JP2711076B2 - Operation control method of welding robot - Google Patents

Operation control method of welding robot

Info

Publication number
JP2711076B2
JP2711076B2 JP22631794A JP22631794A JP2711076B2 JP 2711076 B2 JP2711076 B2 JP 2711076B2 JP 22631794 A JP22631794 A JP 22631794A JP 22631794 A JP22631794 A JP 22631794A JP 2711076 B2 JP2711076 B2 JP 2711076B2
Authority
JP
Japan
Prior art keywords
welding
divided
robot
line
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22631794A
Other languages
Japanese (ja)
Other versions
JPH0890233A (en
Inventor
浩一 松田
章 北村
潔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22631794A priority Critical patent/JP2711076B2/en
Publication of JPH0890233A publication Critical patent/JPH0890233A/en
Application granted granted Critical
Publication of JP2711076B2 publication Critical patent/JP2711076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,溶接ロボットの運転制
御に係り,特に複数台の溶接ロボットで溶接を行うシス
テムにおいて,各溶接ロボットの溶接作業分担が均等に
なるように溶接ロボットの運転制御を行う方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control of a welding robot, and more particularly to an operation control of a welding robot in a system for performing welding by a plurality of welding robots so that the welding work is equally shared among the welding robots. How to do.

【0002】[0002]

【従来の技術】近年,溶接作業の自動化が進展し,溶接
ロボットを使用して溶接作業の省力化を図ることが多く
なっている。特に,溶接対象が大きい場合には,その溶
接作業現場において複数の溶接ロボットの各々により溶
接対象の各溶接線の溶接作業を分担して溶接作業を行う
ことが溶接作業の能率向上の点で好ましい。このように
各溶接線の溶接作業を分担するとき,どの溶接ロボット
がどの溶接線の溶接作業を分担するのかを,決定する必
要があるが,その分担の決定方法は作業員が現場作業の
経験により大まかに決定しているのが現状である。そし
て,溶接作業の分担決定に従って各溶接ロボットをその
担当する作業領域内の溶接線に沿って溶接動作を実行す
るようにティーチングし,実際の溶接作業が行われてい
る。
2. Description of the Related Art In recent years, the automation of welding operations has been advanced, and the use of welding robots to reduce the labor of welding operations has been increasing. In particular, when the object to be welded is large, it is preferable from the viewpoint of improving the efficiency of the welding operation that a plurality of welding robots perform the welding operation at the welding work site while sharing the welding operation of each welding line to be welded. . When sharing the welding work for each welding line in this way, it is necessary to determine which welding robot is responsible for which welding line, but the method of determining the sharing depends on the experience of the field work. The current situation is roughly determined by Each welding robot is taught so as to execute a welding operation along a welding line in a work area in charge of the welding robot according to the determination of the division of the welding operation, and the actual welding operation is performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,溶接対
象が大型化して溶接線数が多くなり,使用する溶接ロボ
ットの台数が増えた場合には次のような問題が生じてい
る。即ち,溶接線数が増えると各溶接ロボットに分担さ
せるべき溶接線の組み合わせ数が非常に多くなる。その
ため,各溶接ロボットに溶接線を分担させて実際に溶接
作業を行った場合,それぞれ溶接ロボットに分担させる
溶接線の割り当てによって溶接終了時間にばらつきが生
じ,最短時間で全溶接作業を完了させることが困難にな
っている。これは,作業員が溶接対象物の各溶接線の溶
接作業分担をそれぞれの溶接ロボットに,現場作業での
経験に基づいて大まかに割り当てたために起こるのであ
り,各溶接ロボットにおける溶接完了時間にばらつきが
生じることが避けられず,溶接作業が必ずしも最短時間
にはならない場合が殆どであった。そこで,多数の溶接
線を有する溶接対象物において,最短時間で溶接作業が
完了するように各溶接ロボットに溶接線を分担させて溶
接作業を行うことが要望されている。本発明は,このよ
うな従来の技術における課題を解決するためになされた
ものであり,多数の溶接線を有する溶接対象の溶接作業
を複数の溶接ロボットで分担する場合において,各溶接
ロボットの作業分担が均等になるように溶接ロボットの
運転制御を行う溶接ロボットの運転制御方法を提供する
ことを目的とする。
However, when the size of the welding object is increased and the number of welding lines is increased, and the number of welding robots used is increased, the following problems occur. That is, as the number of welding lines increases, the number of combinations of welding lines to be shared by the welding robots increases significantly. Therefore, when the welding line is actually assigned to each welding robot and the welding operation is actually performed, the welding end time varies depending on the assignment of the welding line to be assigned to each welding robot, and the entire welding operation must be completed in the shortest time. Has become difficult. This occurs because the worker roughly assigned the welding work of each welding line of the welding target to each welding robot based on the experience of on-site work, and the welding completion time of each welding robot varied. Inevitably occurred, and the welding work was not always performed in the shortest time in most cases. Therefore, it is demanded that welding robots share welding lines so that welding operations can be completed in the shortest time in a welding target having a large number of welding lines. SUMMARY OF THE INVENTION The present invention has been made to solve the problems in the conventional technology, and when a plurality of welding robots share welding work of a welding object having a large number of welding lines, the work of each welding robot is performed. An object of the present invention is to provide an operation control method for a welding robot that controls the operation of the welding robot so that the sharing is even.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明は,共通の移動空間内に設置された溶接対象領
域を移動自在な複数の溶接ロボットで分担して溶接する
際の,各溶接ロボットの運転を制御する方法において,
溶接対象領域の全溶接線のデータを収集するデータ収集
工程と,上記データ収集工程で収集された全溶接線のデ
ータに基づき,各溶接ロボットの分担する溶接時間の合
計が均等になるように溶接対象領域を分割する領域分割
工程と,から成ることを特徴とする溶接ロボットの運転
制御方法である。さらには,上記データ収集工程では,
各溶接線の中心座標及び各溶接線の溶接に要する時間を
求めることによりデータ収集を行う溶接ロボットの運転
制御方法である。さらには,上記データ収集工程では,
溶接線を区分し,各区分毎の中心座標および区分毎の溶
接に要する時間を求めることによりデータ収集を行う溶
接ロボットの運転制御方法である。
SUMMARY OF THE INVENTION The present invention for solving the above-mentioned problems is directed to a case in which a plurality of movable welding robots share an area to be welded installed in a common moving space and perform welding. In the method of controlling the operation of the welding robot,
Based on the data collection process for collecting data on all welding lines in the welding target area and the welding line data collected in the above data collection process, welding is performed so that the total welding time shared by each welding robot is equal. And a region dividing step of dividing the target region. Furthermore, in the above data collection process,
This is an operation control method for a welding robot that collects data by obtaining the center coordinates of each welding line and the time required for welding each welding line. Furthermore, in the above data collection process,
This is an operation control method of a welding robot that collects data by dividing a welding line and obtaining a center coordinate for each section and a time required for welding for each section.

