JP2722749B2 - Zero-phase voltage detector - Google Patents

Zero-phase voltage detector

Info

Publication number
JP2722749B2
JP2722749B2 JP2026505A JP2650590A JP2722749B2 JP 2722749 B2 JP2722749 B2 JP 2722749B2 JP 2026505 A JP2026505 A JP 2026505A JP 2650590 A JP2650590 A JP 2650590A JP 2722749 B2 JP2722749 B2 JP 2722749B2
Authority
JP
Japan
Prior art keywords
voltage
phase
cylindrical electrode
zero
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2026505A
Other languages
Japanese (ja)
Other versions
JPH03277979A (en
Inventor
英伸 浜田
大典 石河
修 鎌田
和郎 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2026505A priority Critical patent/JP2722749B2/en
Publication of JPH03277979A publication Critical patent/JPH03277979A/en
Application granted granted Critical
Publication of JP2722749B2 publication Critical patent/JP2722749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、配電状態モニタリングセンサーなど三相
配電線の配電状態を示す零相電圧を直接簡単な方法で精
度よく検出できる零相電圧検出装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero-phase voltage detecting device, such as a distribution state monitoring sensor, capable of directly and accurately detecting a zero-phase voltage indicating a distribution state of a three-phase distribution line by a simple method.

従来の技術 従来の零相電圧検出装置は、第3図に示すように、三
相高圧配電線1の各相に分圧器(内側電極2A,外側電極2
Bおよび電極間誘電体6により構成)を設置し、その各
分圧器の出力電圧(分圧)をそれぞれ電圧センサー4で
常時モニタし、その各相の電圧値をデータ処理部5にお
いてベクトル的に加算することにより、間接的ではある
が非接触で三相高圧配電線の零相電圧を検出するもので
ある。
2. Description of the Related Art As shown in FIG. 3, a conventional zero-phase voltage detecting device includes a voltage divider (inner electrode 2A, outer electrode 2) for each phase of a three-phase high voltage distribution line 1.
B and the inter-electrode dielectric 6) are installed, and the output voltage (divided voltage) of each voltage divider is constantly monitored by the voltage sensor 4, and the voltage value of each phase is vectorized in the data processing unit 5. The addition detects the zero-phase voltage of the three-phase high-voltage distribution line in an indirect but non-contact manner.

発明が解決しようとする課題 上記従来の方法では、各相が他相の影響を受けたり、
各相の電圧センサーに感度バラツキがあり正確な各相電
圧が測定できないため、各相電圧のベクトル加算で求め
られる零相電圧に誤差が含まれ事故等の誤判断を起こす
ことがあった。
Problems to be Solved by the Invention In the above-mentioned conventional method, each phase is affected by another phase,
Since the voltage sensors of the respective phases have sensitivity variations and cannot accurately measure the respective phase voltages, the zero-phase voltage obtained by the vector addition of the respective phase voltages may include an error and cause an erroneous determination such as an accident.

本発明は、従来の零相電圧検出装置がもつ上記のよう
な問題点を解決し、従来のものよりもコストのかからな
い簡易な方法で精度よく零相電圧を検出することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the conventional zero-phase voltage detecting device and to accurately detect the zero-phase voltage by a simple method that does not cost more than the conventional one.

課題を解決するための手段 上記の目的を達成するために、本発明の零相電圧検出
装置は、三相高圧配電線を一括してその周囲に筒状電極
(例えば銅板)を非接触で設け、その外側に電界センサ
ーを取付けて電極外側に発生する零相電圧に比例する電
荷を観測するか、または、筒状電極に対してその外側に
筒状平行電極を設けて電極間電圧を観測するための電圧
センサーを設ける、という構成を有する。
Means for Solving the Problems In order to achieve the above object, the zero-phase voltage detecting device of the present invention provides a three-phase high-voltage distribution line by providing a cylindrical electrode (for example, a copper plate) around it in a non-contact manner. Either mounting an electric field sensor on the outside and observing the charge proportional to the zero-phase voltage generated outside the electrode, or providing a cylindrical parallel electrode outside the cylindrical electrode and observing the voltage between the electrodes A voltage sensor is provided.

