JPH04349369A - Cylindrical nonaqueous electrolyte secondary battery - Google Patents

Cylindrical nonaqueous electrolyte secondary battery

Info

Publication number
JPH04349369A
JPH04349369A JP3100292A JP10029291A JPH04349369A JP H04349369 A JPH04349369 A JP H04349369A JP 3100292 A JP3100292 A JP 3100292A JP 10029291 A JP10029291 A JP 10029291A JP H04349369 A JPH04349369 A JP H04349369A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
secondary battery
width
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3100292A
Other languages
Japanese (ja)
Inventor
Isamu Yoshimatsu
吉松 勇
Masashi Shibata
柴田 昌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3100292A priority Critical patent/JPH04349369A/en
Publication of JPH04349369A publication Critical patent/JPH04349369A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a lithium secondary battery having an extended charge- discharge cycle life by suppressing concentrated generation of dendrite on the peripheral part in a negative pole-like shape. CONSTITUTION:In a nonaqueous electrolyte secondary battery consisting of a group of pole plates and a nonaqueous electrolyte sealed in a container wherein the group of the pole plates consist of a negative pole 3 using metal lithium as its active substance and a positive pole. 1 and they are rolled spirally while having a separator 2 interposed between them, the width of the positive pole 1 is made wider than that of the negative pole 3 and an electrically insulating material 4 insoluble in the electrolyte is applied to the peripheral part of the positive pole electrode surface where the positive pole 1 can not face to the negative pole 3, so that concentrated generation of dendrite in the peripheral part of the negative pole is suppressed. Thus dendrite generation along the anode periphery is suppressed, and a lithium secondary battery having a long charge-discharge cycle life can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は円筒型非水電解液二次電
池、さらに詳細には負極活物質に金属リチウムを用いる
円筒型非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical nonaqueous electrolyte secondary battery, and more particularly to a cylindrical nonaqueous electrolyte secondary battery using metallic lithium as a negative electrode active material.

【0002】0002

【従来の技術】金属リチウムを負極活物質とし、電解液
に非水電解液を用いる電池においては、電極面積を広げ
て大電流放電時の電池特性を良好にするために、正極板
と負極板をセパレータを介して重ね渦巻状に卷回して、
電池が構成される。さらに電池容量を増加させ、かつ極
間の距離を短くして、放電反応を向上させるために極め
て薄いセパレータ(厚さ20〜50μm)が用いられる
[Prior Art] In a battery that uses metallic lithium as the negative electrode active material and a non-aqueous electrolyte as the electrolyte, in order to increase the electrode area and improve battery characteristics during large current discharge, the positive electrode plate and the negative electrode plate are layered through a separator and rolled into a spiral,
A battery is configured. Furthermore, extremely thin separators (thickness 20 to 50 μm) are used to increase the battery capacity and shorten the distance between the electrodes to improve the discharge reaction.

【0003】0003

【発明が解決しようとする問題点】ところが、上記負極
活物質に金属リチウムを用いる非水電解液二次電池には
、未だ多くの問題点が残されている。その一つに負極板
の劣化による短い充放電サイクル寿命がある。これは、
負極活物質のリチウムが、充電時負極上にデンドライト
状に析出し、セパレータを貫通したり、あるいはセパレ
ータの端を乗り越えて正極と接触し、内部短絡を起こし
てしまうものである。特に電極板の周辺部分では、電流
集中が起こりやすく、これによって引き起こされる電流
密度の増加で、デンドライトが発生しやすい。
[Problems to be Solved by the Invention] However, many problems still remain in the non-aqueous electrolyte secondary battery using metallic lithium as the negative electrode active material. One of them is the short charge/discharge cycle life due to deterioration of the negative electrode plate. this is,
Lithium, which is the negative electrode active material, precipitates in the form of dendrites on the negative electrode during charging, penetrates the separator, or climbs over the edge of the separator and comes into contact with the positive electrode, causing an internal short circuit. In particular, current concentration tends to occur around the electrode plate, and the resulting increase in current density tends to generate dendrites.

【0004】電極板の周辺部分に生じるデンドライトが
、セパレータを乗り越えないように特開平1−1283
71号では、負極板の幅を正極板の幅よりも大きくする
ことを開示している。特に片側0.5〜2.0mm大き
くすることが好ましいとされている。
[0004] In order to prevent the dendrites generated around the electrode plate from climbing over the separator, it is disclosed in Japanese Patent Application Laid-Open No. 1-1283.
No. 71 discloses making the width of the negative electrode plate larger than the width of the positive electrode plate. In particular, it is said that it is preferable to increase the size by 0.5 to 2.0 mm on one side.

