JP2718926B2 - Plasma doping method - Google Patents

Plasma doping method

Info

Publication number
JP2718926B2
JP2718926B2 JP62135234A JP13523487A JP2718926B2 JP 2718926 B2 JP2718926 B2 JP 2718926B2 JP 62135234 A JP62135234 A JP 62135234A JP 13523487 A JP13523487 A JP 13523487A JP 2718926 B2 JP2718926 B2 JP 2718926B2
Authority
JP
Japan
Prior art keywords
plasma doping
discharge
processed
frequency current
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62135234A
Other languages
Japanese (ja)
Other versions
JPS63299327A (en
Inventor
一郎 中山
文二 水野
正文 久保田
益男 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135234A priority Critical patent/JP2718926B2/en
Publication of JPS63299327A publication Critical patent/JPS63299327A/en
Application granted granted Critical
Publication of JP2718926B2 publication Critical patent/JP2718926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造プロセスにおける不純物
のプラズマドーピング方法に関するものである。 従来の技術 近年、半導体装置の製造プロセスにおいて、Si基板へ
の不純物ドーピングに関しては、イオン注入法が一般に
用いられている。これはイオンを加速して被処理物に衝
突させ、被処理物表面付近に浸入させることにより、被
処理物の物性を制御するものである。 しかしながらイオン注入法では、イオンの被処理物へ
の入射が垂直であるため、被処理物の表面形状が垂直に
近いものでは、その側面への注入は、被処理物に角度を
持たせて行なっているため、非常に作業能率が悪く、か
つ形状によってはイオンの浸入が不可能な場合も発生す
る。 このため最近では、高周波放電を利用した不純物ドー
ピング方法(特開昭56−138921号公報参照)が用いられ
ているが、高周波放電では被処理物表面のイオン電流が
測定出来ないため、不純物の濃度を正確に測定すること
が出来ないという問題点を有していた。 本発明は上記問題点に鑑み、被処理物がいかなる形状
の場合でも不純物のドーピングが可能であり、その不純
物濃度を正確に制御出来るプラズマドーピング方法を提
供するものである。 問題点を解決するための手段 上記問題点を解決するために本発明のプラズマドーピ
ング方法は、真空チャンバー内に被処理物を配置し、不
純物を含むガスを導入し、高周波放電を利用するプラズ
マドーピング方法において、不純物濃度を放電中の高周
波電流を測定することにより制御するものである。 作用 本発明は上記した方法により、いままで測定出来なか
った高周波放電中の被処理物への不純物濃度の測定を、
前記不純物濃度と比例関係にある高周波電流の電流値を
監視することで、正確に行なうものである。 実施例 以下本発明の実施例のプラズマドーピング方法につい
て、図面を参照しながら説明する。第1図は本発明の一
実施例におけるプラズマドーピング方法に使用した装置
を示すものである。1は真空チャンバー、2は上部電
極、3は下部電極、4は被処理物のSi基板である。不純
物を含むガスはガス導入口5より導入し、13.56MHzの高
周波電源8を用いて、真空チャンバー1内で放電を起こ
し、放電時の高周波電流を、高周波変流器7を介して電
流計9で測定するものである。なお6はガス排気口であ
る。 以上のように構成されたプラズマドーピング装置につ
いて、以下その動作を説明する。 真空チャンバー1内に不純物を含むガスとしてB6H
6(He希釈95%)を85ccm導入し、圧力を1×10-3Torrと
した。次に高周波電源8より高周波を下部電極に印加
し、高周波電流を5A,10A,15Aとなるように高周波電力を
変化させ、それぞれ100秒間放電させた。第2図に放電
後のSi基板表面付近のボロン原子のSIMS分析結果を示
す。表面付近のボロンの濃度は高周波電流が5Aの時、1.
5×1021,10Aの時3.0×1021,15Aの時4.5×1021と比例関
係にあることがわかった。また同様の条件下で高周波電
流5A,300秒のものと、高周波電流15A,100秒のもので
は、不純物濃度が4.4×1021と4.5×1021であり、ほぼ同
一濃度であることがわかった。また同様の条件下で開口
幅0.5μm、深さ5μmのSiの深溝に高周波電流15Å、1
00秒のプラズマドーピングを行ない、900℃30分の熱処
理後、表面にプラズマCVD法で500ÅのSiO2膜を堆積さ
せ、その後、HF+HNO3+H2O液を使用し、ドーピングさ
れた部分をウエットエッチし、断面をSEM観察したとこ
ろ、ドーピングされた部分は溝にそって均一であること
がわかった。 以上のように本実施例によれば、高周波放電を利用す
るプラズマドーピングでは、高周波電流はドーピングさ
れたボロン濃度と比例関係にあることがわかった。よっ
て不純物の濃度を正確に制御することが出来る。 なお実施例においては高周波放電としたが、高周波放
電とECR(電子サイクロトロン共鳴)放電を組み合わせ
ても同様の結果が与えられた。 発明の効果 以上のように本発明は、真空チャンバー内に被処理物
に配置し、不純物を含むガスを導入し、高周波放電を利
用するプラズマドーピング方法において、放電中の高周
波電流を測定することで、不純物の被処理物のドーピン
グの濃度を正確に制御することが出来るため、用途に応
じたドーピングが極めて簡単に行なえる。またプラズマ
を使用するため、イオン注入法では不可能であった部分
へのドーピングも可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for plasma doping of impurities in a semiconductor device manufacturing process. 2. Description of the Related Art In recent years, in a semiconductor device manufacturing process, an ion implantation method is generally used for doping an impurity into a Si substrate. This is to control the physical properties of the object by accelerating the ions and causing them to collide with the object to be processed and penetrate near the surface of the object. However, in the ion implantation method, ions are vertically incident on the object to be processed. Therefore, if the surface shape of the object to be processed is almost vertical, the implantation into the side surface is performed with an angle to the object to be processed. Therefore, the work efficiency is extremely low, and depending on the shape, there may be a case where the penetration of ions is impossible. For this reason, an impurity doping method using a high-frequency discharge has recently been used (see Japanese Patent Application Laid-Open No. 56-138921). However, the ion current on the surface of the object to be processed cannot be measured by the high-frequency discharge. Has not been able to be measured accurately. The present invention has been made in view of the above problems, and provides a plasma doping method capable of doping impurities with any shape of an object to be processed and capable of accurately controlling the impurity concentration. Means for Solving the Problems In order to solve the above problems, the plasma doping method of the present invention is to dispose an object to be processed in a vacuum chamber, introduce a gas containing impurities, and perform plasma doping using a high-frequency discharge. In the method, the impurity concentration is controlled by measuring a high-frequency current during discharge. Function The present invention uses the above-described method to measure the impurity concentration in the object to be processed during high-frequency discharge, which could not be measured until now.
By monitoring the current value of the high-frequency current proportional to the impurity concentration, accurate measurement is performed. Embodiment Hereinafter, a plasma doping method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an apparatus used in a plasma doping method according to one embodiment of the present invention. 1 is a vacuum chamber, 2 is an upper electrode, 3 is a lower electrode, and 4 is a Si substrate to be processed. The gas containing impurities is introduced from the gas inlet 5, causes a discharge in the vacuum chamber 1 by using the 13.56 MHz high frequency power supply 8, and outputs the high frequency current at the time of the discharge through the high frequency current transformer 7 to the ammeter 9. Is to be measured. Reference numeral 6 denotes a gas exhaust port. The operation of the plasma doping apparatus configured as described above will be described below. B 6 H as a gas containing impurities in the vacuum chamber 1
6 (95% He dilution) was introduced at 85 ccm, and the pressure was adjusted to 1 × 10 −3 Torr. Next, a high frequency was applied to the lower electrode from the high frequency power supply 8 and the high frequency power was changed so that the high frequency current became 5 A, 10 A, and 15 A, and each was discharged for 100 seconds. FIG. 2 shows the results of SIMS analysis of boron atoms near the surface of the Si substrate after discharge. When the high-frequency current is 5 A, the boron concentration near the surface is 1.
5 × 10 21, 10A when 3.0 × 10 21, 15A was found that when 4.5 × 10 21 a proportional relationship. Under the same conditions, when the high-frequency current was 5 A and 300 seconds, and when the high-frequency current was 15 A and 100 seconds, the impurity concentrations were 4.4 × 10 21 and 4.5 × 10 21 , which were almost the same. . Under the same conditions, a high frequency current of 15 °, 1 μm was applied to a deep groove of Si having an opening width of 0.5 μm and a depth of 5 μm.
Perform plasma doping for 00 seconds, heat treatment at 900 ° C for 30 minutes, deposit a 500Å SiO 2 film on the surface by plasma CVD, and then use HF + HNO 3 + H 2 O solution to wet-etch the doped part. Then, SEM observation of the cross section revealed that the doped portion was uniform along the groove. As described above, according to the present embodiment, it was found that, in the plasma doping using the high-frequency discharge, the high-frequency current was proportional to the concentration of the doped boron. Therefore, the concentration of the impurity can be accurately controlled. Although high-frequency discharge was used in the examples, a similar result was obtained by combining high-frequency discharge and ECR (Electron Cyclotron Resonance) discharge. Advantageous Effects of the Invention As described above, the present invention provides a method of arranging an object to be processed in a vacuum chamber, introducing a gas containing impurities, and measuring a high-frequency current during discharge in a plasma doping method using high-frequency discharge. Since the concentration of the doping of the impurity to be processed can be accurately controlled, the doping according to the application can be performed extremely easily. In addition, since plasma is used, it is possible to dope portions that cannot be obtained by ion implantation.