作用 上記のような構成においては、三相高圧配電線の周囲
に非接触で設けた筒状電極の外部表面に発生する電荷
は、ガウスの定理と次の3個の自明の条件 (A)前記筒状電極の外部表面は等電位 (B)前記筒状電極形状は一定 (C)前記筒状電極と基準電位の相対位置関係は一定 より、内部電荷の状態に依らず、前記筒状電極の外部表
面が等電位になるように分布し、前記表面電荷の分布は
前記内部電荷状態により強度は変わるが分布自体は、前
記筒状電極の形状と前記筒状電極と基準電位との相対位
置関係に依存するため不変となる。
In the configuration as described above, the charge generated on the outer surface of the cylindrical electrode provided in a non-contact manner around the three-phase high-voltage distribution line is based on Gauss's theorem and the following three trivial conditions (A) The outer surface of the cylindrical electrode is equipotential. (B) The shape of the cylindrical electrode is constant. (C) The relative positional relationship between the cylindrical electrode and the reference potential is constant. The outer surface is distributed so as to have the same potential, and the distribution of the surface charge varies in intensity depending on the state of the internal charge, but the distribution itself is a relative positional relationship between the shape of the cylindrical electrode and the cylindrical electrode and a reference potential. Is invariant because it depends on

従って、前記筒状電極内部の総電荷量は、前記筒状電
極の外部表面では前記筒状電極の形状と前記電極と基準
電位との相対位置関係に依存する分布係数により分散
し、次の1個の自明の条件 (D)前記筒状電極と電界センサとの相対位置関係は一
定 より、前記ある一定の電界センサ位置での電界は、前記
筒状電極内部の総電荷量と前記電界センサ位置に固有の
分布係数の積で決まるため、前記電界センサが検出する
筒状電極外部表面の局所的部位における電荷変化量は零
相電圧に比例する。
Therefore, the total amount of charge inside the cylindrical electrode is dispersed on the outer surface of the cylindrical electrode by a distribution coefficient depending on the shape of the cylindrical electrode and the relative positional relationship between the electrode and the reference potential. (D) The relative positional relationship between the cylindrical electrode and the electric field sensor is constant. Therefore, the electric field at the certain electric field sensor position is determined by the total charge amount inside the cylindrical electrode and the electric field sensor position. Is determined by the product of the distribution coefficients inherent to the electric field sensor, and the amount of charge change at a local portion on the outer surface of the cylindrical electrode detected by the electric field sensor is proportional to the zero-phase voltage.

このように、本発明は、各相電圧を測定することなく
直接零相電圧を観測できるため、他相の影響および各相
電圧センサ自身の感度バラツキに起因する誤差を無視す
ることができ、事故の誤判断がなくなる。
As described above, according to the present invention, the zero-phase voltage can be directly observed without measuring each phase voltage, so that errors due to the influence of other phases and variations in sensitivity of each phase voltage sensor itself can be ignored, and an accident can be ignored. No misjudgment is made.

さらに、電圧センサーあるいは電界センサーの絶対数
が三相の場合従来例に比べて3分の1ですみ、また、三
相高圧配電線周囲の平行筒状電極の設置位置も任意でよ
いので、コストおよび作業性の上で有利となる。
Furthermore, when the absolute number of voltage sensors or electric field sensors is three-phase, it is only one-third that of the conventional example, and the installation position of the parallel cylindrical electrodes around the three-phase high-voltage distribution line can be arbitrarily set. This is advantageous in terms of workability.

実施例 本発明の第1の実施例を第1図を参照しながら説明す
る。図に示すように被測定物である三相平行高圧電線1
を一括して筒状電極3で囲み電極面に対して平行すなわ
ち電界Eに対して垂直になるように設置された電界セン
サー4Aと信号処理部5,入力光ファイバ7,出力光ファイバ
8より構成されている。ここで、筒状電極3は前記三相
平行高圧電線1の周囲で、かつ非接触であれば任意の位
置でよい。
Embodiment 1 A first embodiment of the present invention will be described with reference to FIG. As shown in the figure, a three-phase parallel high-voltage electric wire 1 which is an object to be measured
Are collectively surrounded by a cylindrical electrode 3 and are composed of an electric field sensor 4A installed parallel to the electrode surface, that is, perpendicular to the electric field E, a signal processing unit 5, an input optical fiber 7, and an output optical fiber 8. Have been. Here, the cylindrical electrode 3 may be located at any position around the three-phase parallel high-voltage electric wire 1 and in a non-contact state.