【0005】しかしながら負極板の幅を正極板よりも幅
広くした場合には、新たに次のような内部短絡の危険性
が発生する。この危険性とは、卷回時に卷回のための力
が電極板に少しでも加えられると、正極板のエッジがセ
パレータに食い込み、これを破りやすくなるものである
。電池容量を増加させるために薄いセパレータが使用さ
れる場合には、特に深刻な問題である。
However, when the width of the negative electrode plate is made wider than that of the positive electrode plate, the following new risk of internal short circuit occurs. This danger is that if even a small amount of force is applied to the electrode plate during winding, the edge of the positive electrode plate will dig into the separator, making it easy to tear it. This is a particularly serious problem when thin separators are used to increase battery capacity.

【0006】[0006]

【問題を解決するための手段】このような問題を解決す
るために本発明はなされたものである。金属リチウムを
活物質とする負極と、正極とがセパレータを間に介在し
て、渦巻状に卷回された極板群と非水電解液とが容器内
に封入された円筒型非水電解液二次電池において、上記
正極の幅を上記負極の幅よりも大きくし、正極が負極に
対向しえなくなる正極電極面の周辺部に電解液に不溶性
で、かつ電気絶縁性の物質を塗布したことにより、負極
板の周囲に発生するデンドライトがセパレータの端を乗
り越えて正極に接触することを防止でき、かつ正極板の
エッジがセパレータを破ることも防止できる。
[Means for Solving the Problems] The present invention has been made to solve these problems. A cylindrical non-aqueous electrolyte in which a negative electrode containing metallic lithium as an active material and a positive electrode are placed in a container with a separator interposed between them, a group of spirally wound electrode plates, and a non-aqueous electrolyte sealed in a container. In a secondary battery, the width of the positive electrode is made larger than the width of the negative electrode, and an electrically insulating substance that is insoluble in the electrolyte is applied to the periphery of the positive electrode surface where the positive electrode no longer faces the negative electrode. This can prevent dendrites generated around the negative electrode plate from climbing over the edge of the separator and coming into contact with the positive electrode, and can also prevent the edge of the positive electrode plate from breaking the separator.

【0007】図1は円筒型非水電解液二次電池の構成を
示す断面図であるが、この図より明らかなように円筒型
非水電解液二次電池は、正極1はセパレータ2を介して
負極3に対向して設けられた構造になっていると共に、
これを渦巻き状に捲回して円筒型とした構造になってい
る。そしてこの極板群と非水電解液を容器C柱に封入し
た構造になっている。
FIG. 1 is a cross-sectional view showing the structure of a cylindrical non-aqueous electrolyte secondary battery. It has a structure in which it is provided facing the negative electrode 3, and
This is wound into a spiral shape to form a cylindrical structure. The structure is such that the electrode plate group and the non-aqueous electrolyte are sealed in a container C column.

【0008】本発明においては、図2に要部を示すよう
に前記正極1の幅を負極3の幅より大きくとっていると
共に、前記正極1の端部に電解液に不溶性で、かつ電気
絶縁性の物質4(例えばEDPM)を設けた構造になっ
ている。
In the present invention, the width of the positive electrode 1 is larger than the width of the negative electrode 3, as shown in the main part in FIG. It has a structure in which a chemical substance 4 (for example, EDPM) is provided.

【0009】正極の幅を上記負極の幅よりも大きくした
ことにより、正極板のエッジが負極に食い込むことはな
くなる。このとき、逆に負極板のエッジが正極板に食い
込むことが考えられる。しかし、負極活物質にリチウム
が用いられるような負極板は、大抵の場合金属リチウム
板か、あるいはアルミニウムとリチウムの合金板である
ので材質的に非常に柔らかく、セパレータを傷つけるこ
とは考えにくい。少なくとも正極板基板材料としてよく
用いられるステンレス板よりも負極板は、セパレータを
傷つけにくいことは確実である。
By making the width of the positive electrode larger than the width of the negative electrode, the edge of the positive electrode plate will not dig into the negative electrode. At this time, it is conceivable that the edge of the negative electrode plate may bite into the positive electrode plate. However, negative electrode plates that use lithium as the negative electrode active material are usually metal lithium plates or aluminum and lithium alloy plates, so they are extremely soft and unlikely to damage the separator. It is certain that the negative electrode plate is less likely to damage the separator than the stainless steel plate that is often used as the positive electrode plate substrate material.