【0005】さらには,上記領域分割工程では,溶接対
象領域を縦横方向のいずれか一方の方向に該一方の方向
に並んだ溶接ロボットの組数で大分割領域に分割した時
の各大分割領域毎の溶接時間の合計が均等になるように
溶接対象領域を分割した後に,各大分割領域を他方の方
向に該他方の方向に並んだ溶接ロボットの台数でさらに
中分割領域に分割した時の各中分割領域毎の溶接時間の
合計が均等になるように各大分割領域を分割する溶接ロ
ボットの運転制御方法である。さらには,上記他方の方
向に並んだ溶接ロボットで1本の溶接線を分担して共同
で溶接する必要がある時には,上記領域分割工程で一旦
その共同で溶接すべき共同溶接線を除いて,残余の溶接
線について溶接対象領域を中分割領域まで分割した後
に,上記共同溶接線について大分割領域に分割する溶接
ロボットの運転制御方法である。さらには,上記複数の
溶接ロボットに故障中の溶接ロボットがある時には,そ
の故障中の溶接ロボットが占有する溶接対象領域を除い
た残余の溶接対象領域について,溶接対象領域を分割す
る溶接ロボットの運転制御方法である。さらには,上記
領域分割工程で分割された各中分割領域内を更に小分割
領域に分割し,各小分割領域間の溶接作業順序を溶接作
業のシュミレーション結果に基づいて決定する溶接ロボ
ットの運転制御方法である。
Further, in the above-mentioned area dividing step, each of the large divided areas when the welding target area is divided into the large divided areas by the number of sets of welding robots arranged in one of the vertical and horizontal directions in the one direction. After dividing the welding target area so that the total welding time for each is equal, each large divided area is divided into medium divided areas by the number of welding robots arranged in the other direction in the other direction. This is an operation control method of a welding robot that divides each large divided region so that the total welding time for each middle divided region is equal. Further, when it is necessary to share one welding line with the welding robots arranged in the other direction and perform joint welding together, except for the joint welding line that is to be jointly welded once in the region dividing step, This is an operation control method for a welding robot that divides a welding target region into a middle divided region with respect to a remaining welding line, and then divides the joint welding line into a large divided region. Further, when there is a failed welding robot among the plurality of welding robots described above, the operation of the welding robot that divides the welding target area into the remaining welding target areas excluding the welding target area occupied by the failed welding robot. It is a control method. Further, the operation control of the welding robot for further dividing each of the middle divided areas divided in the above area dividing step into smaller divided areas and determining a welding work order between the respective smaller divided areas based on a simulation result of the welding work. Is the way.

