JPS6259873A - Accident section discriminating device using photosensor - Google Patents

Accident section discriminating device using photosensor

Info

Publication number
JPS6259873A
JPS6259873A JP20125885A JP20125885A JPS6259873A JP S6259873 A JPS6259873 A JP S6259873A JP 20125885 A JP20125885 A JP 20125885A JP 20125885 A JP20125885 A JP 20125885A JP S6259873 A JPS6259873 A JP S6259873A
Authority
JP
Japan
Prior art keywords
magneto
optic effect
polarization
effect element
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20125885A
Other languages
Japanese (ja)
Inventor
Hiromichi Yokoyama
横山 弘道
Toshiharu Miyamoto
俊治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20125885A priority Critical patent/JPS6259873A/en
Publication of JPS6259873A publication Critical patent/JPS6259873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To decrease polarizers and analyzers in number and to obtain an inexpensive device of a simple constitution by arranging two magnetooptic effect elements across a polarization plane maintaining fiber so that the rotating directions of the planes of polarization to the same magnetic field are opposite each other. CONSTITUTION:The magnetooptic effect elements 11 and 12 are provided at both terminals of each section of a power distribution line and arranged and connected by the polarization plane maintaining fiber 14 so that the rotating directions of the plane of polarization of light passing through the elements 11 and 12 are opposite in a magnetic field produced with the same current in the power distribution line. Further, the element 11 and a polarizer 10 before it, and the element 12 and an analyzer 13 behind it are also connected by fibers 14 respectively and the polarizer 10 and analyzer 13 are connected to a measurement system 16 by optical fibers 15 respectively. Then if an accident occurs between the elements 11 and 12, currents flows through the elements 11 and 12 in the opposite directions and the rotation of the plane of polarization by the element 11 is not returned, but increased by the element 12, and consequently a signal modulated with the light output of the measurement system 16 appears eventually, thereby detecting that an accident point is in this section.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光センサーを用いた送配電線の事故区間判別装
置に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fault section determination device for power transmission and distribution lines using optical sensors.

[背景技術と間圧点コ 磁気光学効果を有する光センサ−、例えばB50(B 
i+28 i 020単結晶)や鉛ガラス等を用い、送
配電線路の通電71I流によって生じる磁界を検出し、
これより通電電流の大きさをff1l+定する方法が実
用化されている。
[Background Art and Pressure Points] An optical sensor having a magneto-optical effect, for example B50 (B
i+28 i020 single crystal), lead glass, etc., to detect the magnetic field generated by the energized 71I current in the power transmission and distribution line,
From this, a method of determining the magnitude of the conducting current ff1l+ has been put into practical use.

更にこのような磁気光学効果を有する光センサーを用い
て送配電線路の故障区間を検出する装置も提案されてい
る。第3図はその説明図である。
Furthermore, a device has been proposed that uses an optical sensor having such a magneto-optical effect to detect a faulty section of a power transmission/distribution line. FIG. 3 is an explanatory diagram thereof.

図示のように、送電線路または配電線路Qの一区間の両
端に、磁気光学効果を仔する光センサ−1,2が線路に
近接して配置される。3.4はそれぞれ前記センサー1
,2に光を送り、線路電流による磁界の変調を受けて送
りもどしする光伝送用の光ファイバである。5は測定シ
ステムを示すが、前記センサー1,2に光を送る光ファ
イバ3のZ18末は図示していないが光源に接続され、
磁界の変調を受けた光の送りもどしを行う光伝送用の光
ファイバ4の端末は光電素子に接続されている。
As shown in the figure, optical sensors 1 and 2 having a magneto-optic effect are arranged at both ends of a section of a power transmission line or a distribution line Q in close proximity to the line. 3.4 is the sensor 1, respectively.
, 2, and sends it back after being modulated by the magnetic field caused by the line current. 5 shows a measurement system, and the Z18 end of the optical fiber 3 that sends light to the sensors 1 and 2 is connected to a light source (not shown),
The terminal of an optical fiber 4 for optical transmission, which sends and returns light modulated by a magnetic field, is connected to a photoelectric element.