【0010】また、正極が正極に対向しえなくなる正極
電極面の周辺部に電解液に不溶性で、かつ電気絶縁性の
物質を塗布することによって、電極周辺部分への電流集
中が防止され、この部分におけるデンドライトの発生を
抑えることが期待できる。
[0010] Furthermore, by applying an electrically insulating substance that is insoluble in the electrolytic solution to the peripheral part of the positive electrode surface where the positive electrode cannot face the positive electrode, current concentration in the peripheral part of the electrode can be prevented. It can be expected to suppress the occurrence of dendrites in the area.

【0011】さらに、その電解液に不溶性で、電気絶縁
性の物質を塗布することによって、負極板がセパレータ
を介して厚み方向の上下から正極板で挟み込まれたとき
、負極板のエッジ付近は電解液に不溶性で、かつ電気絶
縁性の物質でくるみ込まれた形となり、万が一デンドラ
イトが発生したとしてもデンドライトがこの物質を突き
破って正極に触れることはまず不可能である。
Furthermore, by coating an electrically insulating substance that is insoluble in the electrolytic solution, when the negative electrode plate is sandwiched between the positive electrode plates from above and below in the thickness direction via a separator, the area near the edge of the negative electrode plate is electrolyzed. It is wrapped in a material that is insoluble in the liquid and electrically insulating, so even if dendrites were to occur, it would be almost impossible for the dendrites to break through this material and touch the positive electrode.

【0012】正極の幅を負極の幅よりも広くするにあた
っては、少なくとも電極の片側について負極の厚みほど
広くすることで十分である。正極と負極の幅の違いが小
さいときには、電解液に不溶性で、かつ電気絶縁性の物
質を正極の周辺部分で負極に対向しえない部分に盛り上
げていくように塗布すればよい。作業性の観点から考え
るならば、電極の片側における正極と負極の幅の違いを
負極の厚み程度以上確保することが望ましい。しかしな
がら正極板の幅を負極板よりもいたずらに広くすること
は、正極板の負極板に対向する部分、つまり電池の電極
として有効に作用する面積を狭めることになるので望ま
しいことではない。
In order to make the width of the positive electrode wider than the width of the negative electrode, it is sufficient to make at least one side of the electrode as wide as the thickness of the negative electrode. When the difference in width between the positive electrode and the negative electrode is small, an electrically insulating substance that is insoluble in the electrolytic solution may be applied in a heaping manner to areas around the positive electrode that cannot face the negative electrode. From the viewpoint of workability, it is desirable to ensure that the difference in width between the positive electrode and the negative electrode on one side of the electrode is equal to or larger than the thickness of the negative electrode. However, making the width of the positive electrode plate unnecessarily wider than that of the negative electrode plate is not desirable because it narrows the portion of the positive electrode plate that faces the negative electrode plate, that is, the area that effectively acts as the electrode of the battery.

【0013】上記物質の厚さは、好ましくは負極の厚み
の1/2以上である。1/2未満であると、電極周辺部
分への電流集中が防止し、この部分におけるデンドライ
トの発生を抑える効果が発揮しえない恐れを生じるから
である。
[0013] The thickness of the above substance is preferably 1/2 or more of the thickness of the negative electrode. This is because if it is less than 1/2, current concentration in the peripheral area of the electrode is prevented, and there is a possibility that the effect of suppressing the generation of dendrites in this area may not be exhibited.