ここで、電界センサー4A,信号処理部5,入力光ファイ
バ7,出力光ファイバ8の構成を更にくわしく説明する
と、電界センサー4Aには、電気光学効果(ポッケルス効
果やカー効果)を利用した電気光学偏光器、例えばリチ
ウムナイオベート,ニオブ酸リチウムのような素材に電
界の方向Eと直角な方向に光を通すように構成し、信号
処理部5から発した光が入力光ファイバ7を通じて電界
センサー4A内でまず偏光板(図示せず)、電気光学偏光
器(図示せず)、検光器(図示せず)を通り、出力光フ
ァイバ8を経て信号処理部5に加えられるようになって
いる。
Here, the configuration of the electric field sensor 4A, the signal processing unit 5, the input optical fiber 7, and the output optical fiber 8 will be described in more detail. The electric field sensor 4A has an electro-optical effect using an electro-optical effect (Pockels effect or Kerr effect). A polarizer, for example, a material such as lithium niobate or lithium niobate is configured to transmit light in a direction perpendicular to the direction E of the electric field, and the light emitted from the signal processing unit 5 is transmitted through the input optical fiber 7 to the electric field sensor 4A. First, the light passes through a polarizing plate (not shown), an electro-optical polarizer (not shown), and an analyzer (not shown), and is applied to the signal processing unit 5 via an output optical fiber 8. .

上記のように構成された本発明の第1の実施例につい
て次にその動作を説明すると、三相平行高圧電線1の周
囲の任意の位置に形成した筒状電極3の外部表面に発生
する電荷はガウスの定理より筒状電極内の総電荷に比例
し、その総電荷は各相電圧のベクトル加算すなわち零相
電圧に比例する。したがって、筒状電極3の外側に発生
する電界も零相電圧に比例し、上記電界センサー4Aによ
り三相平行高圧電線1の零相電圧を検出することができ
る。このとき電界センサー4A内では電界Eの強さに応じ
て電気光学偏光器の偏光面が電界Eの方向に広がるの
で、偏光板と検光器の偏光面をこの方向に合わせておけ
ば、電界の強さに応じて信号処理部5に入射する光量も
増加し、電界の強さは零相電圧に応じて強くなるので、
前記入射光量の増加は零相電圧の増加として検出するこ
とができる。そして、前記電界センサー4Aで観測される
電界は不必要な正相成分と逆相成分が含まれず、また、
三相配電線の相互作用による誤差成分も打ち消されて無
視できるので、誤差の少ない信頼性の高いデータが得ら
れる。
The operation of the first embodiment of the present invention configured as described above will now be described. The charge generated on the outer surface of the cylindrical electrode 3 formed at an arbitrary position around the three-phase parallel high-voltage electric wire 1 is described. Is proportional to the total charge in the cylindrical electrode according to Gauss's theorem, and the total charge is proportional to the vector addition of each phase voltage, that is, the zero-phase voltage. Therefore, the electric field generated outside the cylindrical electrode 3 is also proportional to the zero-phase voltage, and the zero-phase voltage of the three-phase parallel high-voltage electric wire 1 can be detected by the electric field sensor 4A. At this time, in the electric field sensor 4A, the polarization plane of the electro-optical deflector spreads in the direction of the electric field E in accordance with the intensity of the electric field E. The intensity of the electric field incident on the signal processing unit 5 also increases according to the intensity of the electric field, and the intensity of the electric field increases according to the zero-phase voltage.
The increase in the amount of incident light can be detected as an increase in the zero-sequence voltage. The electric field observed by the electric field sensor 4A does not include unnecessary positive and negative phase components, and
The error component due to the interaction of the three-phase distribution lines is also canceled out and can be ignored, so that highly reliable data with little error can be obtained.

