JP2722528B2 - Alkaline batteries - Google Patents

Alkaline batteries

Info

Publication number
JP2722528B2
JP2722528B2 JP63250195A JP25019588A JP2722528B2 JP 2722528 B2 JP2722528 B2 JP 2722528B2 JP 63250195 A JP63250195 A JP 63250195A JP 25019588 A JP25019588 A JP 25019588A JP 2722528 B2 JP2722528 B2 JP 2722528B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
conductive film
case
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63250195A
Other languages
Japanese (ja)
Other versions
JPH0298037A (en
Inventor
浩司 芳澤
璋 大田
晃 三浦
芳明 新田
佐知子 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63250195A priority Critical patent/JP2722528B2/en
Publication of JPH0298037A publication Critical patent/JPH0298037A/en
Application granted granted Critical
Publication of JP2722528B2 publication Critical patent/JP2722528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、二酸化マンガンと炭素材を主構成材料とし
て用いた正極合剤を、金属製正極ケース内に密着させて
収納するアルカリ乾電池において、正極ケース内壁と正
極活物質との接触性を向上させると同時に、正極ケース
と正極合剤とのすきまに電解液を適量保持させるように
工夫した電池構造に関するものである。
Description: TECHNICAL FIELD The present invention relates to an alkaline dry battery in which a positive electrode mixture containing manganese dioxide and a carbon material as main constituent materials is closely adhered and stored in a metal positive electrode case. The present invention relates to a battery structure devised to improve the contact between the inner wall and the positive electrode active material and to hold an appropriate amount of an electrolytic solution in the gap between the positive electrode case and the positive electrode mixture.

従来の技術 従来、この種のアルカリ乾電池は、第4図に示すよう
な構成であった。第4図において、21は二酸化マンガン
と黒鉛を主構成材料とする正極合剤、22はゲル化された
亜鉛粉末の負極、23はセパレータ、24はゲル負極集電
棒、25は正極キャップである。26は全面にニッケルメッ
キを施した鉄製の正極ケース、28は電池の外装缶、29は
樹脂封口体、30は底板である。
2. Description of the Related Art Conventionally, this type of alkaline dry battery has a configuration as shown in FIG. In FIG. 4, 21 is a positive electrode mixture mainly composed of manganese dioxide and graphite, 22 is a negative electrode of gelled zinc powder, 23 is a separator, 24 is a gel negative electrode current collector, and 25 is a positive electrode cap. 26 is an iron positive electrode case with nickel plating on the entire surface, 28 is a battery outer can, 29 is a resin sealing body, and 30 is a bottom plate.

このような場合でも、正極活物質と金属製正極ケース
内壁との電気的接触は比較的良好であるが、更に内部抵
抗を低下させるために特公昭42−25145号公報に見られ
るように正極ケース内壁に黒鉛などの導電性被膜を形成
するといった試みがなされてきた。
Even in such a case, the electrical contact between the positive electrode active material and the inner wall of the metal positive electrode case is relatively good, but in order to further reduce the internal resistance, as shown in JP-B-42-25145, the positive electrode case Attempts have been made to form a conductive coating such as graphite on the inner wall.

発明が解決しようとする課題 アルカリ乾電池において、電解液の正極活物質への供
給が強負荷放電に非常に影響を及ぼす。つまり電解液の
供給が良好なほど強負荷放電において電池性能が向上す
ることが知られている。しかしながら従来例の如くニッ
ケルメッキを全面に施した正極ケース内壁に撥水性を付
加する黒鉛などの導電性被膜を形成させ正極活物質外周
全体と非常に密に接触させる構造の場合においては、電
解液の供給は電池の中心方向からのみ供給され、正極活
物質の外周側からはほとんど供給されない。そのため
に、強負荷放電の場合、電解液の供給の遅れによる分極
が起こり、結果として放電中の電池維持電圧が低いとい
った課題があった。
Problems to be Solved by the Invention In an alkaline dry battery, the supply of an electrolytic solution to a positive electrode active material has a great effect on heavy load discharge. That is, it is known that the better the supply of the electrolytic solution, the better the battery performance in heavy load discharge. However, in the case of a structure in which a conductive coating such as graphite for imparting water repellency is formed on the inner wall of a positive electrode case coated with nickel plating on the entire surface and a very close contact is made with the entire outer periphery of the positive electrode active material as in the conventional example, Is supplied only from the center of the battery, and is hardly supplied from the outer peripheral side of the positive electrode active material. For this reason, in the case of heavy load discharge, polarization occurs due to a delay in supply of the electrolytic solution, and as a result, there is a problem that the battery maintenance voltage during discharge is low.