【0014】ここで電解液に不溶性で、かつ電気絶縁性
の物質には、多くの物質を利用することができる。例え
ば、エチレンプロピレンターポリマー(EPDM)のよ
うな有機高分子であってもよい。揮発性の有機溶媒に溶
解させて、正極の周囲で負極に対向しえない部分に塗布
した後、乾燥させるだけでよい。乾燥後の厚みが負極の
厚みの2分の1に満たないときには塗布、乾燥を繰り返
してEPDMを盛り上げていくようにすればよい。ある
いは、塗布、乾燥の繰り返し数を減らしたいときには、
EPDMの有機溶媒への溶解量を増やせばよい。また、
負極の厚みの2分の1程度あるいは以上の厚みを有する
セロハンテープのような粘着性の樹脂テープを正極の周
囲で負極に対向しえない部分にはり付けてもよい。特に
材料や方法には限定されない。
[0014] Here, many substances can be used as the substance that is insoluble in the electrolytic solution and has electrical insulation properties. For example, it may be an organic polymer such as ethylene propylene terpolymer (EPDM). All you need to do is dissolve it in a volatile organic solvent, apply it to areas around the positive electrode that cannot face the negative electrode, and then dry it. If the thickness after drying is less than half of the thickness of the negative electrode, the EPDM may be raised by repeating coating and drying. Or, if you want to reduce the number of repetitions of coating and drying,
What is necessary is to increase the amount of EPDM dissolved in the organic solvent. Also,
An adhesive resin tape such as cellophane tape having a thickness of about one-half or more than the thickness of the negative electrode may be attached to the area around the positive electrode that cannot face the negative electrode. There are no particular limitations on materials or methods.

【0015】[0015]

【作用】金属リチウムを活物質とする負極3と、正極1
とがセパレータ2を間に介在して渦巻状に卷回された極
板群と非水電解液とが容器C内に封入された非水電解液
二次電池であって、上記正極1の幅を上記負極3の幅よ
りも大きくし、正極1が負極3に対向しえなくなる正極
電極面の周辺部に電解液に不溶性で、かつ電気絶縁性の
物質4を塗布したことによって、負極状周辺部分におけ
るデンドライトの集中的な発生が抑制される。デンドラ
イトの発生が抑制されることで、充放電サイクル寿命の
伸びたリチウム二次電池が得られる。
[Function] Negative electrode 3 with metallic lithium as active material and positive electrode 1
This is a non-aqueous electrolyte secondary battery in which a group of electrode plates wound in a spiral with a separator 2 interposed therebetween and a non-aqueous electrolyte are sealed in a container C, and the width of the positive electrode 1 is By making the width of the negative electrode larger than the width of the negative electrode 3 and applying an electrically insulating substance 4 that is insoluble in the electrolytic solution to the periphery of the positive electrode surface where the positive electrode 1 cannot face the negative electrode 3, the periphery of the negative electrode shape is Intensive generation of dendrites in the area is suppressed. By suppressing the generation of dendrites, a lithium secondary battery with an extended charge/discharge cycle life can be obtained.

【0016】[0016]

【実施例】つぎに本発明を好適な実施例を用いて、詳細
に説明する。
EXAMPLES Next, the present invention will be explained in detail using preferred examples.

【0017】下記の試験においては、以下に示すような
構成の円筒型のリチウム二次電池を作製し、試験に用い
た。
In the following test, a cylindrical lithium secondary battery having the configuration shown below was prepared and used for the test.

【0018】正極:アモルファス化した五酸化バナジウ
ム粉末+エチレンプロピレンターポリマー(EPDM)
2.5wt%のシクロヘキサン溶液+アセチレンブラッ
ク(重量比90:3:7)混合物を幅38mmの金属集
電体(ステンレス製)の上に塗布して乾燥したもの。
Positive electrode: amorphous vanadium pentoxide powder + ethylene propylene terpolymer (EPDM)
A mixture of 2.5 wt% cyclohexane solution + acetylene black (weight ratio 90:3:7) was applied onto a metal current collector (made of stainless steel) with a width of 38 mm and dried.

【0019】負極:金属リチウム(幅36mm、厚さ0
.15mm)
Negative electrode: Metal lithium (width 36 mm, thickness 0
.. 15mm)

【0020】電解液:1.5M濃度の六フッ化ひ酸リチ
ウム(LiAsF6)のエチレンカーボネート(EC)
/2メチルテトラヒドロフラン(2MeTHF)(体積
比1/1)溶液
Electrolyte: 1.5M concentration of lithium hexafluoroarsenate (LiAsF6) in ethylene carbonate (EC)
/2 methyltetrahydrofuran (2MeTHF) (volume ratio 1/1) solution

【0021】セパレータ:25μm厚さのポリプロピレ
ン製多孔性膜
Separator: 25 μm thick polypropylene porous membrane

【0022】雰囲気:アルゴン[0022] Atmosphere: Argon

【0023】できあがった電池は、放電電流3mA/c
m2、充電電流0.5mA/cm2の定電流とし、1.
8〜3.3Vの電圧範囲内で充放電サイクルを繰り返し
た。
The completed battery has a discharge current of 3 mA/c
m2, constant current of charging current 0.5 mA/cm2, 1.
Charge and discharge cycles were repeated within the voltage range of 8-3.3V.