【0006】[0006]

【作用】本発明によれば,データ収集工程により,溶接
対象領域の全溶接線のデータが収集される。このように
収集された溶接線のデータに基づいて領域分割工程によ
り,各溶接ロボットの分担する溶接時間の合計が均等に
なるように溶接対象領域が分担される。従って,各溶接
ロボットの作業分担が均等になるように溶接ロボットの
運転制御を行うことができる。さらに,上記データ収集
工程では,各溶接線のデータを各溶接線の中心座標及び
各溶接線の溶接に要する時間を求めることによりデータ
を確実に収集することができる。さらに,上記データ収
集工程では,溶接線を区分し,各区分毎の中心座標及び
各溶接線の溶接に要する時間を求めることによりデータ
をより確実に収集することができる。さらに,上記領域
分割工程では,溶接対象領域が縦横方向のいずれか一方
の方向に該一方の方向に並んだ溶接ロボットの組数に基
づき,それぞれの溶接時間の合計が均等になるように大
分割領域に分割され,さらに他方の方向に並んだ溶接ロ
ボットの台数で,それぞれの溶接時間の合計が均等にな
るように中分割領域に分割される。これにより,各中分
割領域を各溶接ロボットが溶接するのに要する作業時間
がより均等になる。
According to the present invention, data of all the welding lines in the welding target area are collected by the data collecting step. Based on the data of the welding lines collected in this manner, the welding target areas are shared by the area dividing step so that the total welding time shared by the welding robots becomes equal. Therefore, the operation control of the welding robot can be performed so that the work sharing of each welding robot is equal. Further, in the data collection step, the data of each welding line can be reliably collected by obtaining the center coordinates of each welding line and the time required for welding each welding line. Furthermore, in the data collection step, data can be collected more reliably by dividing the welding line and determining the center coordinates of each section and the time required for welding each welding line. Further, in the area dividing step, the welding target area is divided into large areas so that the total welding time is equal based on the number of sets of welding robots arranged in one of the vertical and horizontal directions. The region is divided into regions, and the number of welding robots arranged in the other direction is further divided into middle divided regions so that the total of the respective welding times is equal. Thereby, the work time required for each welding robot to weld each of the middle divided areas becomes more uniform.

【0007】さらに,上記他方の方向に並んだ溶接ロボ
ットで1本の溶接線を分担して共同で溶接する必要があ
る時には,上記領域分割工程で一旦その共同溶接線を除
いて,残余の溶接線について溶接対象領域を中分割領域
まで分割した後に,上記共同溶接線について大分割領域
に分割することにより対処可能である。さらに,故障中
の溶接ロボットがある時には,その溶接ロボットが占有
する溶接対象領域を除いた残余の溶接対象領域について
溶接対象領域を分割することにより対処可能である。さ
らに,上記領域分割工程では,分割された中分割領域が
さらに小分割領域に分割され,この各小分割領域に対し
て溶接作業順序が溶接作業のシュミレーション結果に基
づいて決定される。その溶接作業順序にしたがって溶接
作業を行えば,各溶接ロボットは最短の溶接時間で作業
を完了することができる。
Further, when it is necessary to jointly perform welding by sharing one welding line by the welding robots arranged in the other direction, the joint welding line is temporarily removed in the region dividing step and the remaining welding lines are removed. This can be dealt with by dividing the welding target region for the line into the middle divided region and then dividing the joint welding line into the large divided region. Further, when there is a failed welding robot, it can be dealt with by dividing the welding target area with respect to the remaining welding target area excluding the welding target area occupied by the welding robot. Further, in the region dividing step, the divided middle divided region is further divided into small divided regions, and a welding operation sequence is determined for each of the small divided regions based on a simulation result of the welding operation. If the welding operation is performed according to the welding operation sequence, each welding robot can complete the operation in the shortest welding time.