本発明はこのような従来の問題点を解決するもので正
極活物質への電解液の供給を良好にし、放電中の電池維
持電圧を高めた新規な電池を提供することを目的とす
る。
An object of the present invention is to solve such a conventional problem and to provide a novel battery in which the supply of an electrolytic solution to a positive electrode active material is improved and the battery maintenance voltage during discharge is increased.

課題を解決するための手段 この課題を解決するため本発明は、二酸化マンガンと
炭素材を主構成材料として用いた正極合剤を、全面にニ
ッケルメッキを施した鉄製の正極ケース内に密着させて
収納したアルカリ乾電池において、正極ケース内壁に炭
素材を主材料とする導電性被膜を部分的に形成させたも
のである。
Means for Solving the Problems In order to solve this problem, the present invention provides a positive electrode mixture using manganese dioxide and a carbon material as a main constituent material by closely contacting the inside of an iron positive electrode case plated with nickel over the entire surface. In the stored alkaline dry battery, a conductive film mainly composed of a carbon material is partially formed on the inner wall of the positive electrode case.

作用 この構成によりアルカリ乾電池を構成した場合、導電
性被膜を部分的に形成させることによって生じた正極ケ
ース内壁と正極合剤とのすきまに保持された電解液が、
正極合剤外周方向から供給される。したがって、電池の
中心方向からのみの電解液の供給であったものが、外周
方向からも供給されるようになり、電解液の供給の遅れ
による分極が小さくなり、結果として強負荷放電時に平
均電圧が従来のものにくらべ40mV程度高くすることが可
能となる。
When an alkaline dry battery is configured by this configuration, the electrolyte retained in the gap between the inner wall of the positive electrode case and the positive electrode mixture, which is generated by partially forming the conductive film,
It is supplied from the outer peripheral direction of the positive electrode mixture. Therefore, the supply of the electrolytic solution only from the center direction of the battery is supplied from the outer peripheral direction, the polarization due to the delay of the supply of the electrolytic solution is reduced, and as a result, the average voltage during the heavy load discharge is reduced. Can be increased by about 40 mV compared to conventional ones.

実施例 第2図(a),(b)は、本発明の一実施例による正
極ケースの側面内壁を展開して示した図であり、同図
(c)は(a)の断面図である。それぞれ13,15が導電
性被膜で12,14は正極ケース内壁である。第2図(a)
及び(b)に示すようにそれぞれ、縞状及び水玉状に導
電性被膜を形成させた後、正極合剤を、充填する方法を
とった場合、第3図に示すように正極ケース内壁に部分
的に形成された導電性被膜は正極合剤との電気的接触を
十分にすると同時に、正極ケース内壁と正極合剤との間
にすきまを生じさせる。第3図には、電池を上部より見
た時の断面の半分を示した。1は正極合剤、2はゲル負
極、3はセパレータ、6は正極ケース、7は縞状または
水玉状に形成された導電性被膜、16は正極合剤と正極ケ
ースとのすきまである。第2図(c)の断面図中に示し
たaは導電性被膜の厚み、bは導電性被膜と正極合剤と
の接触面であり、正極ケースと正極合剤との電気的接触
をとる部分である。cは正極合剤と正極ケース内壁との
すきまで電解液を保持する部分の面積である。
Embodiments FIGS. 2 (a) and 2 (b) are views showing an expanded side wall of a positive electrode case according to an embodiment of the present invention, and FIG. 2 (c) is a sectional view of FIG. 2 (a). . Reference numerals 13 and 15 denote conductive coatings, and reference numerals 12 and 14 denote inner walls of the positive electrode case. Fig. 2 (a)
And (b), a conductive film is formed in a striped and polka-dot shape, respectively, and then the positive electrode mixture is filled. The electrically conductive film thus formed sufficiently ensures electrical contact with the positive electrode mixture, and at the same time, creates a clearance between the inner wall of the positive electrode case and the positive electrode mixture. FIG. 3 shows a half of the cross section when the battery is viewed from above. 1 is a positive electrode mixture, 2 is a gel negative electrode, 3 is a separator, 6 is a positive electrode case, 7 is a conductive film formed in stripes or polka dots, and 16 is a gap between the positive electrode mixture and the positive electrode case. In the sectional view of FIG. 2 (c), a is the thickness of the conductive film, b is a contact surface between the conductive film and the positive electrode mixture, and makes electrical contact between the positive electrode case and the positive electrode mixture. Part. c is the area of the portion holding the electrolyte until the gap between the positive electrode mixture and the inner wall of the positive electrode case.