この発明の第2の実施例を第2図を参照しながら説明
する。本実施例は、図に示すように被測定物である三相
平行高圧電線1の周囲に内側筒状電極3A−誘導体6−外
側筒状電極3Bの順に囲み、内側筒状電極3Aと外側筒状電
極3Bの電極間電圧を測定する電圧センサー4Bと信号処理
部5より構成されている。誘電体6は空気でも差支えな
い。ここで、内側筒状電極3Aと外側筒状電極3Bは前記三
相平行高圧電線1の周囲でかつ非接触であれば任意の位
置でよい。ここで電圧センサー4Bは、第1の実施例で用
いた電界センサー4Aの電気光学偏光器に光と直角の方向
に電界を与えるように2枚の電極を付けたもので、電極
に加わる電圧に応じて電界が加わり、従って信号処理部
5に加わる入射光も増加するものである。
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, as shown in the figure, the inner cylindrical electrode 3A, the derivative 6 and the outer cylindrical electrode 3B are sequentially surrounded around the three-phase parallel high-voltage electric wire 1, which is the object to be measured. It comprises a voltage sensor 4B for measuring the inter-electrode voltage of the electrode 3B and a signal processing unit 5. The dielectric 6 may be air. Here, the inner cylindrical electrode 3A and the outer cylindrical electrode 3B may be located at any positions around the three-phase parallel high-voltage electric wire 1 and in a non-contact state. Here, the voltage sensor 4B has two electrodes attached to the electro-optic polarizer of the electric field sensor 4A used in the first embodiment so as to apply an electric field in a direction perpendicular to the light. Accordingly, an electric field is applied, and accordingly, incident light applied to the signal processing unit 5 also increases.

以上のように構成された本発明の第2の実施例につい
て、以下その動作を説明すると、三相平行高圧電線1の
周囲の任意の位置に形成した内側筒状電極3Aの外部表面
に発生する電荷はガウスの定理より内側筒状電極内の総
電荷に比例し、その総電荷は各相電圧のベクトル加算、
すなわち零相電圧に比例する。従って、内側筒状電極3A
と外側筒状電極3Bの間に発生する電圧も零相電圧に比例
し、上記電圧センサー4Bにより三相平行高圧電線1の零
相電圧を検出することができる。そして、前記電圧セン
サー4Bで観測される電圧は不必要な正相成分と逆相成分
が含まれず、また三相配電線の相互作用による誤差成分
も打ち消されて無視できるので、誤差の少ない信頼性の
高いデータが得られる。
The operation of the second embodiment of the present invention configured as described above will be described below. The operation occurs on the outer surface of the inner cylindrical electrode 3A formed at an arbitrary position around the three-phase parallel high-voltage electric wire 1. The charge is proportional to the total charge in the inner cylindrical electrode according to Gauss's theorem, and the total charge is the vector addition of each phase voltage,
That is, it is proportional to the zero-phase voltage. Therefore, the inner cylindrical electrode 3A
The voltage generated between the outer cylindrical electrode 3B and the outer cylindrical electrode 3B is also proportional to the zero-phase voltage, and the zero-phase voltage of the three-phase parallel high-voltage electric wire 1 can be detected by the voltage sensor 4B. The voltage observed by the voltage sensor 4B does not include unnecessary positive-phase components and negative-phase components, and error components due to the interaction of the three-phase distribution lines are also negligible and can be ignored. High data can be obtained.

なお、以上は最も一般的な三相交流配電線について説
明したが、二相でも四相以上の交流にも対称多相系であ
れば適用できるのは当然である。
Although the most general three-phase AC distribution line has been described above, it goes without saying that the present invention can be applied to two-phase or four-phase or more alternating current as long as it is a symmetric polyphase system.

また電線間の平行性は、原理的にさほど厳密さを要し
ないものである。
The parallelism between the electric wires does not require much strictness in principle.

また電界センサー4A,電圧センサー4Bは絶縁性が良
く、誘導を受けない光を使用する方法で説明したが、測
定に影響を受けない範囲で他の検出方法を用いても良い
ものである。
Further, the electric field sensor 4A and the voltage sensor 4B have a good insulation property, and the method using light that is not guided has been described. However, other detection methods may be used as long as the measurement is not affected.

