JPS61136224A - Method of introducing impurity to one side of semiconductor substrate - Google Patents

Method of introducing impurity to one side of semiconductor substrate

Info

Publication number
JPS61136224A
JPS61136224A JP25849184A JP25849184A JPS61136224A JP S61136224 A JPS61136224 A JP S61136224A JP 25849184 A JP25849184 A JP 25849184A JP 25849184 A JP25849184 A JP 25849184A JP S61136224 A JPS61136224 A JP S61136224A
Authority
JP
Japan
Prior art keywords
impurities
substrate
semiconductor substrate
impurity
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25849184A
Other languages
Japanese (ja)
Inventor
Noritada Sato
則忠 佐藤
Kenya Oohira
大衡 建也
Yasukazu Seki
康和 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25849184A priority Critical patent/JPS61136224A/en
Publication of JPS61136224A publication Critical patent/JPS61136224A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities

Abstract

PURPOSE:To introduce impurities only to one side of a semiconductor substrate at any levels of surface concentration and diffusion depth by depositing dopant impurities on one side which faces to the opposite electrode in the semiconductor substrate by means of glow discharge in an atmosphere containing dopant impurities and diffusing the impurities to the surface layer of the substrate by heating. CONSTITUTION:After evacuating the reaction vessel 1 by the use of an evacuation system 5 through a vacuum valve 8, the valve 8 is throttled to lower the evacuation rate of the system 5, and at the same time the insulation gas is introduced from an impurity-containing bomb 7 to the vessel 1 through a regulating circuit 6 to adjust the gas pressure in the vessel 1 to 0.1-10Torr with the aid of a vacuum gauge 18. When a glow discharge is established between the electrodes 2, 3 after applying heat to the silicon substrates 10 placed on the electrode 3 with a heater 11 connected to a power supply, dopant impurities in the impurity gas are precipitated to form deposit layers 12 on the substrates 10. These substrates 10 are submitted to a prolonged heat- treatment in another furnace to obtain single-sided diffusion layers having desired surface concentration and diffusion depth.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、半導体基板の片面のみに不純物を拡散導入す
る方法に関する。
The present invention relates to a method for diffusing and introducing impurities into only one side of a semiconductor substrate.

【従来技術とその問題点】[Prior art and its problems]