【0008】[0008]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例について説明し,本発明の理解に供する。尚,
以下の実施例は,本発明を具体化した一例であって,本
発明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る溶接ロボットの運転
制御方法を適用可能なシステムの概略構成を示すブロッ
ク図,図2は本発明の溶接ロボットの運転制御方法を利
用した溶接ロボット等の概略配置を示す斜視図,図3は
本発明の溶接ロボットの運転制御方法を示すフロー図,
図4は溶接対象領域を分割する方法を示す摸式図,図5
は各溶接ロボット毎の溶接順序の決定方法を示す概略説
明図,図6は故障した溶接ロボットによる占有領域を示
す摸式図である。図2に示すように,多数の溶接線21
(図4のA参照)を有する溶接対象11を複数の溶接ロ
ボット14で溶接するために,溶接対象11を跨ぐよう
に5基の門型支柱12が設置され,この各門型支柱12
に各溶接ロボット14がそれぞれ移動機構13によって
X−Y−Z方向(縦横高さ方向)に移動自在に配置され
ている。上記溶接対象11は比較的溶接線数が多い大型
のものであり,複数(本実施例では10)台の溶接ロボ
ット14によって溶接対象11の溶接作業を分担してい
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. still,
The following examples are embodied examples of the present invention and do not limit the technical scope of the present invention. FIG. 1 is a block diagram showing a schematic configuration of a system to which a welding robot operation control method according to an embodiment of the present invention can be applied, and FIG. 2 is a welding robot using the welding robot operation control method of the present invention. FIG. 3 is a perspective view showing a schematic arrangement of the welding robot, etc. FIG.
FIG. 4 is a schematic diagram showing a method of dividing a welding target area, and FIG.
Is a schematic explanatory view showing a method of determining a welding order for each welding robot, and FIG. 6 is a schematic diagram showing an occupied area by a failed welding robot. As shown in FIG.
In order to weld a welding target 11 having a plurality of welding robots 14 (see FIG. 4A), five portal posts 12 are provided so as to straddle the welding target 11.
Each of the welding robots 14 is arranged so as to be movable in the XYZ directions (vertical and horizontal height directions) by the moving mechanism 13. The welding target 11 is a large one having a relatively large number of welding lines, and a plurality (ten in the present embodiment) of welding robots 14 share the work of welding the welding target 11.

【0009】本発明による溶接ロボットの運転制御方法
では,図3(a)に示すように,ステップS10で各溶
接線21を幾何的に定義するためのデータを収集し,次
のステップS11で複数の各溶接ロボット14の溶接作
業時間が均等となるように上記溶接対象11の溶接作業
分担を決定する。そして,最後のステップS12で決定
された溶接作業分担領域内での溶接ロボット14の作業
順を決定する。上記方法を適用可能な各溶接ロボット1
4の運転を制御するシステムは,図1に示すように,コ
ンピュータを利用した制御部2を有している。この制御
部2には,CPUを予め記憶されているプログラムに従
って動作させることによって構成されるデータ収集手段
3および領域分割手段4が設けられている。上記データ
収集手段3には,コンピュータを利用した製図システム
(以下,CADシステムという)1から上記溶接対象1
1における各溶接線21のデータが入力されている。こ
の各溶接線21のデータは,上記CADシステムで溶接
対象11を設計する際に,予めCADシステムにより演
算されている各溶接線21の座標,長さ及び角度等のデ
ータが利用される。これらのデータを利用することによ
り,各溶接線21を幾何的に定義することが容易にな
る。このように制御部2内のデータ収集手段3に各溶接
線21のデータが入力されると,該データ収集手段3で
各溶接線21の中心座標や予定溶接時間が演算される。
この演算された各溶接線21の中心座標や予定溶接時間
は,上記領域分割手段4に入力され,領域分割手段4に
より上記複数の各溶接ロボット14の溶接作業時間が均
等になるように,上記溶接対象11の溶接対象領域が分
割される。そして,このように設定された各溶接ロボッ
ト14の溶接対象領域内における各溶接線21のデータ
がインターフェース5を介して各溶接ロボット14へ伝
達され,各溶接ロボット14が伝達されたデータにより
各溶接線21に沿って溶接作業を実行するように各溶接
ロボット14をティーチングし,溶接作業が行われる。
In the operation control method of the welding robot according to the present invention, as shown in FIG. 3A, data for geometrically defining each welding line 21 is collected in step S10, and a plurality of data are defined in the next step S11. The welding work sharing of the welding target 11 is determined so that the welding work time of each welding robot 14 becomes equal. Then, the work order of the welding robot 14 in the welding work sharing area determined in the last step S12 is determined. Each welding robot 1 to which the above method can be applied
As shown in FIG. 1, the system for controlling the operation of No. 4 has a control unit 2 using a computer. The control unit 2 is provided with a data collecting unit 3 and a region dividing unit 4 configured by operating the CPU according to a program stored in advance. The data collection means 3 includes a drawing system (hereinafter, referred to as a CAD system) 1 using a computer and a welding target 1.
1, the data of each welding line 21 is input. When designing the welding target 11 with the CAD system, the data of each welding line 21 uses data such as coordinates, length, and angle of each welding line 21 calculated in advance by the CAD system. By utilizing these data, it is easy to define each welding line 21 geometrically. When the data of each welding line 21 is input to the data collecting means 3 in the control unit 2 as described above, the data collecting means 3 calculates the center coordinates of each welding line 21 and the scheduled welding time.
The calculated center coordinates and the estimated welding time of each welding line 21 are input to the area dividing means 4, and the area dividing means 4 makes the welding work times of the plurality of welding robots 14 uniform. The welding target area of the welding target 11 is divided. Then, the data of each welding line 21 in the welding target area of each welding robot 14 set in this way is transmitted to each welding robot 14 via the interface 5, and each welding robot 14 performs each welding by the transmitted data. Each welding robot 14 is taught so as to perform the welding operation along the line 21, and the welding operation is performed.