【図面の簡単な説明】 第1図は本発明の一実施例に使用したプラズマドーピン
グ装置の概略断面図、第2図は本発明の実施例における
SIMS分析結果を示すグラフである。 1……真空チャンバー、2……上部電極、3……下部電
極、5……ガス導入口、6……ガス排気口、7……高周
変流器、8……高周波電源、9……電流計。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a plasma doping apparatus used in one embodiment of the present invention, and FIG.
5 is a graph showing a SIMS analysis result. DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 2 ... Upper electrode, 3 ... Lower electrode, 5 ... Gas inlet, 6 ... Gas exhaust port, 7 ... High frequency current transformer, 8 ... High frequency power supply, 9 ... Ammeter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 正文 門真市大字門真1006番地 松下電器産業 株式会社内 (72)発明者 丹野 益男 門真市大字門真1006番地 松下電器産業 株式会社内 (56)参考文献 特開 昭56−138921(JP,A) 特開 昭61−136224(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Masafumi Kubota               1006 Kadoma Kadoma Matsushita Electric Industrial               Inside the corporation (72) Inventor Masuo Tanno               1006 Kadoma Kadoma Matsushita Electric Industrial               Inside the corporation                (56) References JP-A-56-138921 (JP, A)                 JP-A-61-136224 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.真空チャンバー内に被処理物を配置し、不純物を含
むガスを導入し、高周波放電を利用してドーピングを行
うに際し、放電中の高周波電流を測定し、高周波電流を
制御することにより不純物の濃度を制御することを特徴
とするプラズマドーピング方法。
(57) [Claims] An object to be processed is placed in a vacuum chamber, a gas containing impurities is introduced, and when doping is performed using high-frequency discharge, a high-frequency current during discharge is measured, and the impurity concentration is controlled by controlling the high-frequency current. A plasma doping method characterized by controlling.
JP62135234A 1987-05-29 1987-05-29 Plasma doping method Expired - Lifetime JP2718926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135234A JP2718926B2 (en) 1987-05-29 1987-05-29 Plasma doping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135234A JP2718926B2 (en) 1987-05-29 1987-05-29 Plasma doping method