【0024】[0024]

【実施例1】電池を組み立てる前に、正極板の周囲に正
極板を縁どるかたちに幅1mmでエチレンプロピレンタ
ーポリマー(EPDM)15wt%のシクロヘキサン溶
液を両面塗布して乾燥させた。乾燥後のEPDMの厚み
は片面で概ね80μm程度であった。この後、セパレー
タを介して負極を重ねて渦巻状に卷回した後、容器内に
挿入し、電解液を注入して電池Aを完成させた。
Example 1 Before assembling a battery, a cyclohexane solution containing 15 wt % ethylene propylene terpolymer (EPDM) was coated on both sides of the positive electrode plate in a width of 1 mm to frame the positive electrode plate and dried. The thickness of the EPDM after drying was approximately 80 μm on one side. Thereafter, the negative electrodes were stacked with a separator in between and wound in a spiral shape, and then inserted into a container and an electrolytic solution was injected to complete Battery A.

【0025】[0025]

【比較例1】正極板の周囲にEPDMのシクロヘキサン
溶液を塗布しない以外は、実施例1と同様な電池Bを完
成させた。
[Comparative Example 1] A battery B similar to Example 1 was completed except that the cyclohexane solution of EPDM was not applied around the positive electrode plate.

【0026】図3にこの電池AとBにおける充放電サイ
クル数と初期容量を100%としたときの正極の利用率
との関係を示した。
FIG. 3 shows the relationship between the number of charge/discharge cycles and the utilization rate of the positive electrode when the initial capacity is 100% for the batteries A and B.

【0027】図3より明らかなように本発明を実施する
ことによって電池の充放電サイクル寿命が伸びている。
As is clear from FIG. 3, the charge/discharge cycle life of the battery is extended by implementing the present invention.

【0028】それぞれの電池の放電容量が半分になった
ところで電池を分解し、負極表面を電子顕微鏡で観察し
た。電池Aの負極周囲にはほとんどデンドライトは発生
していなかったことに対して、電池Bの負極周囲にはデ
ンドライトが多数発生していた。
When the discharge capacity of each battery was reduced to half, the battery was disassembled and the surface of the negative electrode was observed using an electron microscope. Almost no dendrites were generated around the negative electrode of battery A, whereas many dendrites were generated around the negative electrode of battery B.

【0029】[0029]

【発明の効果】以上の結果から明らかなように、金属リ
チウムを活物質とする負極と、正極とがセパレータを間
に介在して、渦巻状に卷回された極板群と非水電解液と
が容器内に封入された非水電解液二次電池であって、上
記正極の幅を上記負極の幅よりも大きくし、正極が負極
に対向しえなくなる正極電極面の周辺部に電解液に不溶
性で、かつ電気絶縁性の物質を塗布したことによって負
極周囲のデンドライト発生が抑えられ、充放電サイクル
寿命の長いリチウム二次電池を得ることができる。した
がってその工業的価値は、極めて大である。
[Effects of the Invention] As is clear from the above results, a negative electrode containing metallic lithium as an active material and a positive electrode are arranged in a spirally wound electrode group with a separator interposed therebetween, and a non-aqueous electrolyte. is a non-aqueous electrolyte secondary battery sealed in a container, the width of the positive electrode is larger than the width of the negative electrode, and the electrolyte is placed around the positive electrode surface where the positive electrode no longer faces the negative electrode. By applying an electrically insulating substance that is insoluble in the negative electrode, the generation of dendrites around the negative electrode can be suppressed, making it possible to obtain a lithium secondary battery with a long charge-discharge cycle life. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明にかかわる非水電解液リチウム二次電池
の一例の概略的な縦断面図。
FIG. 1 is a schematic vertical cross-sectional view of an example of a non-aqueous electrolyte lithium secondary battery according to the present invention.

【図2】図1で示した電池の内部にある渦巻状電極群の
一部分の詳細な縦断面図。
FIG. 2 is a detailed longitudinal cross-sectional view of a portion of the spiral electrode group inside the battery shown in FIG. 1;

【図3】本発明の実施例および比較例にかかわる非水電
解液リチウム二次電池において、充放電サイクル数と初
期容量を100%としたときの正極利用率との関係を示
す図。
FIG. 3 is a diagram showing the relationship between the number of charge/discharge cycles and the positive electrode utilization rate when the initial capacity is 100% in non-aqueous electrolyte lithium secondary batteries according to examples and comparative examples of the present invention.