【0010】以下,上記システムの動作を上記方法と対
応づけて説明する。上記各溶接ロボット14の運転を制
御するシステムでは,図3(b)に示すように,まず,
上記CADシステム等(ステップS1)により設計され
た溶接対象領域内の溶接箇所を拾い出し,ステップS2
で上記データ収集手段3へ溶接線21のデータを送出す
る(データ収集工程)。このときデータ収集手段3では
横方向に並んだ溶接ロボット14が共同作業で溶接する
溶接線21(共同溶接線)のデータであれば,これを拾
い出し,演算対象から除外する(ステップS3)。共同
溶接線とは,例えば高さ方向の壁を2台のロボットが裏
表から同時に両面溶接するようなものをいう。また,故
障中の溶接ロボット14が予め判っている場合にはその
溶接ロボット14の溶接範囲のデータを除外(ステップ
S4)し,溶接対象となる溶接線21の中心座標および
溶接に要する時間を計算する。これによりデータが量子
化されて確実に収集できる。さらに,溶接線の長さを適
宜分割して溶接線を区分し,各区分毎の中心座標及び各
溶接線の座標に要する時間を求めて量子化することによ
り,データをより確実に収集することもできる。中心座
標と溶接時間が計算された溶接対象データは上記領域分
割手段4に送られ,溶接対象11の縦方向の分割が行わ
れる(ステップS5)。この分割には,分割数=縦方向
の溶接ロボット14の組数=溶接ロボット14の総数
(本実施例では10台)/横方向に並列される溶接ロボ
ット14の総数(本実施例では2台)の計算式が用いら
れ,本実施例では5等分に分割することが決定される。
この決定に基づき溶接作業の対象となる全ての溶接線2
1の溶接時間の合計が5等分され,大分割領域23(図
4のC参照)が決定される(領域分割工程)。具体的に
は以下のようになされる。
The operation of the above system will be described below in association with the above method. In the system for controlling the operation of each of the welding robots 14, first, as shown in FIG.
A welding point in the welding target area designed by the CAD system or the like (Step S1) is picked up, and Step S2 is performed.
Sends the data of the welding line 21 to the data collecting means 3 (data collecting step). At this time, the data collection means 3 picks up the data of the welding line 21 (joint welding line) to be welded jointly by the welding robots 14 arranged in the horizontal direction, and removes the data from the calculation target (step S3). The joint welding line refers to, for example, a structure in which two robots simultaneously weld a wall in the height direction from the front and rear sides. If the failed welding robot 14 is known in advance, the data of the welding range of the welding robot 14 is excluded (step S4), and the center coordinates of the welding line 21 to be welded and the time required for welding are calculated. I do. As a result, the data is quantized and can be reliably collected. Furthermore, data can be collected more reliably by dividing the length of the weld line as appropriate and dividing the weld line, obtaining the center coordinates of each section and the time required for the coordinates of each weld line and quantizing them. Can also. The welding target data for which the center coordinates and the welding time have been calculated are sent to the region dividing means 4 to divide the welding target 11 in the vertical direction (step S5). For this division, the number of divisions = the number of sets of welding robots 14 in the vertical direction = the total number of welding robots 14 (10 in this embodiment) / the total number of welding robots 14 arranged in the horizontal direction (two in this embodiment). ) Is used, and in this embodiment, it is determined to divide into five equal parts.
Based on this determination, all welding lines 2 to be subjected to welding work
The total welding time of 1 is divided into five equal parts, and the large divided region 23 (see C in FIG. 4) is determined (region dividing step). Specifically, this is performed as follows.

【0011】ステップS1〜S4で求めた溶接線21の
中心座標位置を縦方向上部より走査し,溶接時間をたし
あわせていく。溶接時間の合計が総溶接時間/(縦方向
の溶接ロボット14の組数)の整数倍となったところで
境界線を設定する。これを(縦方向の溶接ロボット14
の組数−1)回行うことにより,ステップS5の分割が
行える。さらに,大分割領域23は横方向に並設される
溶接ロボット14の台数に基づき2等分され,中分割領
域24(図4のD参照)が決定される(ステップS
6)。具体的には以下のようになされる。各大分割領域
23で,横方向左から走査し,溶接時間をたしあわせて
いく。溶接時間の合計がステップS5の大分割領域23
内の溶接時間/横方向の溶接ロボット14の台数の整数
倍となったところで境界線を設定する。これを(横方向
の溶接ロボット14の台数−1)回行うことによりステ
ップS6の分割が行われる。以上の操作で各ロボットの
溶接分担が決定できる。ステップS3で除外された共同
溶接線については,上記ステップS5と同様に縦方向に
5分割することにより,それぞれの溶接ロボット14毎
の溶接時間が均等に分割された状態で各大分割領域23
に割り当てられ,更にこの割り当て分が,共同作業を行
う溶接ロボット14が分担する各中分割領域24にそれ
ぞれ加算される(ステップS7)。そして各溶接ロボッ
ト14で溶接作業順が決定される(ステップS8)。上
記データ収集工程及び領域分割工程では,図4に示すよ
うに,共同で溶接する部分を除いた各溶接線21のデー
タが,上記データ収集手段3により量子化される(図4
のA)。次いで各溶接線21は,各溶接線21の中心座
標にその溶接線21の溶接時間に応じて半径の異なる各
ドット22で定義される(図4のB)。この各ドット2
2を演算することによって全溶接時間を算出し,図3
(b)のステップS5に従って溶接時間が均等になるよ
うに5等分され,大分割領域23に分けられる。
The center coordinate position of the welding line 21 determined in steps S1 to S4 is scanned from the upper part in the vertical direction, and the welding time is added. A boundary line is set when the total welding time is an integral multiple of the total welding time / (the number of sets of the welding robots 14 in the vertical direction). This is called (vertical welding robot 14
By performing the number of sets -1) times, the division in step S5 can be performed. Further, the large divided area 23 is divided into two equal parts based on the number of welding robots 14 arranged side by side in the horizontal direction, and a middle divided area 24 (see D in FIG. 4) is determined (step S).
6). Specifically, this is performed as follows. In each large divided area 23, scanning is performed from the left in the horizontal direction, and the welding time is adjusted. The total of the welding time is the large divided area 23 in step S5.
A boundary line is set when it becomes an integral multiple of the welding time / the number of welding robots 14 in the horizontal direction. This is performed (the number of the welding robots 14 in the lateral direction minus one) times, whereby the division in step S6 is performed. With the above operation, the welding share of each robot can be determined. The joint welding line excluded in step S3 is divided into five in the vertical direction in the same manner as in step S5, so that the welding time for each welding robot 14 is equally divided in each large divided area 23.
, And the allocated portion is added to each of the middle divided regions 24 assigned by the welding robot 14 performing the joint work (step S7). Then, the welding operation sequence is determined by each welding robot 14 (step S8). In the data collecting step and the area dividing step, as shown in FIG. 4, the data of each welding line 21 excluding the portion to be jointly welded is quantized by the data collecting means 3 (FIG. 4).
A). Next, each welding line 21 is defined by dots 22 having different radii at the center coordinates of each welding line 21 according to the welding time of the welding line 21 (FIG. 4B). This each dot 2
2 to calculate the total welding time.
According to the step S5 of (b), the welding time is divided into five equal parts so as to be equal, and the welding time is divided into large divided areas 23.

【0012】更に,上記ステップS6において,各大分
割領域23毎に溶接時間をそれぞれ2等分して,各大分
割領域23を各中分割領域24にわけ,各溶接ロボット
14の溶接領域が決定される。このとき,図5に示すよ
うに,例えば溶接ロボット14aが分担する中分割領域
24aは,例えば小分割領域25に4等分される。そし
て,すべてのロボットが分割した領域を同じ順序で溶接
した場合の溶接作業シミュレーションを共同作業以外の
溶接線に続き共同作業の溶接線について行い,最も総作
業時間の短い作業順序を選ぶ。例えば,溶接ロボット1
4aについては,各小分割領域25をA1,B1,C
1,D1としたときに,A1から溶接を開始したとする
と,A1〜D1の溶接順の全組み合わせは次の通りであ
る。 A1→B1→C1→D1,A1→C1→B1→D1, A1→D1→B1→C1,A1→B1→D1→C1, A1→C1→D1→B1,A1→D1→C1→B1 上記溶接順で運転された場合を,それぞれシミュレーシ
ョンして,その結果に基づき溶接作業時間が最短となる
ように溶接順を決定する。このような各中分割領域24
内の小分割領域25の溶接順の決定は,中分割領域24
b〜24d…を分担する各溶接ロボット14b〜14d
について順次に行われる。尚,ここでは,各溶接分担領
域は4等分としたが,各ロボットが同一領域に存在する
時に,干渉が起こらなければよいので,この条件を満た
す任意の分割数にしてもよい。ただし,溶接シミュレー
ションを行う組み合わせ(回数)は増加する。
Further, in step S6, the welding time is divided into two equal parts for each large divided area 23, each large divided area 23 is divided into each middle divided area 24, and the welding area of each welding robot 14 is determined. Is done. At this time, as shown in FIG. 5, for example, the middle divided area 24a shared by the welding robot 14a is divided into four equal parts, for example, into small divided areas 25. Then, a welding operation simulation in a case where all the robots weld the divided areas in the same order is performed on the welding line other than the joint operation and the welding line of the joint operation, and the operation sequence with the shortest total operation time is selected. For example, welding robot 1
4a, each sub-region 25 is defined as A1, B1, C
Assuming that welding is started from A1 when 1, D1 is set, all combinations of the welding order of A1 to D1 are as follows. A1 → B1 → C1 → D1, A1 → C1 → B1 → D1, A1 → D1 → B1 → C1, A1 → B1 → D1 → C1, A1 → C1 → D1 → B1, A1 → D1 → C1 → B1 Are simulated, and the welding order is determined on the basis of the results so as to minimize the welding work time. Each such middle divided area 24
The determination of the welding order of the small divided areas 25 in the
welding robots 14b to 14d sharing b to 24d ...
Are performed sequentially. In this case, each welding sharing area is divided into four equal parts. However, when each robot exists in the same area, it is sufficient that no interference occurs. Therefore, any division number that satisfies this condition may be used. However, the number of combinations (number of times) for performing the welding simulation increases.

【0013】また複数の溶接ロボット14に故障中の溶
接ロボット14がある場合には,図6に示すように,そ
の故障中の溶接ロボット14が占有している領域30
は,他の溶接ロボット14でも溶接することができなく
なる。このため,上記領域30内のドット22aは溶接
範囲から除外されて溶接対象11の溶接を完了させる。
また,1つの溶接線が1つのロボットの動作範囲を越え
た場合,溶接線単位で分担を決定すると実際にはその溶
接線すべてを溶接できない領域が発生する。このような
場合は,先述した溶接線を区分する方法を用いる。例え
ば1つのロボットで溶接できる領域で,対象となる溶接
線を区分しておき,分担を決定すればよい。このように
溶接ロボットの運転を制御すると,各溶接ロボット14
の溶接時間が殆ど等しくなり,従来のように作業員の経
験により大まかに各溶接ロボット14の溶接作業分担を
決定している場合と比較して,最短時間での溶接作業が
確実に実現される。尚,上記実施例では領域分割工程で
溶接対象領域を縦方向に分割して大分割領域23となし
た後,横方向に分割して中分割領域24としたが,実使
用に際しては縦横逆の順に分割してもよい。即ち,縦横
方向のいずれか一方の方向に分割後,他方の方向に分割
すればよい。尚,上記実施例では縦方向のロボットの各
組をなす横方向のロボット台数が全て2台の場合を示し
たが,実使用に際しては,各組ごとにロボット台数が異
なる場合であってもよい。
When a plurality of welding robots 14 have a faulty welding robot 14, as shown in FIG. 6, an area 30 occupied by the faulty welding robot 14 is required.
Cannot be welded by another welding robot 14. Therefore, the dots 22a in the area 30 are excluded from the welding range, and the welding of the welding target 11 is completed.
Further, when one welding line exceeds the operating range of one robot, if the assignment is determined for each welding line, an area where all the welding lines cannot be actually welded occurs. In such a case, the above-described method of dividing the welding line is used. For example, the target welding line may be divided in an area where one robot can perform welding, and the assignment may be determined. When the operation of the welding robot is controlled in this manner, each welding robot 14 is controlled.
Welding time becomes almost equal, and the welding work in the shortest time is reliably realized as compared with the case where the welding work sharing of each welding robot 14 is roughly determined by the experience of the worker as in the past. . In the above-described embodiment, the welding target area is divided in the vertical direction into the large divided area 23 in the area dividing step, and then is divided in the horizontal direction into the middle divided area 24. It may be divided in order. That is, it is only necessary to divide the image in one of the vertical and horizontal directions and then divide the image in the other direction. In the above embodiment, the number of robots in the horizontal direction is two in each set of robots in the vertical direction. However, in actual use, the number of robots in each set may be different. .