Publications (2)

Publication Number Publication Date
JPS63299327A JPS63299327A (en) 1988-12-06
JP2718926B2 true JP2718926B2 (en) 1998-02-25

Family

ID=15146946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135234A Expired - Lifetime JP2718926B2 (en) 1987-05-29 1987-05-29 Plasma doping method

Country Status (1)

Country Link
JP (1) JP2718926B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320605C (en) * 2003-07-03 2007-06-06 松下电器产业株式会社 Method and device for plasma doping
US7601619B2 (en) 2005-04-04 2009-10-13 Panasonic Corporation Method and apparatus for plasma processing
US8129202B2 (en) 2005-02-23 2012-03-06 Panasonic Corporation Plasma doping method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119693B2 (en) * 1991-10-08 2000-12-25 エム・セテック株式会社 Semiconductor substrate manufacturing method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138921A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Method of formation for impurity introduction layer
JPS61136224A (en) * 1984-12-07 1986-06-24 Fuji Electric Co Ltd Method of introducing impurity to one side of semiconductor substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320605C (en) * 2003-07-03 2007-06-06 松下电器产业株式会社 Method and device for plasma doping
US8129202B2 (en) 2005-02-23 2012-03-06 Panasonic Corporation Plasma doping method and apparatus
US7601619B2 (en) 2005-04-04 2009-10-13 Panasonic Corporation Method and apparatus for plasma processing

Also Published As

Publication number Publication date
JPS63299327A (en) 1988-12-06

Similar Documents

Publication Publication Date Title
JP2830978B2 (en) Reactive ion etching apparatus and plasma processing apparatus
US7686973B2 (en) Silicon wafer etching method and apparatus, and impurity analysis method
JPS627272B2 (en)
DE4319683A1 (en) Removal of polymer residues on carbon@ basis, useful for cleaning plasma reactors - by excitation of plasma contg. ozone in reactor and evacuating obtd. volatile end prods.
JPH02281734A (en) Treating method of surface by plasma
JP2718926B2 (en) Plasma doping method
WO2011083719A1 (en) Method and apparatus for etching of surface layer part of silicon wafer, and method for analysis of metal contamination in silicon wafer
TW472286B (en) Plasma processing method
JPH0663099B2 (en) Thin film manufacturing method
JPS5841658B2 (en) dry etching equipment
JPH07263408A (en) Plasma etching method
Sato et al. The Effects of Mixing N 2 in CCl4 on Aluminum Reactive Ion Etching
JPS5856339A (en) Plasma etching device
JPS6281032A (en) Manufacture of semiconductor device
JP2003007636A (en) Method of reducing doping volume
JP4348925B2 (en) Plasma doping method and apparatus
JPH0562961A (en) Wafer cleaning method
JPS5887276A (en) Treatment after dry etching
JPH02140925A (en) Method of passivating silicon surface and apparatus therefor
JPH07118467B2 (en) Impurity doping method
JPH02281730A (en) Plasma etching method
Bruce et al. High rate anisotropic etching
JPH076999A (en) Plasma reaction device oxygen cleaning function and oxygen cleaning in side plasma reaction device
JPS61166131A (en) Plasma treatment apparatus
JPS63211628A (en) Plasma treatment device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 10