
下水が流れる湿潤状態となり、これに伴い、分担電圧に
極端な不均衡をもたらして洗浄耐電圧が著しく低下し、
この種碍子洗浄装置を縦方向に長尺配置された碍子へ適
用することが困難であった。
However, when this insulator cleaning device is applied to an insulator to be cleaned arranged in a longitudinal direction, water containing washed contaminants is removed from the insulator to be cleaned in the process of sequentially moving from the lower portion to the upper portion. It will run down the surface. Therefore, the upper part of the water injection point is in a dry state, and the lower part is in a wet state in which falling water containing pollutants flows, resulting in an extreme imbalance in the shared voltage and a significant decrease in cleaning withstand voltage.
It was difficult to apply this kind of insulator cleaning device to an insulator arranged long in the longitudinal direction.

【0026】図9は、この碍子洗浄装置の概略図であっ
て、変電所内に設けられた架台1aの上部にステーショ
ンポスト碍子からなる碍子2aが立設され、この碍子2
aの頭部には電線3aが支持架設されている。そして、
碍子2aの側方には二箇所に噴射ノズル装置4a,4a
が左右対称位置に配設されている。この両噴射ノズル装
置4aには図示しない水の供給源から洗浄水を供給する
配管がなされていて、その途中に設けたポンプや制御弁
などにより、噴射ノズル装置4a,4aから同期して洗
浄水を噴射可能とされている。このノズル装置4aは図
示しない電動モータなどの回転駆動手段と、その回転量
や回転速度を制御する回転制御手段等により駆動制御さ
れる噴射ノズルがその先端に設けられている。そして、
この実施例では、噴射ノズルには主洗浄水Aを噴射する
主ノズル口と、この主ノズル口の噴射軸よりも約10゜
の角度下向きで副洗浄水Bを噴射する副ノズル口が形成
され、洗浄水が圧給されると両ノズル口から二条のジェ
ット水流となった洗浄水が噴射されるようにされてい
る。
FIG. 9 is a schematic view of this insulator cleaning apparatus. An insulator 2a made of a station post insulator is erected on an upper part of a frame 1a provided in a substation.
An electric wire 3a is supported and erected on the head of a. And
Injection nozzle devices 4a, 4a are provided at two locations on the side of the insulator 2a.
Are arranged in symmetrical positions. Piping for supplying cleaning water from a water supply source (not shown) is provided in both of the injection nozzle devices 4a, and the cleaning water is synchronously supplied from the injection nozzle devices 4a and 4a by a pump or a control valve provided in the middle of the pipes. It is possible to inject. The nozzle device 4a is provided with a rotation driving means such as an electric motor (not shown), and an injection nozzle driven and controlled by a rotation control means for controlling the rotation amount and the rotation speed at the tip thereof. And
In this embodiment, the jet nozzle is provided with a main nozzle port for jetting the main washing water A and a sub nozzle port for jetting the sub washing water B at an angle of about 10 ° downward from the jet axis of the main nozzle port. When the cleaning water is supplied under pressure, the cleaning water that has become a double jet water stream is jetted from both nozzle openings.

【0027】この構成とされた碍子洗浄装置について、
従来の主ノズル口のみによる噴射ノズルによる比較例1
2,13及びこの発明の副ノズル口を設けた噴射ノズル
による実施例11〜14の碍子洗浄試験を行って塩分付
着密度と洗浄耐電圧の関係を求めた。試験は図9に示す
ように、定格電圧275kVの、ステーションポスト碍
子を三本継いで、有効長2974mmのものを被洗浄碍
子とした。また、従来から水切笠を設けると、洗浄耐電
圧を高めるのに効果があるとされているので、被洗浄碍
子の継目部に直径365mmの水切笠を設けたものにつ
いても試験を行った。
With respect to the insulator cleaning device having this structure,
Comparative example 1 using a conventional injection nozzle with only a main nozzle opening
2, 13 and the insulator cleaning test of Examples 11 to 14 using the injection nozzle provided with the sub-nozzle port of the present invention, the relationship between the salt attachment density and the cleaning withstand voltage was determined. In the test, as shown in FIG. 9, three station post insulators having a rated voltage of 275 kV were spliced together, and one having an effective length of 2974 mm was used as a cleaned insulator. Further, since it has been conventionally said that the provision of a water drainage shade is effective in increasing the cleaning withstand voltage, a test was also conducted on a water drainage shade having a diameter of 365 mm at the joint portion of the insulator to be washed.