正極ケース内壁に第2図(a)の展開図に示すように
縞状に導電性被膜を塗布し、第1図に示すLR6形アルカ
リ乾電池を構成したものをAとし、同様に第2図の
(b)に示すように水玉状に導電性被膜を形成し、LR6
形電池を構成したものを電池Bとした。導電性被膜とし
ては、例えば、PVC(ポリビニルクロライド)をバイン
ダーとし、これに導電性物質としてリン状黒鉛とアセチ
レンブラックを分散させ溶媒としてメチルエチルケトン
を用いた導電性塗料を用いて形成させた。この塗料を正
極ケース内壁に曲面印刷し、大気中で乾燥させて導電性
被膜を形成させた。電池A,Bにおいては上述のb面とc
面の比はどちらもb面の割合が主体の70%とした。また
aの値は上述の導電性被膜の場合10μmとした。電池A
及びBは第1図(a)に示す状態に構成した。第1図
(a)において、1は二酸化マンガンと黒鉛を主構成物
質とする正極合剤、2はゲル化した電解液に亜鉛粉末を
分散させたゲル負極、3はセパレータ、4は負極集電棒
である。5は正極キャップ、6はニッケルメッキを施し
た鉄製正極ケース、7は正極ケース内壁に部分的に形成
された炭素材を主材料とする導電性被膜、8は電池の外
装缶、9は樹脂封口体、10は底板、11はハロンチューブ
である。第1図(b)はケース側壁の拡大断面図であ
る。
As shown in the developed view of FIG. 2 (a), a conductive film is applied to the inner wall of the positive electrode case in the form of stripes, and the structure of the LR6 type alkaline dry battery shown in FIG. As shown in (b), a conductive film is formed in a polka dot shape, and LR6
What constituted the shape battery was battery B. The conductive film was formed using, for example, a conductive paint using PVC (polyvinyl chloride) as a binder, phosphorous graphite and acetylene black as conductive materials, and methyl ethyl ketone as a solvent. This paint was printed on the inner wall of the positive electrode case on a curved surface and dried in the air to form a conductive film. For batteries A and B, b and c
In both cases, the ratio of the b-plane was 70% of the main body. The value of a was 10 μm in the case of the above-mentioned conductive film. Battery A
And B were configured as shown in FIG. 1 (a). In FIG. 1 (a), 1 is a positive electrode mixture mainly composed of manganese dioxide and graphite, 2 is a gel negative electrode in which zinc powder is dispersed in a gelled electrolytic solution, 3 is a separator, 4 is a negative electrode current collector rod It is. 5 is a positive electrode cap, 6 is a nickel-plated iron positive electrode case, 7 is a conductive film mainly composed of a carbon material formed partially on the inner wall of the positive electrode case, 8 is a battery outer can, and 9 is a resin seal. The body, 10 is the bottom plate and 11 is the halon tube. FIG. 1 (b) is an enlarged sectional view of the case side wall.

さて以上のように構成した電池は、正極ケース内壁全
面に導電性被膜を設けた電池に較べ正極ケースと正極合
剤との密着性が弱くなり、結果として接触抵抗の増加に
よる電池内部抵抗の上昇が懸念される。そこで上述のよ
うに構成した電池A,Bおよび正極ケース内壁に炭素質を
主材料とする導電性被膜を一部ではなく全面に形成さ
せ、後は上記と同様の手順で構成した従来の電池Cにつ
いてそれぞれ開回路電圧及び内部抵抗を測定し、表1に
示す結果を得た。測定は1KHzの交流インピーダンス測定
法により行った。この表から明らかなように懸念された
内部抵抗の増加はみられず正極ケース内壁に導電性被膜
を全面に形成するのではなく、内壁の一部に形成する場
合においても電池内部抵抗において電池A,Bはさほど影
響のないことがわかった。
In the battery configured as described above, the adhesion between the positive electrode case and the positive electrode mixture is weaker than that of the battery in which the conductive coating is provided on the entire inner wall of the positive electrode case, and as a result, the internal resistance of the battery is increased due to an increase in the contact resistance. Is concerned. Therefore, the batteries A and B configured as described above and the conventional battery C configured in the same procedure as described above were formed on the inner wall of the positive electrode case by forming a conductive coating mainly composed of carbonaceous material on the entire surface instead of a part. , The open circuit voltage and the internal resistance were measured, and the results shown in Table 1 were obtained. The measurement was performed by a 1 KHz AC impedance measurement method. As is apparent from this table, there was no increase in the internal resistance that was a concern, and even when the conductive film was formed not on the entire inner wall of the positive electrode case but on a part of the inner wall, the internal resistance of the battery A increased. B was found to have no significant effect.