磁気光学効果を有する光センサーは、偏光子と磁気光学
効果素子と検光子よりなり、偏光子より出た偏光は、磁
気光学効果素子の通過中に磁界の強さにより偏波面に回
転を生じ、従って検光子を通して出力される光は、磁界
の強度によってその大きさを変え、前述の充電素子に電
気信号として現われる。
An optical sensor with a magneto-optic effect consists of a polarizer, a magneto-optic effect element, and an analyzer.Polarized light emitted from the polarizer causes rotation in the plane of polarization due to the strength of the magnetic field while passing through the magneto-optic effect element. Therefore, the light output through the analyzer changes its magnitude depending on the strength of the magnetic field, and appears as an electric signal on the charging element.

従って、両センサー1,2に同一特性のものを使用し、
それぞれの光ファイバ3,4によるIn失が同一である
とすれば、前記一区間において、事故がないとすれば、
両磁気光学効果ををする光センサー1,2につながる光
電素子の出力は同一で、同方向であるから、測定システ
ム5において、両光型素子の出力の引算回路に光電素子
出力を入力すれば、引算結果は零となる。
Therefore, use the same characteristics for both sensors 1 and 2,
Assuming that the In losses due to the respective optical fibers 3 and 4 are the same, and that there is no accident in the above-mentioned section,
Since the outputs of the photoelectric elements connected to the optical sensors 1 and 2 that have both magneto-optic effects are the same and in the same direction, in the measurement system 5, the outputs of the photoelectric elements must be input to the subtraction circuit for the outputs of both optical elements. In this case, the result of subtraction is zero.

そこで、図示のように、区間内において、線路が故障し
たとすると、磁気光学効果素子を仔する光センサー1,
2の配置される位置における線路の通電電流の方向は互
に異方向となり、両光7r1素子よりの出力を引算回路
によって演算すれば、ある出力があり、これによって区
間内に故障が発生したことを検出することができる。
Therefore, as shown in the figure, if the line breaks down within the section, the optical sensor 1 having a magneto-optic effect element,
The directions of the current flowing through the line at the position where 2 is placed are different from each other, and when the outputs from both optical 7R1 elements are calculated by a subtraction circuit, there is a certain output, which causes a failure to occur within the section. can be detected.

なお、他区間において前述の事故を発生したとき、本区
間におけるセンサ1.2は全く同じ影雪下にあり、引算
回路による演算結果は零を示し、他区間の事故を誤検出
することはない。
Furthermore, when the above-mentioned accident occurred in another section, sensors 1 and 2 in this section were under the same shadow and snow, and the calculation result by the subtraction circuit showed zero, making it impossible to falsely detect an accident in another section. do not have.

ところで、上記の故障区間検出装置によれば、引算回路
が必要であるため、しかも一度センサー光信号を電気に
変換した後に処理しなければならないが、複雑なものと
なる。また、磁気光学効果を仔するセンサーの一つ、一
つが独立したもの、つまり偏光子、磁気光学効果素子、
検光子を備えるものであることが必要のため、高価なも
のとなる。
By the way, according to the above-mentioned failure section detection device, since a subtraction circuit is required, and furthermore, the sensor optical signal must be processed after being converted into electricity, which is complicated. In addition, one of the sensors that has the magneto-optic effect, one of which is independent, such as a polarizer, a magneto-optic effect element,
It is expensive because it needs to be equipped with an analyzer.

[問題を解決するための手段] 本発明は前述のように、従来の光センサーを用いて事故
区間判別装置を構成すれば、複雑、且つコスト高となる
のを改善する目的でなされたちのであり、送配電線路の
各区間ごとに、該区間両端に第1の磁気光学効果素子と
第2の磁気光学効果素子を設置し、第1の磁気光学効果
素子と第2の磁気光学効果素子とを偏波面保持ファイバ
で接続して、前記磁気光学効果素子を通過する光の偏波
面の回転が、送配電線路中の同一電流によって生ずる磁
界で反対方向になるように配置し、第1の磁気光学効果
素子は前段の偏光子と、第2の磁気光学効果素子は後段
のゆ光子とそれぞれで偏波面保t、νファイバで接続し
、前記偏光子と検光子をそれぞれ光ファイバで測定シス
テムと接続することを特徴とする光センサーを用いた事
故区間判別装置にある。
[Means for Solving the Problem] As mentioned above, the present invention has been made for the purpose of improving the complexity and high cost of configuring an accident zone discriminating device using conventional optical sensors. , for each section of the power transmission and distribution line, a first magneto-optic effect element and a second magneto-optic effect element are installed at both ends of the section, and the first magneto-optic effect element and the second magneto-optic effect element are The first magneto-optical element is connected by a polarization-maintaining fiber and arranged so that the rotation of the polarization plane of light passing through the magneto-optic effect element is in the opposite direction due to a magnetic field generated by the same current in the power transmission and distribution line. The effect element is connected to the front-stage polarizer, and the second magneto-optic effect element is connected to the rear-stage photoreceptor through polarization-maintaining t,v fibers, and the polarizer and analyzer are connected to the measurement system through optical fibers, respectively. An accident zone determination device using an optical sensor is characterized in that:

以下図面に示す実施例により本発明を説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第1図において、10は偏光子であり、I+、12は例
えばBSOよりなる第1と第2の磁気光学効果素子であ
り、I3は検光子である。磁気光学効果素子I!、+2
は送配電線路Qの一つの区間の定められた監視位置にお
いて、電線に近接して配置される。
In FIG. 1, 10 is a polarizer, I+ and 12 are first and second magneto-optical effect elements made of, for example, BSO, and I3 is an analyzer. Magneto-optic effect element I! ,+2
is placed close to the electric wire at a predetermined monitoring position in one section of the power transmission and distribution line Q.

この場合、磁気光学効果素子I+、+2には同一特性の
ものを使用し、磁気光学効果素子11,12間を偏波保
持ファイバ14で接続して同一の磁界に対して、光の偏
波面の回転方向が反対となるように配置する。また、偏
光子10と磁気光学効果素子11及び磁気光学効果素子
12と検光子13との間も偏波面保持ファイバ14で接
続される。
In this case, the magneto-optic effect elements I+ and +2 have the same characteristics, and the magneto-optic effect elements 11 and 12 are connected by a polarization-maintaining fiber 14 to maintain the polarization plane of light for the same magnetic field. Arrange so that the direction of rotation is opposite. Further, the polarizer 10 and the magneto-optic effect element 11 and the magneto-optic effect element 12 and the analyzer 13 are also connected by the polarization maintaining fiber 14 .

偏波面保持ファイバとは、同一基準線に対しである角度
を存する偏波面を、その角度をくずすことなく次段の機
器、素子等に送れるような特性を有する光ファイバを云
う。
A polarization-maintaining fiber is an optical fiber that has the property of being able to send a polarization plane that lies at a certain angle with respect to the same reference line to the next stage of equipment, elements, etc., without changing that angle.

偏光子10及び検光子13は測定システムlG側とそれ
ぞれ光ファイバ15で接続される。偏光子10に対する
光ファイバ15の端末は光源に、検光子13に対する光
ファイバI5の端末は光電素子に接続される。
The polarizer 10 and the analyzer 13 are connected to the measurement system 1G side through optical fibers 15, respectively. The end of the optical fiber 15 to the polarizer 10 is connected to a light source, and the end of the optical fiber I5 to the analyzer 13 is connected to a photoelectric element.

磁気光学効果素子II;+2を配置した区間に異常がな
ければ、常時同じ方向に電流が流れるので、偏光子10
を出た光は磁気光学効果素子IIにより偏波面が回転し
、さらに磁気光学素子12で元にもどされるので、結果
的に測定システム16でのもどり入力は、交流電流によ
る影響を受けないことになる。
If there is no abnormality in the section where the magneto-optic effect element II; +2 is placed, the current always flows in the same direction.
The polarization plane of the emitted light is rotated by the magneto-optic effect element II, and then returned to its original state by the magneto-optic element 12. As a result, the return input to the measurement system 16 is not affected by the alternating current. Become.

事故が磁気光学効果素子11.+2の外側で発生した場
合も前記と同様である。
The accident occurred when the magneto-optical effect element 11. The same applies to the case where the error occurs outside of +2.

これに対して磁気光学効果素子II、+2の間で事故が
生じると磁気光学効果素子11と12に対する電流は逆
方向となり、磁気光学効果素子11での偏波面の回転は
+2でもどされるよりもむしろ倍増され、結果的に測定
システム16での光出力に交流で変調された信号が出て
きて、これによって事故点がこの区間にあることが検出
できる。
On the other hand, if an accident occurs between the magneto-optic effect elements II and +2, the currents to the magneto-optic effect elements 11 and 12 will be in opposite directions, and the rotation of the plane of polarization in the magneto-optic effect element 11 will be greater than that at +2. Rather, it is doubled, resulting in an alternating current modulated signal in the light output of the measuring system 16, by means of which it is possible to detect that the fault point is in this section.

第2図は本発明の別の実施例を示す。本実施例において
、偏検光子17が使用され、偏検光子17は偏波面保持
ファイバ14で2つの磁気光学効果素子11.12と接
続され、2つの磁気光学効果素子II、12間も偏波面
保持ファイバ!4で接続され、偏検光子17と測定シス
テム!6側とは光ファイバ15で接続される。この場合
、すでに説明したように、偏波面保持ファイバ14の接
続により、2個の磁気光学効果素子11.12は同一大
きさ、方向の磁界に対し、光の偏波面の回転方向が反対
となるような配置をとることはいうまでもない。
FIG. 2 shows another embodiment of the invention. In this embodiment, a polarization analyzer 17 is used, and the polarization analyzer 17 is connected to two magneto-optic effect elements 11 and 12 by a polarization maintaining fiber 14, and the polarization plane between the two magneto-optic effect elements II and 12 is also Retention fiber! Connected with 4, polarized analyzer 17 and measurement system! It is connected to the 6 side by an optical fiber 15. In this case, as already explained, due to the connection of the polarization maintaining fiber 14, the two magneto-optic effect elements 11 and 12 rotate the polarization plane of light in opposite directions in response to a magnetic field of the same magnitude and direction. It goes without saying that such an arrangement should be adopted.

本発明はケーブル、架空線、管路気中導体又は晶型所内
機器等送配電線の電気事故区間判別に使用することがで
きる。
INDUSTRIAL APPLICABILITY The present invention can be used to determine electrical accident sections of cables, overhead lines, pipe air conductors, crystal-type power transmission and distribution lines for station equipment, etc.

[効果] すでに説明したように、従来は偏光子、磁気光学効果素
子、検光子を備える光センサーを一区間において2組必
要としたが、本発明は、2つの磁気光学効果素子が偏波
面保持ファイバを介して同一の磁界に対して光の偏波面
の回転方向が反対となる配置をとり、偏光子と一方の磁
気光学効果素子の間及び検光子と他方の磁気光学効果素
子の間も偏波面保持ファイバで接続して、偏光子、検光
子の数を節減するだけでなく、これにつな゛がる測定シ
ステムを引算回路などを必要としない、簡t11なもの
とすることができる。なお偏光子と検光子を一体とした
偏検光子を用いる場合も同様な効果をあげることができ
ることは明らかである。
[Effect] As already explained, conventionally, two sets of optical sensors each including a polarizer, a magneto-optic effect element, and an analyzer were required in one section, but in the present invention, two sets of optical sensors each having a polarizer, a magneto-optic effect element, and an analyzer are required to maintain the polarization plane. The direction of rotation of the plane of polarization of light is opposite to that of the same magnetic field through the fiber, and polarization is also applied between the polarizer and one magneto-optic effect element and between the analyzer and the other magneto-optic effect element. By connecting with a wavefront maintaining fiber, not only can the number of polarizers and analyzers be reduced, but the measurement system connected to them can be made simple and does not require a subtraction circuit. . Note that it is clear that similar effects can be achieved when using a polarized analyzer that is a combination of a polarizer and an analyzer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例を示す。第3図は従来
の送配電線の事故区間判別装置の説明図である。 10・・・偏光子、I+、+2・・・磁気光学効果素子
、+3・・・検光子、+4・・・偏波面保持ファイバ、
+5・・・光ファイバ、+6・・・測定システム、17
・・・偏検光子。 莫 1凹 障3図
1 and 2 show an embodiment of the present invention. FIG. 3 is an explanatory diagram of a conventional fault section determination device for power transmission and distribution lines. 10... Polarizer, I+, +2... Magneto-optic effect element, +3... Analyzer, +4... Polarization maintaining fiber,
+5...Optical fiber, +6...Measurement system, 17
...Polarized analyzer. Mo 1 concave 3 figures

Claims (2)

【特許請求の範囲】[Claims] (1)送配電線路の各区間ごとに、該区間両端に第1の
磁気光学効果素子と第2の磁気光学効果素子を設置し、
第1の磁気光学効果素子と第2の磁気光学効果素子とを
偏波面保持ファイバで接続して、前記磁気光学効果素子
を通過する光の偏波面の回転が、送配電線路中の同一電
流によって生ずる磁界で反対方向になるように配置し、
第1の磁気光学効果索子は前段の偏光子と、第2の磁気
光学効果素子は後段の検光子とそれぞれで偏波面保持フ
ァイバで接続し、前記偏光子と検光子をそれぞれ光ファ
イバで測定システムと接続することを特徴とする光セン
サーを用いた事故区間判別装置。
(1) For each section of the power transmission and distribution line, a first magneto-optic effect element and a second magneto-optic effect element are installed at both ends of the section,
A first magneto-optic effect element and a second magneto-optic effect element are connected by a polarization maintaining fiber, and rotation of the polarization plane of light passing through the magneto-optic effect element is caused by the same current in the power transmission and distribution line. Arranged so that the generated magnetic field is in the opposite direction,
The first magneto-optic effect element is connected to a front-stage polarizer, and the second magneto-optic effect element is connected to a rear-stage analyzer through a polarization maintaining fiber, and the polarizer and analyzer are each connected to an optical fiber for measurement. An accident zone determination device that uses an optical sensor and is characterized by being connected to a system.
(2)偏光子と検光子が一体に構成されたものを用いる
ことを特徴とする特許請求の範囲第1項記載の光センサ
ーを用いた事故区間判別装置。
(2) An accident zone determination device using an optical sensor according to claim 1, characterized in that a polarizer and an analyzer are integrally constructed.
JP20125885A 1985-09-10 1985-09-10 Accident section discriminating device using photosensor Pending JPS6259873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20125885A JPS6259873A (en) 1985-09-10 1985-09-10 Accident section discriminating device using photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20125885A JPS6259873A (en) 1985-09-10 1985-09-10 Accident section discriminating device using photosensor

Publications (1)

Publication Number Publication Date
JPS6259873A true JPS6259873A (en) 1987-03-16

Family

ID=16437957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20125885A Pending JPS6259873A (en) 1985-09-10 1985-09-10 Accident section discriminating device using photosensor

Country Status (1)

Country Link
JP (1) JPS6259873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185481A (en) * 2007-01-30 2008-08-14 Renesas Technology Corp Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185481A (en) * 2007-01-30 2008-08-14 Renesas Technology Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPS61139221A (en) Fault section discrimination for electric line
Song et al. A prototype clamp-on magneto-optical current transducer for power system metering and relaying
JPH0367231B2 (en)
JPH0511269B2 (en)
JPS6259873A (en) Accident section discriminating device using photosensor
JP2551564B2 (en) Accident section detection device for power equipment
Nakamura et al. Development of fault section detecting system for gas insulated transmission lines
JPS62110162A (en) Apparatus for detecting zero phase current
JPH073346Y2 (en) Zero-phase current measuring device
JP2722749B2 (en) Zero-phase voltage detector
HINO et al. Optical fiber current transformer applications on railway electric power supply systems
JP3232580B2 (en) Zero-phase voltage detector
JPS6234065A (en) Voltage detector
JP4065243B2 (en) Optical CT with failure judgment function
JP3350280B2 (en) Optical current transformer
JP2537381Y2 (en) Fault section detection device for long power cable lines
JPH01276074A (en) Optical demodulator
JPH03235070A (en) Apparatus for detecting fault section of line
SU1465776A1 (en) Method and apparatus for monitoring faults in power consumption in double-wire a.c. networks
JPS62255881A (en) Discriminating method for accident section of power cable
JPS6188167A (en) Device for discriminating section of transmission line
SU1366973A1 (en) Device for checking leakage current in autonomous electric power supply systems
JPH06140264A (en) Current detector
JPS62265578A (en) Detecting method for accident section of power cable
JPH02108976A (en) Double rated type light applied current sensor