【00028】また、試験の噴射ノズル位置は、被洗浄
碍子の下端面から水平方向に2300mm、上方に12
35mm離れた部位に噴射ノズルが配置されるようにセ
ットし、ノズル元水圧5kgf/cm2で注水した。噴
射ノズルとしては、主ノズル口及び副ノズル口ともに口
径2mmのものを採用し(比較例13を除く)、約10
゜の角度下向きで噴射する副ノズル口から噴射される副
洗浄水が主洗浄水の注水点より400mm下方を追従し
て注水させた。なお、この被洗浄碍子の塩分付着密度と
汚損耐電圧との関係を図10に比較例11として示し
た。この汚損耐電圧特性の値は、電気協同研究vol.35
第3号第103頁 第50図によった。一般に洗浄耐
電圧がこの汚損耐電圧を上回っていることが、活線状態
で洗浄できる条件とされている。
The position of the injection nozzle in the test is 2300 mm in the horizontal direction and 12 in the upper direction from the lower end surface of the insulator to be cleaned.
The injection nozzle was set so as to be placed at a position separated by 35 mm, and water was injected at the nozzle base water pressure of 5 kgf / cm 2. As the injection nozzle, a nozzle having a diameter of 2 mm for both the main nozzle opening and the sub-nozzle opening was adopted (excluding Comparative Example 13), and about 10
The sub-cleaning water sprayed from the sub-nozzle port spraying downward at an angle of ∘ was injected 400 mm below the injection point of the main cleaning water. The relationship between the salt attachment density and the stain withstand voltage of the insulator to be cleaned is shown in FIG. 10 as Comparative Example 11. The value of this pollution withstand voltage characteristic is based on the Electric Cooperative Research vol.35.
No. 3, p. 103, FIG. 50. Generally, the condition that the cleaning withstand voltage exceeds this stain withstand voltage is a condition for cleaning in a live state.

【0029】比較例12は、水切り笠を設けない被洗浄
碍子についての試験で、副ノズル口を設けること無く、
口径が2.0mmの主ノズル口のみを形成した噴射ノズ
ルにより、塩分付着密度0.03mg/cm2の被洗浄
碍子に対して行った試験結果である。この洗浄耐電圧は
220kVと非常に低く、比較例11の汚損耐電圧より
低かった。比較例13は、水切り笠を取付け、塩分付着
密度0.02mg/cm2の被洗浄碍子に対して行った
試験結果である。この比較例13においては主ノズル口
の口径を3.2mmとした。水切り笠の効果により、洗
浄耐電圧が260kVとなり、約40kVの効果はある
が、なお、汚損耐電圧より低い値となった。
Comparative Example 12 is a test on an insulator to be cleaned which is not provided with a drainage cap, without providing a sub nozzle port.
It is the result of a test conducted on an insulator to be cleaned having a salt deposition density of 0.03 mg / cm 2 by an injection nozzle having only a main nozzle port having a diameter of 2.0 mm. This cleaning withstand voltage was very low at 220 kV, which was lower than the stain withstand voltage of Comparative Example 11. Comparative Example 13 is a result of a test performed on an insulator to be cleaned having a salt adhesion density of 0.02 mg / cm 2 with a drainage cap attached. In Comparative Example 13, the diameter of the main nozzle opening was 3.2 mm. Due to the effect of the drainage cap, the cleaning withstand voltage was 260 kV, and although there was an effect of about 40 kV, it was still lower than the stain withstand voltage.

【0030】実施例11は、水切り笠を設けない被洗浄
碍子についての試験で、上述した噴射ノズルを取付け、
塩分付着密度0.03,0.11mg/cm2で試験を
行った。なお、副ノズル口による注水により、主ノズル
口からの落下水の相当量を飛散させているのが観測され
た。洗浄耐電圧は、それぞれ275,260kVとな
り、汚損度の高い0.11mgでは汚損耐電圧を上回っ
た。実施例12は、水切り笠を取付けた他、実施例11
と同様に行ったもので、洗浄耐電圧は、それぞれ31
5,290kVとなり、ともに汚損耐電圧を大きく上回
って、水切り笠を併用すると非常に効果が高いことが判
明した。
Example 11 is a test for an insulator to be cleaned which is not provided with a drainage cap, and the above-mentioned injection nozzle is attached to the insulator.
The test was conducted at a salt adhesion density of 0.03, 0.11 mg / cm 2. It was observed that a considerable amount of water dropped from the main nozzle port was scattered by the water injection from the sub nozzle port. The cleaning withstand voltage was 275 and 260 kV, respectively, and 0.11 mg, which had a high degree of stain, exceeded the stain withstand voltage. Example 12 is the same as Example 11 except that a drainage cap was attached.
The cleaning withstand voltage was 31
It was 5,290 kV, both of which were much higher than the pollution withstand voltage, and it was found that the combined use of the drainage cap was very effective.

【0031】実施例13,実施例14は、さらに水平面
に対して被洗浄碍子の中心軸とノズル口位置とを結ぶ線
に対する被洗浄碍子への注水点位置の影響を知るため、
さらに、注水点角度10゜として、実施例13,実施例
14の試験を行った。実施例13は、水切り笠を設けな
い被洗浄碍子についての試験で、塩分付着密度0.0
3,0.11mg/cm2で試験を行った。この結果、
洗浄耐電圧はそれぞれ300,290kVとなり、とも
に汚損耐電圧を上回った。実施例14は、水切り笠を取
付けた他、実施例13と同様に行ったもので、洗浄耐電
圧は、それぞれ340,320kVとなり、ともに汚損
耐電圧を大きく上回った。
In the thirteenth and fourteenth embodiments, in order to know the influence of the pouring point position on the insulator to be cleaned with respect to the line connecting the central axis of the insulator to be cleaned and the nozzle opening position with respect to the horizontal plane,
Further, the tests of Examples 13 and 14 were conducted with the water injection point angle of 10 °. Example 13 is a test on an insulator to be cleaned which is not provided with a drainage cap, and has a salt adhesion density of 0.0
The test was carried out at 3, 0.11 mg / cm 2. As a result,
The cleaning withstand voltage was 300 and 290 kV, respectively, both of which exceeded the stain withstand voltage. Example 14 was carried out in the same manner as in Example 13 except that a drainage cap was attached, and the cleaning withstand voltages were 340 and 320 kV, respectively, which were far higher than the pollution withstand voltage.

【0032】この摺動ノズルの碍子洗浄装置では、主ノ
ズル口から噴射される主洗浄水Aが被洗浄碍子へ注水さ
れて、その注水点部位の汚損物を洗い流す。この汚損物
を含んで高い導電性を有する主洗浄水Aは、被洗浄碍子
の表面近傍を流下する落下水となる。しかし、主ノズル
口が移動するに伴い副ノズル口もこれに追従して移動
し、この副ノズル口から噴射される副洗浄水Bが、主洗
浄水Aによる落下水に衝突して、落下水の一部を碍子表
面から飛散させる。このため、汚損物を含んだ落下水の
多くは被洗浄碍子の表面から飛散して、これより下部へ
流れ落ちない。このため、洗浄耐電圧の大幅な低下が防
止されるものと思われる。なお、副洗浄水Bの一部も落
下水となるが、この落下水には低濃度の汚損物しか含ま
れておらず、これによる分担電圧の低下は僅かである。
この結果、全体として耐電圧の不均衡が緩和され、洗浄
耐電圧は高くなるものと思われる。
In this insulator cleaning device for sliding nozzles, the main cleaning water A sprayed from the main nozzle port is poured into the insulator to be cleaned, and the contaminants at the water injection point are washed away. The main cleaning water A containing the contaminants and having high conductivity becomes falling water that flows down near the surface of the insulator to be cleaned. However, as the main nozzle port moves, the sub nozzle port also follows and moves, and the sub cleaning water B sprayed from this sub nozzle port collides with the falling water by the main cleaning water A, and A part of is scattered from the insulator surface. For this reason, most of the falling water containing the contaminants scatters from the surface of the insulator to be cleaned and does not flow down below. For this reason, it is considered that a large reduction in the cleaning withstand voltage is prevented. Although part of the sub-cleaning water B also becomes falling water, this falling water contains only low-concentration contaminants, and the decrease in the shared voltage due to this is slight.
As a result, the imbalance of the withstand voltage is alleviated, and the withstand voltage of cleaning is expected to increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】注水角度による落下水と飛散水との関係を説明
する説明図である。
FIG. 1 is an explanatory diagram illustrating a relationship between falling water and scattered water depending on a water injection angle.

【図2】ノズル固定式の碍子洗浄装置の概略図である。FIG. 2 is a schematic view of a nozzle fixing type insulator cleaning device.

【図3】同装置における試験碍子の概略図である。FIG. 3 is a schematic view of a test insulator in the same device.

【図4】同装置による注水点間隔と落下水量比の関係を
示すグラフである。
FIG. 4 is a graph showing a relationship between a water injection point interval and a falling water amount ratio by the same device.