第5図は、上述の実施例で得られた新規電池A,Bと従
来電池Cについて20℃での1Ω連続放電試験で得られ
た、それぞれの放電特性を示すものである。グラフから
も明らかなように電池A,Bは電池Cに対して電解液の正
極活物質への良好な供給により、0.75Vまでにおいて平
均維持電圧が40mV程度高くなり、明らかに従来品よりも
性能が大きく向上することがわかる。さらに、上述の実
施例で得られた電池A,B及び従来電池Cをそれぞれ60℃
で20日間保存した後、20℃で1Ω連続放電試験を行った
結果も第5図中に示す。保存後の電池は保存前の電池よ
りは維持電圧は低下しているものの保存後の電池A′及
びB′は保存後の従来電池C′にくらべ30mV程度、維持
電圧が高いことがわかる。
FIG. 5 shows the respective discharge characteristics of the new batteries A and B obtained in the above-described embodiment and the conventional battery C obtained by a 1Ω continuous discharge test at 20 ° C. As is clear from the graph, the average sustaining voltage of the batteries A and B was about 40 mV higher up to 0.75 V due to the good supply of the electrolyte to the positive electrode active material than the battery C, and the performance was clearly higher than the conventional product. It can be seen that is greatly improved. Further, the batteries A and B obtained in the above-described embodiment and the conventional battery C were
After storing for 20 days at 20 ° C., the result of a 1Ω continuous discharge test at 20 ° C. is also shown in FIG. It can be seen that the battery after storage has a lower maintenance voltage than the battery before storage, but the batteries A 'and B' after storage have a higher maintenance voltage of about 30 mV than the conventional battery C 'after storage.

以上説明したように導電性被膜を正極ケース内壁に部
分的に形成させる方法により、電解液の正極合剤への供
給を良好にし、強負荷放電時に電池維持電圧を向上させ
ることができたが、次に部分的に導電性被膜を形成させ
る場合、どの程度形成させればよいかを調べた。第6図
に、その結果を示した。グラフの横軸には上述したb面
の全体に対する割合,縦軸の左側には、放電終止電圧を
0.75Vとした時の平均電圧,右側には電池の放電前の内
部抵抗を示した。このグラフより、初度及び60℃で20日
間保存後とも平均電圧に優位性のある範囲はb面の全体
に対する割合が30〜70%であることがわかる。したがっ
て正極ケース内壁に部分的に導電性被膜を形成させる場
合、b面の全体に対する割合を30〜70%の範囲にするこ
とが必要である。
As described above, the method of partially forming the conductive coating on the inner wall of the positive electrode case makes it possible to improve the supply of the electrolyte to the positive electrode mixture and improve the battery maintenance voltage during heavy load discharge. Next, when a conductive film was partially formed, the extent to which the conductive film had to be formed was examined. FIG. 6 shows the results. The horizontal axis of the graph indicates the ratio of the above-mentioned b-plane to the whole, and the left side of the vertical axis indicates the discharge end voltage.
The average voltage at 0.75V, and the right side shows the internal resistance of the battery before discharging. From this graph, it can be seen that in the range where the average voltage is superior even after the initial storage and storage at 60 ° C. for 20 days, the ratio of the surface b to the entirety is 30 to 70%. Therefore, when a conductive film is partially formed on the inner wall of the positive electrode case, it is necessary to set the ratio of the b surface to the entirety in the range of 30 to 70%.