【符号の説明】[Explanation of symbols]

1      正極 2      セパレータ 3      負極 4      物質(EPDM) C      容器 1 Positive electrode 2 Separator 3 Negative electrode 4. Material (EPDM) C Container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属リチウムを活物質とする負極と、正極
とがセパレータを間に介在して、渦巻状に卷回された極
板群と非水電解液とが容器内に封入された円筒型非水電
解液二次電池であって、上記正極の幅を上記負極の幅よ
りも大きくし、正極が負極に対向しえなくなる正極電極
面の周辺部に電解液に不溶性で、かつ電気絶縁性の物質
を塗布したことを特徴とする円筒型非水電解液二次電池
Claim 1: A cylinder in which a negative electrode containing metallic lithium as an active material and a positive electrode are arranged in a spiral shape with a separator interposed therebetween, and a non-aqueous electrolyte is sealed in a container. type non-aqueous electrolyte secondary battery, the width of the positive electrode is made larger than the width of the negative electrode, and a periphery of the positive electrode surface where the positive electrode cannot face the negative electrode is insoluble in the electrolyte and electrically insulating. A cylindrical non-aqueous electrolyte secondary battery coated with a chemical substance.
【請求項2】上記電解液に不溶性で、かつ電気絶縁性の
物質がエチレンプロピレンターポリマー(EPDM)で
あることを特徴とする請求項1記載の円筒型非水電解液
二次電池。
2. The cylindrical non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte-insoluble and electrically insulating substance is ethylene propylene terpolymer (EPDM).
JP3100292A 1991-04-05 1991-04-05 Cylindrical nonaqueous electrolyte secondary battery Pending JPH04349369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100292A JPH04349369A (en) 1991-04-05 1991-04-05 Cylindrical nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100292A JPH04349369A (en) 1991-04-05 1991-04-05 Cylindrical nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH04349369A true JPH04349369A (en) 1992-12-03

Family

ID=14270105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100292A Pending JPH04349369A (en) 1991-04-05 1991-04-05 Cylindrical nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH04349369A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690520A1 (en) * 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
EP1150371A3 (en) * 2000-04-28 2007-03-14 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
JP2011060471A (en) * 2009-09-08 2011-03-24 Nec Energy Devices Ltd Nonaqueous electrolyte secondary battery
JP2012190714A (en) * 2011-03-11 2012-10-04 Gs Yuasa Corp Nonaqueous electrolytic secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690520A1 (en) * 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
EP1150371A3 (en) * 2000-04-28 2007-03-14 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
US7255964B2 (en) 2000-04-28 2007-08-14 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
US7390592B2 (en) 2000-04-28 2008-06-24 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
JP2011060471A (en) * 2009-09-08 2011-03-24 Nec Energy Devices Ltd Nonaqueous electrolyte secondary battery
JP2012190714A (en) * 2011-03-11 2012-10-04 Gs Yuasa Corp Nonaqueous electrolytic secondary battery

Similar Documents

Publication Publication Date Title
RU2156523C2 (en) Lithium cell improvement technique
WO2019230322A1 (en) Negative electrode for lithium ion secondary battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH11307081A (en) Lithium ion secondary battery and its manufacture
JP2012169071A (en) Lithium ion secondary battery
JPH05109435A (en) Cylinder type nonaqueous electrolytic secondary battery
KR100634901B1 (en) Non-aqueous electrolyte battery
JPH0676860A (en) Secondary battery and manufacture thereof
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPH03152881A (en) Rectangular type lithium secondary battery
JPH04349369A (en) Cylindrical nonaqueous electrolyte secondary battery
JPH0425676B2 (en)
JPH06188030A (en) Nonaqueous electrolyte battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2000294229A (en) Nonaqueous electrolytic secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JP2021082519A (en) Secondary battery and manufacturing method thereof
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP2012160371A (en) Lithium ion secondary battery
JPH11195410A (en) Lithium secondary battery
JPH0451473A (en) Secondary battery with non-aqueous electrolytic solution
WO2021100225A1 (en) Non-aqueous electrolyte secondary battery
JP2000138062A (en) Nonaqueous electrolyte secondary battery