【図5】同装置による注水点間隔と洗浄耐電圧比の関係
を示すグラフである。
FIG. 5 is a graph showing a relationship between a water injection point interval and a cleaning withstand voltage ratio by the same apparatus.

【図6】同装置による二方向からの洗浄による塩分付着
密度と洗浄耐電圧との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a salt attachment density and cleaning withstand voltage by cleaning from two directions by the same apparatus.

【図7】同装置による三方向からの洗浄による塩分付着
密度と洗浄耐電圧との関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a salt attachment density and a cleaning withstand voltage by cleaning from three directions by the same apparatus.

【図8】同装置による注水角度と落下水量比との関係を
示すグラフである。
FIG. 8 is a graph showing a relationship between a water injection angle and a falling water amount ratio by the device.

【図9】摺動式ノズル式の碍子洗浄装置の概略図であ
る。
FIG. 9 is a schematic view of a sliding nozzle type insulator cleaning device.

【図10】同装置による塩分付着密度と耐電圧の関係を
示すグラフである。
FIG. 10 is a graph showing a relationship between a salt attachment density and a withstand voltage by the same device.

【符号の説明】[Explanation of symbols]

1…架台 2…碍子 3…電線 4…噴射ノズル装置 1 ... Stand 2 ... Insulator 3 ... Electric wire 4 ... Injection nozzle device

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 縦方向に長尺設置された被洗浄碍子に、
洗浄水を注水するノズル口を配設した碍子洗浄装置にお
いて、 平面的に見て被洗浄碍子の中心軸点からそのノズル口と
を結ぶ線に対して、その中心軸点から10〜30゜の角
度位置にある碍子の胴表面部位に向けて注水するノズル
口を配設したことを特徴とする碍子洗浄装置。
1. An insulator to be cleaned, which is installed in a longitudinally elongated manner,
In an insulator cleaning device provided with a nozzle port for injecting cleaning water, in a plan view, with respect to a line connecting the central axis point of the insulator to be cleaned to the nozzle port, 10 to 30 ° from the central axis point An insulator cleaning device having a nozzle port for pouring water toward the body surface portion of the insulator at an angular position.
JP4188693A 1993-02-05 1993-02-05 Insulator cleaning device Expired - Lifetime JP2681245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4188693A JP2681245B2 (en) 1993-02-05 1993-02-05 Insulator cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4188693A JP2681245B2 (en) 1993-02-05 1993-02-05 Insulator cleaning device

Publications (2)

Publication Number Publication Date
JPH06231640A JPH06231640A (en) 1994-08-19
JP2681245B2 true JP2681245B2 (en) 1997-11-26

Family

ID=12620767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4188693A Expired - Lifetime JP2681245B2 (en) 1993-02-05 1993-02-05 Insulator cleaning device

Country Status (1)

Country Link
JP (1) JP2681245B2 (en)

Also Published As

Publication number Publication date
JPH06231640A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
JP2681245B2 (en) Insulator cleaning device
JP2009129857A (en) Polymer bushing cleaning device
CA1321118C (en) Process for washing insulators and/or insulator chains supporting electric live lines, and apparatus for carrying out said process
CN102357486A (en) Power transmission line insulator cleaning device
JP3229692B2 (en) Insulator cleaning device
JPH06223660A (en) Insulator washing device
CN111632950A (en) Dry ice cleaning device
CN209829714U (en) High-voltage suspension insulator cleaning device
JPH03149714A (en) Insulator cleaning method and its device
CN214541735U (en) Air-drying device for cables
JPH10255571A (en) Method and device for washing insulator with small amount of water and nozzle used for the method
KR20080099625A (en) A nozzle for supplying solution at semiconductor wafer manufacturing, and apparatus for cleaning wafers
KR200167232Y1 (en) Nozzel for cleansing device of useing all sorts of wall
JP2724539B2 (en) Insulator cleaning equipment
KR100475673B1 (en) Water cannon for washing insulator using helicopter and method of washing insulator by the cannon
KR19990007082U (en) Nozzles for Various Wall Washers
CN218502805U (en) Solar panel sprays cleaning system
CN104283140B (en) A kind of cleaning platform for cleaning transformer station&#39;s disconnecting link
KR200230404Y1 (en) Injection width adjusting device of injection nozzle
JPH08222059A (en) Insulator washing device
KR100346907B1 (en) System for washing outer wall of building
CN216936548U (en) Self-rotating spray head
KR20040048112A (en) Water cannon for washing insulator using helicopter
JPH03135313A (en) Insulator washing method
JPH0763690B2 (en) Pipe cleaning device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 16