発明の効果 以上のように本発明によれば、アルカリ乾電池の強負
荷放電において、電解液の正極活物質への供給がより良
好になり、電解液の供給の遅れによる分極が小さくな
り、電池維持電圧を高めるという効果が得られる。
Advantageous Effects of the Invention As described above, according to the present invention, in a heavy load discharge of an alkaline dry battery, the supply of the electrolyte to the positive electrode active material is improved, the polarization due to the delay in the supply of the electrolyte is reduced, and the battery is maintained. The effect of increasing the voltage is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は、本発明の実施例における電池の半断面
図,同(b)はケース側壁部の拡大断面図、第2図
(a),(b),(c)は正極ケース内壁に部分的に導
電性被膜を形成させた時の展開図及び断面図、第3図は
本発明の実施例における電池の上部から見た時の断面
図、第4図は従来の電池の半断面図、第5図は本発明の
実施例における電池の放電特性を示す図、第6図は部分
的に導電性被膜を形成させる場合の割合を示す図であ
る。 1……正極合剤、2……ゲル負極、3……セパレータ、
6……正極ケース、7……導電性被膜、16……正極合剤
と正極ケースとのすきま。
1 (a) is a half sectional view of a battery according to an embodiment of the present invention, FIG. 1 (b) is an enlarged sectional view of a case side wall, and FIGS. 2 (a), (b) and (c) are positive electrode cases. FIG. 3 is a development view and a cross-sectional view when a conductive film is partially formed on the inner wall. FIG. 3 is a cross-sectional view when viewed from the top of the battery according to the embodiment of the present invention. FIG. 5 is a cross-sectional view, FIG. 5 is a view showing the discharge characteristics of the battery in the example of the present invention, and FIG. 6 is a view showing the ratio when a conductive film is partially formed. 1 ... Positive electrode mixture, 2 ... Gel negative electrode, 3 ... Separator,
6: Positive electrode case, 7: Conductive film, 16: Clearance between positive electrode mixture and positive electrode case.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 末次 佐知子 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭58−48361(JP,A) 実開 昭57−198866(JP,U) 特公 昭46−8743(JP,B1) ──────────────────────────────────────────────────の Continuing on the front page (72) Yoshiaki Nitta, Inventor 1006, Oaza Kadoma, Kadoma, Osaka Prefecture Inside of Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-58-48361 (JP, A) JP-A-57-198866 (JP, U) JP-B-46-8743 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化マンガンと炭素材を主要構成材料と
した正極合剤を、鉄にニッケルメッキを全面施した正極
ケース内に密着させて収納したアルカリ乾電池であっ
て、前記正極合剤と前記正極ケース内壁が接する面積の
30〜70%に、炭素材を主材料とする導電性被膜を形成し
たことを特徴とするアルカリ乾電池。
1. An alkaline dry battery in which a positive electrode mixture containing manganese dioxide and a carbon material as main constituent materials is tightly housed in a positive electrode case in which nickel plating is applied to an entire surface of iron, wherein the positive electrode mixture and the positive electrode mixture are contained. Of the area that the inner wall of the positive electrode
An alkaline dry battery comprising 30 to 70% of a conductive film mainly composed of a carbon material.
JP63250195A 1988-10-04 1988-10-04 Alkaline batteries Expired - Lifetime JP2722528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250195A JP2722528B2 (en) 1988-10-04 1988-10-04 Alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250195A JP2722528B2 (en) 1988-10-04 1988-10-04 Alkaline batteries

Publications (2)

Publication Number Publication Date
JPH0298037A JPH0298037A (en) 1990-04-10
JP2722528B2 true JP2722528B2 (en) 1998-03-04

Family

ID=17204232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250195A Expired - Lifetime JP2722528B2 (en) 1988-10-04 1988-10-04 Alkaline batteries

Country Status (1)

Country Link
JP (1) JP2722528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625008B2 (en) * 1997-04-04 2005-03-02 東芝電池株式会社 Alkaline battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198866U (en) * 1981-06-12 1982-12-17

Also Published As

Publication number Publication date
JPH0298037A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
RU2156523C2 (en) Lithium cell improvement technique
JP2000048822A (en) Lithium secondary battery and manufacture of positive electrode plate thereof
JPH02262274A (en) Nonaqueous electrolyte secondary battery
JP2722528B2 (en) Alkaline batteries
JPS5848361A (en) Alkaline dry cell
JP4069988B2 (en) Lithium ion secondary battery
JPH08255635A (en) Organic electrolyte battery
JPH0250585B2 (en)
JPH0982364A (en) Nonaqueous electrolyte secondary battery
US2806079A (en) Magnesium anode dry cell
JP2819201B2 (en) Lithium secondary battery
JPH04349369A (en) Cylindrical nonaqueous electrolyte secondary battery
JPS59146164A (en) Alkaline battery
JP3705694B2 (en) Alkaline manganese battery
JP2992781B2 (en) Manganese dry cell
JP2562651B2 (en) Non-aqueous electrolyte secondary battery
JPH0512824B2 (en)
JPH0234434B2 (en)
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JPS62226576A (en) Cylindrical liquid oxyhalogen compound-lithium battery
JPS6089075A (en) Nonaqueous electrolyte secondary battery
JPH08264193A (en) Alkaline manganess battery
JPH0629014A (en) Dry cell
JP2000306784A (en) Electrode for capacitor, manufacture thereof, and capacitor
JPS6222368A (en) Zinc-chloride dry cell