発明の効果 以上の説明から明らかなように、本発明は、事故検出
に不必要な正相成分と逆相成分を測定することなく直接
零相電圧を観測できるため、他相の影響および各相電圧
センサー自身の感度バラツキに起因する誤差を無視する
ことができ、信頼性の高いデータが得られるので、事故
等の誤判断がなくなるという効果を有するものである。
Advantageous Effects of the Invention As is clear from the above description, the present invention can directly observe the zero-sequence voltage without measuring the positive-phase component and the negative-sequence component, which are unnecessary for fault detection. The error caused by the sensitivity variation of the voltage sensor itself can be ignored, and highly reliable data can be obtained, so that there is an effect that erroneous determination of an accident or the like is eliminated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例の零相電圧検出装置の斜
視図、第2図は本発明の第2の実施例の零相電圧検出装
置の斜視図、第3図は従来の零相電圧検出装置の斜視図
である。 1……三相平行高圧電線、2A……分圧器の内側筒状電
極、2B……分圧器の外側筒状電極、3……筒状電極、3A
……内側筒状電極、3B……外側筒状電極、4A……電界セ
ンサー、4B……電圧センサー、5……信号処理部、6…
…誘電体。
FIG. 1 is a perspective view of a zero-phase voltage detecting device according to a first embodiment of the present invention, FIG. 2 is a perspective view of a zero-phase voltage detecting device according to a second embodiment of the present invention, and FIG. It is a perspective view of a zero-sequence voltage detection device. 1 ... three-phase parallel high-voltage electric wire, 2A ... inner cylindrical electrode of voltage divider, 2B ... outer cylindrical electrode of voltage divider, 3 ... cylindrical electrode, 3A
... inner cylindrical electrode, 3B ... outer cylindrical electrode, 4A ... electric field sensor, 4B ... voltage sensor, 5 ... signal processing unit, 6 ...
... dielectric.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数相導電体を一括したその周囲の任意の
位置に筒状電極を形成し、この筒状電極の外側表面に発
生する電界を検出する零相電圧検出装置。
1. A zero-phase voltage detecting device for forming a cylindrical electrode at an arbitrary position around a group of multi-phase conductors and detecting an electric field generated on the outer surface of the cylindrical electrode.
【請求項2】複数相導電体を一括したその周囲の任意の
位置に筒状電極を形成し、この筒状電極の外側に誘電体
を介して外側筒状電極を形成し前記筒状電極と前記外側
筒状電極との間に発生する電圧を検出する零相電圧検出
装置。
2. A cylindrical electrode is formed at an arbitrary position around a group of multi-phase conductors, and an outer cylindrical electrode is formed outside of the cylindrical electrode via a dielectric material. A zero-phase voltage detection device for detecting a voltage generated between the outer cylindrical electrode and the outer cylindrical electrode.
JP2026505A 1990-02-06 1990-02-06 Zero-phase voltage detector Expired - Fee Related JP2722749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2026505A JP2722749B2 (en) 1990-02-06 1990-02-06 Zero-phase voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026505A JP2722749B2 (en) 1990-02-06 1990-02-06 Zero-phase voltage detector

Publications (2)

Publication Number Publication Date
JPH03277979A JPH03277979A (en) 1991-12-09
JP2722749B2 true JP2722749B2 (en) 1998-03-09

Family

ID=12195341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026505A Expired - Fee Related JP2722749B2 (en) 1990-02-06 1990-02-06 Zero-phase voltage detector

Country Status (1)

Country Link
JP (1) JP2722749B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099663B1 (en) * 2009-09-03 2011-12-29 주식회사 플라즈마트 Sensor for measuring electrical characteristics
CN202929147U (en) * 2012-08-02 2013-05-08 苏州新亚科技有限公司 Zero line and live line detection module

Also Published As

Publication number Publication date
JPH03277979A (en) 1991-12-09

Similar Documents

Publication Publication Date Title
US6492800B1 (en) Electro-optic voltage sensor with beam splitting
US6621258B2 (en) Electro-optic high voltage sensor
JPH08273952A (en) Plane current detector
US6307666B1 (en) Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift
JPS613075A (en) Troubled section discrimination for transmission line
JP2722749B2 (en) Zero-phase voltage detector
JP3232580B2 (en) Zero-phase voltage detector
EP3916399B1 (en) Voltage measurement device and gas insulated switchgear
KR100606420B1 (en) Optical potential transformer interleaved detector
JP3802028B2 (en) Protective relay using photocurrent sensor
JPS6224165A (en) Orientation system of transmission and distribution wire failure section
CA2239722C (en) Electro-optic voltage sensor
JPS62110162A (en) Apparatus for detecting zero phase current
JPH0422304Y2 (en)
HINO et al. Optical fiber current transformer applications on railway electric power supply systems
JPH073346Y2 (en) Zero-phase current measuring device
JPS58109858A (en) Voltage measuring device
JPH051825Y2 (en)
CA2401771C (en) Electro-optic voltage sensor
JPS6373165A (en) Fault section detector for electric power equipment
JPH0486571A (en) Measurement of insulation resistance for cable sheath under hot line
JPS6217663A (en) Voltage/current detector
JPS6259873A (en) Accident section discriminating device using photosensor
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPH03242559A (en) Method for measuring current by photo-magnetic field sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees