JPH051825Y2 - - Google Patents

Info

Publication number
JPH051825Y2
JPH051825Y2 JP10169384U JP10169384U JPH051825Y2 JP H051825 Y2 JPH051825 Y2 JP H051825Y2 JP 10169384 U JP10169384 U JP 10169384U JP 10169384 U JP10169384 U JP 10169384U JP H051825 Y2 JPH051825 Y2 JP H051825Y2
Authority
JP
Japan
Prior art keywords
measurement
capacitance
circuit
electrode
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10169384U
Other languages
Japanese (ja)
Other versions
JPS6176366U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10169384U priority Critical patent/JPH051825Y2/ja
Publication of JPS6176366U publication Critical patent/JPS6176366U/ja
Application granted granted Critical
Publication of JPH051825Y2 publication Critical patent/JPH051825Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は静電容量測定器に関し、特に多数の
測定電極を走査しつつ時分割方式で各電極におけ
る静電容量を測定するための走査式多点静電容量
測定器に関する。
[Detailed description of the invention] [Field of industrial application] This invention relates to a capacitance measuring device, and in particular to a scanning type that scans a large number of measurement electrodes and measures the capacitance at each electrode in a time-sharing manner. Regarding multi-point capacitance measuring equipment.

〔従来の技術〕[Conventional technology]

従来、2つ以上の点について1つの測定器によ
り測定を行なういわゆる多点測定は、記録や制御
等のために多くの分野で行なわれており、一般
に、測定点のセンサ等の出力を測定器側へ走査し
つつ入力して測定する時分割方式が用いられてい
る。従つて、複数の静電容量検出電極を設けてそ
の出力を走査するならば、同じ原理によつて1台
の静電容量測定器による多点の静電容量測定が可
能であると考えられるが、以下に述べるような技
術的に未解決の問題があつて、十分な精度と信頼
性を有する多点静電容量測定器は未だ実用化され
ていない。
Conventionally, so-called multi-point measurement, in which two or more points are measured using one measuring device, has been carried out in many fields for purposes such as recording and control. A time-sharing method is used in which input is performed while scanning to the side for measurement. Therefore, if multiple capacitance detection electrodes are provided and their outputs are scanned, it is possible to measure capacitance at multiple points using a single capacitance measuring device using the same principle. However, there are still unresolved technical problems as described below, and a multipoint capacitance measuring device with sufficient accuracy and reliability has not yet been put into practical use.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記のような従来の多点測定技術を単に静電容
量測定に応用して、多数の測定電極の静電容量を
時分割で測定しょうとする場合、各時点で測定器
に接続される電極以外の電極は、不定電位で放置
されたり、単にアースに落とす等の処理が行なわ
れるに過ぎないのが普通である。しかしながら、
このように不定電位で放置したり、単にアースに
落としたりするだけでは、電極どおしが接近して
いる場合、電極相互間の静電容量を拾うため各時
点の測定対象が攪乱されるし、またリーク電流も
測定回路を流れるので、各電極の静電容量を正確
に測定するのは極めて困難である。また、各電極
と測定回路の間の接続ケーブルは、相互干渉や外
乱を防ぐために個別に厳重にシールドする必要が
あるが、測定点が多い場合には接続線がかさばる
とともに、このような厳重なシールドを施し、維
持することは簡単ではなく、しかも単にシールド
側を接地するだけでは、上述したように、各電極
の静電容量を正確に測定することはできない。さ
らに、走査のために各電極系統に接続されるアナ
ログスイツチ等のスイツチの開時しゃ断特性が不
十分な場合、スイツチのリークを通じてやはり相
互干渉による障害が生じる。
When simply applying the conventional multi-point measurement technique described above to capacitance measurement and measuring the capacitance of a large number of measurement electrodes in a time-sharing manner, the electrodes other than those connected to the measuring device at each time point are The electrodes are usually left at an undefined potential or simply grounded. however,
If the electrodes are left at an undefined potential or simply grounded, the capacitance between the electrodes will be picked up and the measurement target at each point will be disturbed if the electrodes are close together. , leakage current also flows through the measurement circuit, making it extremely difficult to accurately measure the capacitance of each electrode. In addition, the connection cables between each electrode and the measurement circuit must be individually and strictly shielded to prevent mutual interference and disturbances, but when there are many measurement points, the connection cables become bulky and such strict shielding is necessary. It is not easy to provide and maintain a shield, and simply grounding the shield side does not allow accurate measurement of the capacitance of each electrode, as described above. Furthermore, if a switch such as an analog switch connected to each electrode system for scanning has insufficient opening/cutting characteristics, problems may occur due to mutual interference through switch leakage.

この考案は上記のような事情に鑑みてなされた
もので、その目的は、多点に配置された測定電極
の静電容量を時分割で連続的にしかも正確に自動
測定することのできる走査式多点静電容量測定器
を提供することにある。
This idea was devised in view of the above circumstances, and its purpose was to create a scanning type that can automatically and accurately measure the capacitance of measurement electrodes arranged at multiple points in a time-sharing manner. An object of the present invention is to provide a multi-point capacitance measuring device.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題を解決するため、この考案では、測
定用交流電源4を有する静電容量測定回路CM
と、それぞれ静電容量測定電極Pnを含む複数個
の測定電極系統8間に、前記静電容量測定回路
CMと各測定電極系統8とを逐次接続する第1の
スイツチ手段S1と、前記第1のスイツチ手段S1
逐次選択する測定電極系統8以外の測定電極系統
8を前記静電容量測定回路CMの測定用交流電源
4と接続する第2のスイツチ手段S2とを設け、前
記静電容量測定回路CMによつて、前記第1のス
イツチ手段S1が選択する測定電極系統8へ前記測
定用交流電源4から流れる測定電流Imを順次計
測すると共に、その際、前記第2のスイツチ手段
S2によつて選択される前記計測中の測定電極系統
8以外の測定電極系統8を前記測定用交流電源と
同電位に保つようにした構成としたのである。
In order to solve the above problem, in this invention, a capacitance measurement circuit CM having an AC power supply 4 for measurement is used.
and a plurality of measurement electrode systems 8 each including a capacitance measurement electrode Pn, the capacitance measurement circuit
A first switch means S 1 sequentially connects the CM and each measurement electrode system 8; and a first switch means S 1 connects the measurement electrode systems 8 other than the measurement electrode systems 8 sequentially selected by the first switch means S 1 to the capacitance measurement circuit. A second switch means S 2 is provided to connect to the measurement AC power supply 4 of the CM, and the capacitance measurement circuit CM causes the measurement electrode system 8 selected by the first switch means S 1 to be connected to the measurement electrode system 8. The measurement current Im flowing from the AC power source 4 is sequentially measured, and at the same time, the second switch means
The configuration is such that the measurement electrode systems 8 other than the measurement electrode system 8 under measurement selected by S 2 are kept at the same potential as the measurement AC power supply.

〔作用〕[Effect]

一般に、静電容量に限らず、電流性パラメータ
の測定対象点からリーク電流や線間容量による相
互干渉の影響を排除するためにいわゆるガードシ
ールドまたはガード回路を用いることは公知であ
る。その原理を第2図によつて説明すると、電極
P−E間に電源1より交流電圧Vを印加し、電流
検出器2により電流Imを測定することによつて
コンダクタンスやサセプタンス等を測定する際、
接続ケーブルその他の非測定点からのリーク電流
も電流検出器2中を流れて測定に大きな誤差をも
たらすが、電極Eとその接続ケーブル3を含む系
統のうち測定対象点、すなわち、電極Eとの対向
点以外の部分をガードシールドGで覆い、これに
上記と同じ交流電圧Vを印加すると、接続ケーブ
ル3からはリーク電流が生ぜず、ガードシールド
GからアースEへのリーク電流Ilは電流検出器2
をバイパスして、これを通らず、検出器2には電
極P−E間の電流Imのみが流れるので、接続ケ
ーブル3その他によるリーク電流や干渉の影響を
排除することができる。上記のように、ガードシ
ールドGに電極Pに加えるのと同じ電圧を印加す
るようにした回路は電極Pを含む系統に対するガ
ード回路とも呼ばれる。
In general, it is known that a so-called guard shield or guard circuit is used to eliminate the influence of mutual interference due to leakage current or line capacitance from a measurement target point not only for capacitance but also for current parameters. The principle is explained with reference to Fig. 2. When measuring conductance, susceptance, etc. by applying AC voltage V from power source 1 between electrodes P and E and measuring current Im with current detector 2. ,
Leakage current from connecting cables and other non-measuring points also flows through the current detector 2 and causes large errors in measurement. If the part other than the opposing point is covered with a guard shield G and the same AC voltage V as above is applied to it, no leakage current is generated from the connection cable 3, and the leakage current Il from the guard shield G to the earth E is detected by the current detector. 2
Since only the current Im between the electrodes P and E flows through the detector 2 without passing through it, it is possible to eliminate the influence of leakage current and interference caused by the connection cable 3 and others. As described above, a circuit that applies the same voltage to the guard shield G as that applied to the electrode P is also called a guard circuit for a system including the electrode P.

前述の構成を有するこの考案の走査式多点静電
容量測定器においては、上記の電極Pのような静
電容量測定電極が多点に設けられており、これら
の電極をそれぞれ含む複数個の測定電極系統を逐
次電流検出器2に切換え接続することにより、時
分割で各電極の静電容量を測定するものである
が、その際、各時点において静電容量測定回路に
接続される(第2図において電流検出器2に接続
される)系統以外の測定電極系統に、上記のよう
なガード回路を形成させる。すなわち、ある時点
において、1本の測定電極系統のみを静電容量測
定回路に接続し、他のすべての系統をたとえば、
第2図の回路のX点に接続するが、次の時点で
は、この1本の系統を測定回路から切離してX点
に接続すると同時に、他の1本の電極系統をX点
から切離して測定回路に接続するという動作を、
すべての電極系統について繰返す。
In the scanning multi-point capacitance measuring device of this invention having the above-described configuration, capacitance measuring electrodes such as the electrode P described above are provided at multiple points, and a plurality of capacitance measuring electrodes each including these electrodes are provided at multiple points. By sequentially switching and connecting the measuring electrode system to the current detector 2, the capacitance of each electrode is measured in a time-sharing manner. A guard circuit as described above is formed in the measurement electrode system other than the system (connected to the current detector 2 in FIG. 2). That is, at a certain point in time, only one measuring electrode system is connected to the capacitance measuring circuit, and all other systems are connected, e.g.
It is connected to point X of the circuit in Figure 2, but at the next point, this one system is disconnected from the measurement circuit and connected to point X, and at the same time, the other electrode system is disconnected from point X and measured. The action of connecting to a circuit,
Repeat for all electrode systems.

〔実施例〕〔Example〕

第1図に示すように実施例の走査式多点静電容
量測定器は、測定用交流電源として設けられた発
振器4及び電流計5等によりなる静電容量測定回
路CMと、n個の静電容量測定電極P1……Poが多
心シールド線7の各被覆心線L1……Lo先端にそ
れぞれ接続され、接地電極Eに対向させて固定さ
れた測定電極系統8と、その両者間に設けられた
第1走査器S1及び第2走査器S2よりなる走査型ス
イツチ回路6とからなつている。
As shown in FIG. 1, the scanning multi-point capacitance measuring device of the embodiment includes a capacitance measuring circuit CM consisting of an oscillator 4 and an ammeter 5 provided as an AC power source for measurement, and n static capacitance measuring circuits CM. Capacitance measurement electrode P 1 ...P o is connected to the tip of each coated core wire L 1 ...L o of multi-core shielded wire 7, and measurement electrode system 8 is fixed facing ground electrode E, and It consists of a scanning switch circuit 6 consisting of a first scanner S 1 and a second scanner S 2 provided between them.

上記走査型スイツチ回路6の第1走査器S1は、
静電容量測定回路CMの電流計5を介して発振器
4出力の接続される出力端子Pを逐次測定電極
P1……Poに切換え接続するが、第2走査器2は、
これと同期して静電容量測定回路CMの発振器4
出力の接続されたガード端子と測定電極P1
…Poとの接続を逐次切離してゆく。このように
して、出力端子がたとえは測定電極P1に接続
される瞬間には、他の電極P2……Poがすべてガ
ード端子に接続されたまま、電極P1のみがガ
ード端子より切離されるので、この瞬間、電極
P2……Poおよび心線L2……Loは同電位となり、
電極P1を含む系統に対してガード回路が形成さ
れ、電流計5には電極P1における静電容量を示
す電流のみが流れる。なお、上記シールド線7の
シールド9は常時ガード端子に接続されてお
り、やはりガード回路を形成する。以下、同様
に、電極P2からPoまでそれぞれ静電容量の測定
が行なわれた後、再度電極P1より走査が繰返さ
れる。
The first scanner S1 of the scanning switch circuit 6 is
The output terminal P connected to the oscillator 4 output is sequentially connected to the measurement electrode via the ammeter 5 of the capacitance measurement circuit CM.
P 1 ... is switched and connected to P o , but the second scanner 2 is
At the same time, the oscillator 4 of the capacitance measurement circuit CM
Guard terminal connected to output and measuring electrode P 1 ...
...Sequentially disconnect from P o . In this way, at the moment when the output terminal is connected to the measuring electrode P 1 , only the electrode P 1 is disconnected from the guard terminal while all other electrodes P 2 ... P o are connected to the guard terminal. At this moment, the electrode
P 2 ...P o and core wire L 2 ...L o have the same potential,
A guard circuit is formed for the system including the electrode P1 , and only a current indicating the capacitance at the electrode P1 flows through the ammeter 5. Incidentally, the shield 9 of the shield wire 7 is always connected to the guard terminal, and also forms a guard circuit. Thereafter, the capacitance is similarly measured from electrode P 2 to P o , and then scanning is repeated again starting from electrode P 1 .

上記走査型スイツチ回路6は半導体アナログス
イツチや水銀接点スイツチ等を用いて構成するこ
とができるが、第3図にアナログスイツチを用い
て4つの測定電極P1……P4を走査するよう構成
されたスイツチ回路の例を示す。第3図におい
て、第1走査器S1の各アナログスイツチ10のゲ
ート入力はデコーダ11の4つの相異なる出力端
子にそれぞれ接続されており、第2走査器2の各
アナログスイツチ12のゲート入力はNOT回路
14を介して同様にデコーダ11に接続されてい
る。また、第1および第2走査器S1,S2の各アナ
ログスイツチ10および12の入力端子はそれぞ
れ静電容量測定回路CMの出力端子およびガー
ド端子に接続され、S1,S2の対応するアナログ
スイツチ10,12の出力端子はそれぞれ共通に
対応する測定電極P1……P4に接続されている。
上記デコーダ11はカウンタ13により駆動され
て各出力端子が1つずつHレベルになるため、H
レベルの出力端子に接続された第1走査器S1のア
ナログスイツチ10が閉じて静電容量測定器CM
の出力端子が対応する1つの測定電極P1……
P4に接続されるのに同期して、第2走査器S2
対応するアナログスイツチ12が開かれ、その電
極はガード端子より切離される。すなわち、走
査の各時点において、第1走査器S1のアナログス
イツチ10は1つだけが閉じられ、第2走査器S2
ではこれに対応するアナログスイツチ12だけが
開かれ、他の3つは閉じられる。
The scanning type switch circuit 6 can be constructed using a semiconductor analog switch, a mercury contact switch, etc., but as shown in FIG . An example of a switch circuit is shown below. In FIG. 3, the gate input of each analog switch 10 of the first scanner S 1 is connected to four different output terminals of the decoder 11, and the gate input of each analog switch 12 of the second scanner S 2 is connected to four different output terminals of the decoder 11, respectively. Similarly, it is connected to the decoder 11 via the NOT circuit 14. Further, the input terminals of the analog switches 10 and 12 of the first and second scanners S 1 and S 2 are respectively connected to the output terminal and the guard terminal of the capacitance measuring circuit CM, and the corresponding input terminals of the analog switches 10 and 12 of the first and second scanners S 1 and S 2 are The output terminals of the analog switches 10 and 12 are commonly connected to corresponding measurement electrodes P 1 ...P 4 .
The decoder 11 is driven by the counter 13 and each output terminal becomes H level one by one.
The analog switch 10 of the first scanner S1 connected to the level output terminal closes and the capacitance measuring device CM
One measurement electrode P 1 to which the output terminal corresponds...
In synchronization with the connection to P 4 , the corresponding analog switch 12 of the second scanner S 2 is opened, and its electrode is disconnected from the guard terminal. That is, at each point in time of scanning, only one analog switch 10 of the first scanner S 1 is closed, and only one analog switch 10 of the second scanner S 2 is closed.
Then, only the corresponding analog switch 12 is opened, and the other three are closed.

〔考案の効果〕[Effect of idea]

以上、詳細に説明したように、この考案の走査
式多点静電容量測定器によれば、各測定電極毎に
個別にシールド線を用いる必要がなく、また電極
どおしが接近している場合、電極相互間の静電容
量を拾うのを塞ぐことができ、走査用スイツチの
開時リークによる相互干渉を排除して、正確な測
定を行なうことができる。さらに、この考案によ
れば、第4図aに示すように測定電極P1……Po
が密集しているような場合、電極Piが分散してい
たり、密集していてもガード回路が形成されない
と第4図bに示すように電気力線が電極外に膨れ
出して測定ポイントが限定できないのに対し、ガ
ード回路の作用によつて電気力線が平行になり、
各電極による測定範囲が正確に確定されるという
効果もある。
As explained above in detail, according to the scanning multi-point capacitance measuring device of this invention, there is no need to use separate shield wires for each measuring electrode, and the electrodes are close to each other. In this case, it is possible to prevent the capacitance between the electrodes from being picked up, eliminate mutual interference due to leakage when the scanning switch is opened, and perform accurate measurements. Furthermore, according to this invention, as shown in FIG. 4a, the measuring electrodes P 1 ... P o
If the electrodes P i are closely spaced, or if a guard circuit is not formed even if the electrodes P However, due to the action of the guard circuit, the electric lines of force become parallel,
Another effect is that the measurement range by each electrode is accurately determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の走査式多点静電容量測定
器の一実施例の回路図、第2図はガード回路の原
理を説明するための回路図、第3図は走査型スイ
ツチ回路の一実施例の回路図、第4図aおよびb
は測定電極部の電気力線の分布状態を示す概略図
である。 4……発振回路、8……測定電極系統、CM…
…静電容量測定回路、G……ガード端子、P1
…Po……静電容量測定電極、E……接地電極、
S1……第1走査器、S2……第2走査器、L1……
Lo……被覆心線。
Figure 1 is a circuit diagram of an embodiment of the scanning multi-point capacitance measuring device of this invention, Figure 2 is a circuit diagram for explaining the principle of the guard circuit, and Figure 3 is a circuit diagram of the scanning type switch circuit. Circuit diagram of one embodiment, Figure 4 a and b
FIG. 2 is a schematic diagram showing the distribution state of electric lines of force in the measurement electrode section. 4...Oscillation circuit, 8...Measurement electrode system, CM...
...Capacitance measurement circuit, G...Guard terminal, P 1 ...
...P o ...capacitance measurement electrode, E ...ground electrode,
S 1 ... first scanner, S 2 ... second scanner, L 1 ...
L o ...Sheathed core wire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 測定用交流電源4を有する静電容量測定回路
CMと、それぞれ静電容量測定電極Pnを含む複数
個の測定電極系統8間に、前記静電容量測定回路
CMと各測定電極系統8とを逐次接続する第1の
スイツチ手段S1と、前記第1のスイツチ手段S1
逐次選択する測定電極系統8以外の測定電極系統
8を前記静電容量測定回路CMの測定用交流電源
4と接続する第2のスイツチ手段S2とを設け、前
記静電容量測定回路CMによつて前記第1のスイ
ツチ手段S1が選択する測定電極系統8へ前記測定
用交流電源4から流れる測定電流Imを順次計測
すると共に、その際、前記第2のスイツチ手段S2
によつて選択される前記計測中の測定電極系統8
以外の測定電極系統8を前記測定用交流電源4と
同電位に保つようにしたことを特徴とする走査式
多点静電容量測定器。
Capacitance measurement circuit with measurement AC power supply 4
The capacitance measurement circuit is connected between the CM and a plurality of measurement electrode systems 8 each including a capacitance measurement electrode Pn.
A first switch means S1 sequentially connects the CM and each measurement electrode system 8, and a first switch means S1 connects the measurement electrode systems 8 other than the measurement electrode systems 8 sequentially selected by the first switch means S1 to the capacitance measurement circuit. A second switch means S2 is provided to connect to the measurement AC power source 4 of the CM, and the capacitance measurement circuit CM connects the measurement electrode system 8 selected by the first switch means S1 to the measurement electrode system 8. The measurement current Im flowing from the AC power supply 4 is sequentially measured, and at the same time, the second switch means S 2
The measurement electrode system 8 during the measurement selected by
A scanning multi-point capacitance measuring instrument characterized in that the measuring electrode system 8 other than the measuring electrode system 8 is maintained at the same potential as the measuring AC power source 4.
JP10169384U 1984-07-04 1984-07-04 Expired - Lifetime JPH051825Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10169384U JPH051825Y2 (en) 1984-07-04 1984-07-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10169384U JPH051825Y2 (en) 1984-07-04 1984-07-04

Publications (2)

Publication Number Publication Date
JPS6176366U JPS6176366U (en) 1986-05-22
JPH051825Y2 true JPH051825Y2 (en) 1993-01-18

Family

ID=30661111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10169384U Expired - Lifetime JPH051825Y2 (en) 1984-07-04 1984-07-04

Country Status (1)

Country Link
JP (1) JPH051825Y2 (en)

Also Published As

Publication number Publication date
JPS6176366U (en) 1986-05-22

Similar Documents

Publication Publication Date Title
EP1072897B1 (en) Method and apparatus for searching electromagnetic disturbing source and noncontact voltage probe therefor
US5325068A (en) Test system for measurements of insulation resistance
US3289076A (en) Location and repair of faults in electrical conductors
JPH051825Y2 (en)
JPH112650A (en) Device and method for measuring grounding resistance
Black et al. The application of the pulse discrimination system to the measurement of partial discharges in insulation under noisy conditions
JPH02296161A (en) Method for detecting partial discharge
JPS60262069A (en) Monitoring of deterioration in insulation of power cable
US5428296A (en) Probe assembly for measuring resistivity of a soil, and method thereof
JP2655886B2 (en) Laser processing machine nozzle distance detection device
JPH0712940Y2 (en) IC test equipment
JPH03154879A (en) Substrate inspecting device
JP2722749B2 (en) Zero-phase voltage detector
RU2739386C2 (en) Method for determination of insulation resistance reduction point
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
Behrmann et al. Guide to Changes Made in Edition 4 of IEC 60270, Charge-Based Partial Discharge Measurements
JP2746986B2 (en) Partial discharge position locating method and apparatus
Oesterheld Field distortion effects by an electro-optical field sensor and the resulting influence on the sensor output
SU1397839A1 (en) Device for registering voltage in high-voltage units
SU702204A1 (en) Apparatus for testing collar seal
JP2679191B2 (en) Cable ground fault probe
JPS59119232A (en) Water leakage detector
GB2007850A (en) Method and device for testing electrical conductors
SU1659902A1 (en) Method for measuring s-parameters of 2n-pole
Porter WorkshopProceedings: AdvancedDiagnosticsfor SubstationEquipment