半導体基板の片面のみに不純物拡散する従来の方法は、
例え・ばシリコン単結晶基板の場合、第2図に示すよう
に単結晶基板10の表面にSing膜21全21し、一
方の面のSing膜22を除去する1次にこの1&板I
Oを拡散炉に挿入してりんあるいはほう素などのドーパ
ント不純物を含む雰囲気に接触させ、表面に第2図(a
lに示すように不純物層23を析出させる。あるいはド
ーパント不純物を含む溶液の5tO1膜22を除去した
面に塗布する。このシリコン単゛ 結晶基板lOを別の
拡散炉に挿入し、所定のA度。 雰囲気および時間で引伸し拡散を行い第2図(blに示
すように所望の深さの拡散層24を得る。しかしこの場
合aa膜21にピンホール25が存在すると、部分的に
深い拡散部26が生ずる。そのほかに、例えぼりんやほ
う素などの不純物のsto*ll!中の拡散係数はシリ
コン単結晶の約1/10で、例えば1250℃で20時
間以上の引伸し拡散を行うと前記不純物が310、M2
1を透過してシリコン1&板10に到達し、不要な拡散
層27が形成されるので50μ−以上の深さの片面不純
物拡散層を得ることは困難である。また5i01膜2を
シリコン基板全面に形成したのち一方の面のstotM
21を除去する工程を必要とする。 別の方法として番よ第3図に示すように、シリコン半導
体基板10の全表面にりんやほう素などの不純物層23
を析出させ、上述の場合と同様な引伸し拡散を行い所望
の拡散層24を得る。この基板の全面に不純物拡散層2
4が形成されるため、不要な拡散層27を研磨し除去し
なければならない、この方法は50μ−以上の拡散層を
得る場合に通用されるが、シリコン単結晶基板10の全
表面に所望の深さの拡散層を得たのち、不要な部分27
を研磨して除去するため、とくに100μ−以上の拡散
層の場合、研磨に要する労力、その工程でのシリコン単
結晶基板の破損による歩留り低下、研磨による高価なシ
リコン単結晶の浪費などの不都合がある。 そのほか、イオン注入法でシリコン基板の片面にドーパ
ント不純物を注入したのち引伸しをする方法もあるが、
高価なイオン注入装置を必要とすることや1Qlff原
子/d以上の不純物濃度を得るのが回能であることなど
の欠点があった。
The conventional method of diffusing impurities on only one side of a semiconductor substrate is
For example, in the case of a silicon single crystal substrate, a Sing film 21 is formed on the entire surface of the single crystal substrate 10 as shown in FIG.
O is inserted into a diffusion furnace and brought into contact with an atmosphere containing dopant impurities such as phosphorus or boron.
An impurity layer 23 is deposited as shown in FIG. Alternatively, a solution containing dopant impurities is applied to the surface from which the 5tO1 film 22 has been removed. This silicon single crystal substrate IO was inserted into another diffusion furnace and heated to a predetermined degree of A. The diffusion layer 24 with the desired depth is obtained by stretching and diffusing the atmosphere and time as shown in FIG. In addition, the diffusion coefficient of impurities such as phosphorus and boron in sto*ll! is about 1/10 of that of silicon single crystal, and for example, if stretched diffusion is performed at 1250°C for 20 hours or more, the impurities are 310, M2
1 and reaches the silicon 1 & plate 10, forming an unnecessary diffusion layer 27. Therefore, it is difficult to obtain a single-sided impurity diffusion layer with a depth of 50 .mu.m or more. Further, after forming the 5i01 film 2 on the entire surface of the silicon substrate, the stoM film 2 on one side is
21 is required. As another method, as shown in FIG. 3, an impurity layer 23 of phosphorus, boron, etc.
is precipitated and subjected to stretching diffusion similar to the above case to obtain the desired diffusion layer 24. An impurity diffusion layer 2 is formed on the entire surface of this substrate.
4 is formed, the unnecessary diffusion layer 27 must be removed by polishing. This method is commonly used to obtain a diffusion layer of 50μ or more, but the desired diffusion layer 27 must be removed over the entire surface of the silicon single crystal substrate 10. After obtaining the deep diffusion layer, remove the unnecessary part 27
In particular, in the case of a diffusion layer of 100μ or more, there are inconveniences such as the labor required for polishing, a decrease in yield due to damage to the silicon single crystal substrate in the process, and the waste of expensive silicon single crystals due to polishing. be. Another method is to implant dopant impurities into one side of the silicon substrate using ion implantation and then stretch it.
There are drawbacks such as the need for an expensive ion implantation device and the difficulty in obtaining an impurity concentration of 1 Qlff atom/d or more.

【発明の目的】[Purpose of the invention]

本発明は、上述の欠点を除去して半導体基板の片面にの
み任意の表面濃度と拡散深さに不純物を導入することを
、簡単で歩留りよく行うことかできる方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method that eliminates the above-mentioned drawbacks and allows impurities to be introduced into only one side of a semiconductor substrate at an arbitrary surface concentration and diffusion depth easily and with high yield. .

【発明の要点】[Key points of the invention]

本発明によれば、ドーパント不純物を含む雰囲気を存す
る真空容器内に配置された一対の電極の一方の電極の対
向電極に面する側に半導体基板を置き、両電掻の間に電
圧を印加してグロー放電を発生させ、半導体基板の対向
電極側にドーパント不純物を析出させ、次にこの半導体
基板を加熱して基板表面層に不純物を拡散させろことに
より上記の目的を達成する。
According to the present invention, a semiconductor substrate is placed on the side facing the opposite electrode of one of a pair of electrodes arranged in a vacuum container containing an atmosphere containing dopant impurities, and a voltage is applied between the two electrodes. The above object is achieved by generating a glow discharge to precipitate dopant impurities on the opposing electrode side of the semiconductor substrate, and then heating the semiconductor substrate to diffuse the impurities into the surface layer of the substrate.

【発明の実施例】[Embodiments of the invention]

第1図は本発明を実施するための反応装置の一例を示し
、反応槽lの内部には電源4にt!I繞された上部電極
2と下部電極3が配置されている0反応槽1内を真空バ
ルブ4を介して真空排気系5によって排気し、約I X
 1G−’Torrの真空度にしたのち、真空バルブ4
を絞り真空排気系5の排気速度%T+f4JJ4*c1
.66や、1゜あ、や、、゛てボンベ7から導入し、真
空針8を用いて反応槽内の圧力を0.1 ”10Tor
rに調整する。下部電極3の上に置いたシリコン基板1
0を電源9に接続されたヒータ11により、例えば20
0℃に加熱し、電極2.3間にグロー放電を行わせると
、不純物ガスから不純物が第4図に示すように基板lO
の上に析出して析出層12を形成する。このシリコン基
板10を別の電気炉に入れ、引伸し熱処理を行うことに
より、所望の表面濃度と拡散深さを有する片面拡散層1
3が第5図のように得られる。以下具体的な実施条件を
実施例について説明する。 実施例1 第6図は下記の条件でシリコン基板10にドーパント不
純物としてほう素を含む半導体領域を形成した際のほう
素の濃度分布を示すプロファイルである。 1)  fr出条件 基板:単結晶シリコンn型、比抵抗lO〜30 kΩ1
基板温度:200℃ ドーバント不純物:水素で1000pp−に希釈乙たジ
ボラングロー放電時の圧カニ2Torr放電電圧:DC
400V、560V、700V電極間距lII:50■ 放電時間二60分 ?) 引伸し条件 基板温度:tzso℃ 雰囲気:乾燥窒素 熱処理時間+10時間 第6図においてX軸は半導体基板表面から深さ方向への
距離、Y軸は対数目盛でのほう素濃度で、線61.62
.63がそれぞれ400 V 、560 V 、700
 Vの放電電圧に対するものである。はう素濃度分布の
測定は半導体基板表面から深さ方向に2〜3μ−研慶毎
に表面の電気抵抗を四端子法で求め、深さ方向に対する
電気抵抗の変化量の傾きより各深さに対する比抵抗、す
なわち電気的に活性なほう素濃度を求めたものである。 このほう素濃度のプロファイルは、従来の熱拡散法で不
純物を析出させたのち引伸し熱処理した結果と同様であ
る0表面のほう素濃度および拡散深さは放電電圧に依存
して変化するので、所望の表面濃度および拡散深さは放
電条件と引伸し条件を変えることにより容易に得られる
。あるいは、ドーパント不純物ガスの濃度、グロー放電
時の圧力、放電時間を変えても所望の表面濃度および拡
散深さを得ることができる0例えば前記の析出条件で放
電電圧を700v、前記の引伸し条件で基板温度を90
0℃、熱処理時間を10分にしたとき、表面濃度5 X
 1G”原子/−1拡散深さ1000人の電気的に活性
な片面P゛層が形成できる。これに対し、前記析出条件
で放電電圧を560V、前記引伸し条件で基板温度を1
250℃、熱処理時間を50時間にした時には、表面濃
度I X 10”原子/−1拡散深さ100μ−の電気
的に活性な片面P゛層 が形成できる。 実施例2 この実施例ではドーパント不純物としてりんを用い、不
純物ガスをジボランからフォスフイン(Pl、s)に変
更した。これによりn型の半導体領域が形成されろ、そ
の形成条件を次に示す。 l) 析出条件 1&tIL:単結晶シリコン、p型、比抵抗10〜30
 kΩ1基板星度; 2GG℃ ドーバント不純物ガス:水素で1000ρp−に希釈し
たフォスフイン グロー放電時の圧カニ’1Torr 放電電圧:DC400V、560V、700V電極間距
離=50隠 放電時間;6G分 2) 引伸し条件 基板温度:1000℃ 雰囲気:乾燥窒素 熱処理時間110時間 第7図は上記条件で半導体1&!2にドーパント不純物
としてりんを半導体領域を形成した際のりんの濃度分布
を示すプロファイルで、線?1.72.73が放電電圧
400V 、560V 、700V ニ対応するもノテ
ある。実施例1と同様に表面のりん濃度分布および拡散
深さは放電電圧に依存して変化し、また析出条件および
引伸し条件を変えることによっても任意の表面濃度と拡
散深さを臂する片面拡散層が得られる。 実施例1および実施例2に示したように、基板は10〜
30kQcaのn型またはp型の高比抵抗シリコン単結
晶(基板中の不純物濃度1011−IQ1!原子/−)
を使用し、また引伸し条件の雰囲気には乾燥窒素を用い
た。これは、基板の一方の面に不純物を析出させ、前記
引伸し条件で基板中に該不純物層を形成するとき、析出
した不純物が基板外に飛び出し反対側の面にまわり込ん
で付着したり、別の基板の:S地を析出させていない表
面に付着して形成される不要な不純物拡散層の確認を容
易にするためである。この不都合な不純物層は前記実施
例i11および(2)に示す条件のとき、表面濃度0.
5〜8XIO1原子/−0拡散深さ0.5〜1.5μ−
である。 しかしこのような不純物のまわり込み、あるいは別の基
板への付着は、例えば塗布により片面に不純物を付着さ
せたのち拡散する場合に比して少ない、これは本発明に
よりグロー放電により半導体a!板表面に析出したドー
パント不純物元素は、半導体元素と結合していて蒸発し
にくくなっているためと考えられる。従って、引伸し操
作の雰囲気として乾燥窒素の代わりに10〜30%の酸
素を含む窒素を用いたり、高純度の酸素雰囲気中で引伸
し熱処理を行って基板表面に酸化膜形成することにより
、はう素やりんに対して遮蔽して不都合な不純物層の形
成を容易に阻止することができる。 しかし次の実施例に示した方法により不要な不純物層の
形成を防止することもできる。 実施例3 第8図1mlに示すように、シリコン単結晶板10の一
方の面にCvD酸化膜あるいはP!!、#1化膜21を
被着した後、実施例1または実施例2の条件で第8図(
blのように不純物層I2を析出させ、引伸し熱処理を
行って第8図(C1のように片面の不純物拡散層13を
得る。上述のように析出した不純物が引伸し熱処理中に
飛び出して酸化膜21の上に付着する量は0.5〜8X
10”原子/□IIであるため、酸化膜21中を拡散し
て半導体基板10まで達することはない。 すなわち、厚さ1μmの熱酸化膜21を被着した比抵抗
20kQcIIのn型シリコン単結晶基板lOを用いて
実施例1と同様にほう素を析出させ、1250℃で50
時間の引伸し熱処理を行ったのち、酸化膜を除去して基
板表面の電気抵抗を四端子法で測定したところ、素材単
結晶の間に変化が認められず、析出した不純物の飛び出
しによる不要な不純物拡散層が全く形成されないことを
示した。
FIG. 1 shows an example of a reaction apparatus for carrying out the present invention, in which a power supply 4 is connected to a power source 4 inside the reaction tank 1. The interior of the reaction tank 1 in which the upper electrode 2 and lower electrode 3 are arranged is evacuated by the vacuum exhaust system 5 through the vacuum valve 4, and the inside of the reaction tank 1 is evacuated to approximately I
After setting the vacuum level to 1G-'Torr, open the vacuum valve 4.
Pumping speed of vacuum pumping system 5 %T+f4JJ4*c1
.. 66, 1°, yah,,, is introduced from the cylinder 7, and the pressure inside the reaction tank is increased to 0.1" 10 Torr using the vacuum needle 8.
Adjust to r. Silicon substrate 1 placed on lower electrode 3
For example, 20
When heated to 0°C and a glow discharge is caused between the electrodes 2 and 3, impurities are removed from the impurity gas to the substrate lO as shown in Figure 4.
A precipitated layer 12 is formed by depositing on the . This silicon substrate 10 is placed in another electric furnace and subjected to stretching heat treatment to obtain a single-sided diffusion layer 1 having a desired surface concentration and diffusion depth.
3 is obtained as shown in FIG. Below, specific implementation conditions will be explained with reference to Examples. Example 1 FIG. 6 is a profile showing the concentration distribution of boron when a semiconductor region containing boron as a dopant impurity was formed in the silicon substrate 10 under the following conditions. 1) fr output conditions Substrate: single crystal silicon n-type, specific resistance lO~30 kΩ1
Substrate temperature: 200℃ Dopant impurity: Diborane diluted with hydrogen to 1000pp- 2 Torr pressure during glow discharge Discharge voltage: DC
400V, 560V, 700V electrode distance lII: 50 ■ Discharge time 260 minutes? ) Enlargement conditions Substrate temperature: tzso°C Atmosphere: Dry nitrogen Heat treatment time + 10 hours In Fig. 6, the X axis is the distance in the depth direction from the semiconductor substrate surface, and the Y axis is the boron concentration on a logarithmic scale, and the line 61.62
.. 63 are respectively 400 V, 560 V, and 700
This is for a discharge voltage of V. To measure the boronic concentration distribution, the surface electrical resistance is determined every 2 to 3 micrometers from the surface of the semiconductor substrate in the depth direction using the four-terminal method. The specific resistance, that is, the electrically active boron concentration was determined. This boron concentration profile is similar to the result of precipitating impurities using the conventional thermal diffusion method, followed by stretching heat treatment.0 Since the boron concentration and diffusion depth on the surface change depending on the discharge voltage, it is possible to obtain the desired The surface concentration and diffusion depth of can be easily obtained by changing the discharge conditions and stretching conditions. Alternatively, the desired surface concentration and diffusion depth can be obtained by changing the concentration of the dopant impurity gas, the pressure during glow discharge, and the discharge time. Set the board temperature to 90
When the heat treatment time was 10 minutes at 0℃, the surface concentration was 5
An electrically active single-sided P layer with a diffusion depth of 1 G" atoms/-1 1000 atoms can be formed. On the other hand, under the above deposition conditions, the discharge voltage is 560 V, and under the above stretching conditions, the substrate temperature is 1 G" atoms/-1 diffusion depth.
When the heat treatment time is 50 hours at 250°C, an electrically active single-sided P layer with a surface concentration of I x 10" atoms/-1 diffusion depth of 100 μ- can be formed. Example 2 In this example, the dopant impurity The impurity gas was changed from diborane to phosphine (Pl, s) using phosphorus as a catalyst.This formed an n-type semiconductor region.The formation conditions are shown below.l) Precipitation conditions 1 & tIL: single crystal silicon, p-type, specific resistance 10-30
kΩ1 Substrate star power; 2GG°C Doubant impurity gas: Phosphate diluted with hydrogen to 1000ρp− Pressure crab during glow discharge 1 Torr Discharge voltage: DC400V, 560V, 700V Interelectrode distance = 50 Hidden discharge time; 6G min 2) Enlargement Conditions Substrate temperature: 1000°C Atmosphere: Dry nitrogen Heat treatment time 110 hours Figure 7 shows the semiconductor 1&! under the above conditions. 2 is a profile showing the concentration distribution of phosphorus when a semiconductor region is formed using phosphorus as a dopant impurity, and the line ? Note that 1.72.73 corresponds to discharge voltages of 400V, 560V, and 700V. As in Example 1, the surface phosphorus concentration distribution and diffusion depth change depending on the discharge voltage, and by changing the deposition conditions and stretching conditions, it is possible to create a single-sided diffusion layer with arbitrary surface concentration and diffusion depth. is obtained. As shown in Example 1 and Example 2, the substrate is
30kQca n-type or p-type high resistivity silicon single crystal (impurity concentration in substrate 1011-IQ1! atoms/-)
was used, and dry nitrogen was used as the atmosphere for the stretching conditions. This is because when impurities are precipitated on one surface of the substrate and the impurity layer is formed in the substrate under the above-mentioned stretching conditions, the precipitated impurities may fly out of the substrate and wrap around the opposite surface and adhere to other surfaces. This is to facilitate confirmation of an unnecessary impurity diffusion layer formed by adhering to the surface of the substrate on which the :S base is not deposited. This undesirable impurity layer has a surface concentration of 0.00% under the conditions shown in Examples i11 and (2) above.
5~8XIO1 atom/-0 diffusion depth 0.5~1.5μ-
It is. However, the possibility of such impurities getting around or adhering to another substrate is less than when impurities are attached to one side by coating and then diffused.This is because the semiconductor a! This is thought to be because the dopant impurity elements deposited on the plate surface are bonded to the semiconductor elements, making them difficult to evaporate. Therefore, it is possible to use nitrogen containing 10 to 30% oxygen instead of dry nitrogen as the atmosphere for the stretching operation, or to perform stretching heat treatment in a high-purity oxygen atmosphere to form an oxide film on the substrate surface. The formation of an undesirable impurity layer can be easily prevented by shielding against phosphorus. However, the formation of unnecessary impurity layers can also be prevented by the method shown in the next embodiment. Example 3 As shown in FIG. 8 (1 ml), a CvD oxide film or a P! ! , after depositing the #1 coating film 21, under the conditions of Example 1 or Example 2 as shown in FIG.
An impurity layer I2 is precipitated as shown in BL, and a stretching heat treatment is performed to obtain a single-sided impurity diffusion layer 13 as shown in FIG. The amount attached to the top is 0.5~8X
Since it is 10" atoms/□II, it does not diffuse through the oxide film 21 and reach the semiconductor substrate 10. That is, an n-type silicon single crystal with a specific resistance of 20 kQcII on which a thermal oxide film 21 with a thickness of 1 μm is deposited. Boron was precipitated in the same manner as in Example 1 using the substrate IO, and the temperature was 50°C at 1250°C.
After time-enlargement heat treatment, the oxide film was removed and the electrical resistance of the substrate surface was measured using the four-terminal method. No change was observed between the single crystals of the material, and unnecessary impurities were found due to the jumping out of precipitated impurities. It was shown that no diffusion layer was formed.

【発明の効果】【Effect of the invention】

本発明は、半導体基板を電極上におき所望のドーパント
不純物を含む雰囲気中で対向電極との間にグロー放電を
発生させることにより、基板の片面10のみ不純物を析
出させ、加熱により片面に不純物拡散層を形成すること
ができる。しかも所望の表面濃度と拡散深さを得ること
が、グロー放電時の電圧、電流および引伸し条件を変え
ることにより容易に可能である。この方法は、シリコン
のほかにゲルマラム化合物半導体基板の片面にドーパン
ト不純物を含む半導体領域を形成することができる。 本発明によれば、従来の熱拡散法やイオン注入法では開
離な拡散深さが500〜1500人、表面濃度が10寞
1〜lQ0原子/clIであるような極薄高濃度の片面
拡散層から100〜150μ■の深い片面拡散層まで、
任意の表面濃度と拡散深さををする不純物拡散層が容易
に形成できる。これは高価なイオン注入装置や析出専用
の拡散炉を必要としない、また不要な拡散層を研磨して
除去しなくてもよいので半導体材料を効率的に利用でき
、今後の超LSI素子や三次元素子のamなども含めた
半導体工業への寄与は橿めて大きい。
In the present invention, by placing a semiconductor substrate on an electrode and generating a glow discharge between it and a counter electrode in an atmosphere containing a desired dopant impurity, impurities are precipitated on only one side 10 of the substrate, and the impurity is diffused on one side by heating. layers can be formed. Moreover, desired surface concentration and diffusion depth can be easily obtained by changing the voltage, current and stretching conditions during glow discharge. This method can form a semiconductor region containing dopant impurities on one side of a germalam compound semiconductor substrate in addition to silicon. According to the present invention, the conventional thermal diffusion method or ion implantation method can achieve ultra-thin, high-concentration single-sided diffusion with an open diffusion depth of 500 to 1500 atoms and a surface concentration of 10 to 1 Q0 atoms/clI. layer to a deep single-sided diffusion layer of 100 to 150μ■.
An impurity diffusion layer with arbitrary surface concentration and diffusion depth can be easily formed. This does not require expensive ion implantation equipment or a diffusion furnace dedicated to precipitation, and there is no need to polish and remove unnecessary diffusion layers, so semiconductor materials can be used efficiently and will be used in future ultra-LSI devices and tertiary devices. The contribution of elements to the semiconductor industry, including AM, is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いる反応装置の一例の構成説
明図、第2図、第3図は従来の方法の二つの例をそれぞ
れ示す半導体基板断面図、°第4図は本発明の一実施例
の不純物析出後の状態を示す断面図、第5図は同じく引
伸し後の基板を示す断面図、第6図は本発明の実施例に
より得られたほう素濃度分布線図、第7図は別の実施例
により得られたりん濃度分布wA図、第8図はさらに別
の実施例の工程を順次示す基板断面図である。 1:反応槽、2 : 上11tffl、  3:下部電
極、4、tl、5:真空排気系、7二不純物ガスボンベ
、loiシリコン基板、ll:ヒータ、12:析出不純
物層、13:拡散層。 才1図 才Z図 才4(2) 搗 看ズ5張ざ(μ硼) オムロ $、歌 シg =   (yイとnlうオフ区
FIG. 1 is an explanatory diagram of the configuration of an example of a reaction device used in the implementation of the present invention, FIGS. 2 and 3 are cross-sectional views of a semiconductor substrate showing two examples of conventional methods, and FIG. FIG. 5 is a cross-sectional view showing the state after impurity precipitation in one example; FIG. 5 is a cross-sectional view showing the substrate after stretching; FIG. The figure is a phosphorus concentration distribution wA diagram obtained in another example, and FIG. 8 is a substrate cross-sectional view sequentially showing the steps of still another example. 1: Reaction tank, 2: Upper 11tffl, 3: Lower electrode, 4, TL, 5: Vacuum exhaust system, 72 impurity gas cylinder, LOI silicon substrate, 11: Heater, 12: Precipitated impurity layer, 13: Diffusion layer. Sai1zuzaizZzuzai4(2)

Claims (1)

【特許請求の範囲】[Claims] 1)ドーパント不純物を含む雰囲気を有する真空容器内
に配置された一対の電極の一方の電極の対校電極に面す
る側に半導体基板を置き、両電極間に電圧を印加してグ
ロー放電を発生させ、半導体基板の対向電極側にドーパ
ント不純物を析出させ、次に該半導体基板を加熱して基
板表面物に前記不純物を拡散させることを特徴とする半
導体基板の片面への不純物導入方法。
1) A semiconductor substrate is placed on the side facing the counter electrode of one of a pair of electrodes placed in a vacuum container containing an atmosphere containing dopant impurities, and a voltage is applied between both electrodes to generate a glow discharge. . A method of introducing impurities into one side of a semiconductor substrate, which comprises depositing dopant impurities on the opposite electrode side of the semiconductor substrate, and then heating the semiconductor substrate to diffuse the impurities into the surface of the substrate.
JP25849184A 1984-12-07 1984-12-07 Method of introducing impurity to one side of semiconductor substrate Pending JPS61136224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25849184A JPS61136224A (en) 1984-12-07 1984-12-07 Method of introducing impurity to one side of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25849184A JPS61136224A (en) 1984-12-07 1984-12-07 Method of introducing impurity to one side of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS61136224A true JPS61136224A (en) 1986-06-24

Family

ID=17320944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25849184A Pending JPS61136224A (en) 1984-12-07 1984-12-07 Method of introducing impurity to one side of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS61136224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299327A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Plasma doping method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299327A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Plasma doping method

Similar Documents

Publication Publication Date Title
JP3119693B2 (en) Semiconductor substrate manufacturing method and apparatus
US4565588A (en) Method for diffusion of impurities
JP2588388B2 (en) Coating method
JPH03178126A (en) Impurity doping device
US4762803A (en) Process for forming crystalline films by glow discharge
JPS61136224A (en) Method of introducing impurity to one side of semiconductor substrate
JPH03173420A (en) Implantation of impurity in semiconductor inner wall
JPS63175418A (en) Doped polycrystalline silicon layer for semiconductor device
JPS6331110A (en) Manufacture of semiconductor device
JPS62261128A (en) Manufacture of mos type semiconductor device
JPH01129413A (en) Introduction of impurity into semiconductor substrate
JPH01103832A (en) Plasma doping process
JP3180122B2 (en) Method of impurity doping
JPH01283919A (en) Plasma doping method
JPH0436454B2 (en)
JP2928929B2 (en) Impurity doping method
JPH06105694B2 (en) Boron solid phase diffusion method
JPS5917529B2 (en) Manufacturing method of semiconductor device
JP3100668B2 (en) Method for manufacturing photovoltaic element
JPH0268925A (en) Introduction of impurity
JP3023481B2 (en) Method of implanting impurities into semiconductor film
JP2876414B2 (en) Manufacturing method of diffusion resistance element
JP2690917B2 (en) Thin film forming method and semiconductor device manufacturing method
JPS61144029A (en) Method and apparatus for manufacturing silicon oxide film containing phosphorus
JPH0216724A (en) Manufacture of semiconductor device