【0014】[0014]

【発明の効果】本発明にかかる溶接ロボットの運転制御
方法は,上記したように構成されているため,溶接対象
を各溶接ロボットの作業時間が均等になるように分割
し,各分割領域内の各溶接線の溶接作業時間を各々の溶
接ロボットにより最短時間に短縮した状態で溶接作業を
行うことができる。
Since the welding robot operation control method according to the present invention is configured as described above, the welding object is divided so that the work time of each welding robot is equal, and the welding object is divided into the divided areas. The welding operation can be performed in a state where the welding operation time of each welding line is reduced to the minimum time by each welding robot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る溶接ロボットの運転
制御方法を適用可能なシステムの概略構成を示すブロッ
ク図。
FIG. 1 is a block diagram showing a schematic configuration of a system to which an operation control method of a welding robot according to an embodiment of the present invention can be applied.

【図2】 溶接ロボットの運転制御方法を利用した溶接
ロボット等の概略配置を示す斜視図。
FIG. 2 is a perspective view showing a schematic arrangement of a welding robot and the like using a welding robot operation control method.

【図3】 本発明の溶接ロボットの運転制御方法を示す
フロー図。
FIG. 3 is a flowchart showing an operation control method of the welding robot of the present invention.

【図4】 溶接対象領域を分割する方法を示す摸式図。FIG. 4 is a schematic diagram showing a method of dividing a welding target area.

【図5】 各溶接ロボット毎の溶接順序の決定方法を示
す模式図。
FIG. 5 is a schematic diagram showing a method of determining a welding order for each welding robot.

【図6】 故障した溶接ロボットによる占有領域を示す
摸式図。
FIG. 6 is a schematic diagram showing an area occupied by a failed welding robot.

【符号の説明】[Explanation of symbols]

2…制御部 3…データ収集手段(データ収集工程を実行) 4…領域分割手段(領域分割工程を実行) 21…溶接線 23…大分割領域 24…中分割領域 25…小分割領域 2 Control part 3 Data collecting means (Execute data collecting step) 4 Area dividing means (Perform area dividing step) 21 Welding line 23 Large dividing area 24 Medium dividing area 25 Small dividing area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 潔 愛知県豊橋市三弥町字中原1番地2 株 式会社神戸製鋼所 豊橋FA・ロボット センター内 (56)参考文献 特開 平8−57644(JP,A) 特開 平7−251268(JP,A) 特開 平2−263576(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kiyoshi Hashimoto 1-2-2 Nakahara, Miya-machi, Toyohashi-shi, Aichi Japan, Kobe Steel, Ltd. Toyohashi FA / Robot Center (56) References JP-A-8-57644 (JP) JP-A-7-251268 (JP, A) JP-A-2-263576 (JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 共通の移動空間内に設置された溶接対象
領域を移動自在な複数の溶接ロボットで分担して溶接す
る際の,各溶接ロボットの運転を制御する方法におい
て,溶接対象領域の全溶接線のデータを収集するデータ
収集工程と,上記データ収集工程で収集された全溶接線
のデータに基づき,各溶接ロボットの分担する溶接時間
の合計が均等になるように溶接対象領域を分割する領域
分割工程と,から成ることを特徴とする溶接ロボットの
運転制御方法。
1. A method for controlling the operation of each welding robot when a plurality of movable welding robots share and weld a welding target area installed in a common moving space. Based on the data collection process of collecting welding line data and the data of all welding lines collected in the data collection process, the welding target area is divided so that the total welding time shared by each welding robot is equal. An operation control method for a welding robot, comprising: a region dividing step.
【請求項2】 上記データ収集工程では,各溶接線の中
心座標及び各溶接線の溶接に要する時間を求めることに
よりデータ収集を行う請求項1記載の溶接ロボットの運
転制御方法。
2. The operation control method for a welding robot according to claim 1, wherein in the data collecting step, the data is collected by obtaining a center coordinate of each welding line and a time required for welding each welding line.
【請求項3】 上記データ収集工程では,溶接線を区分
し,各区分毎の中心座標および区分毎の溶接に要する時
間を求めることによりデータ収集を行う請求項1記載の
溶接ロボットの運転制御方法。
3. The operation control method for a welding robot according to claim 1, wherein in the data collecting step, the welding line is sectioned, and data is collected by obtaining a center coordinate of each section and a time required for welding for each section. .
【請求項4】 上記領域分割工程では,溶接対象領域を
縦横方向のいずれか一方の方向に該一方の方向に並んだ
溶接ロボットの組数で大分割領域に分割した時の各大分
割領域毎の溶接時間の合計が均等になるように溶接対象
領域を分割した後に,各大分割領域を他方の方向に該他
方の方向に並んだ溶接ロボットの台数でさらに中分割領
域に分割した時の各中分割領域毎の溶接時間の合計が均
等になるように各大分割領域を分割する請求項1記載の
溶接ロボットの運転制御方法。
4. In the area dividing step, the welding target area is divided into large divided areas by the number of sets of welding robots arranged in one of the vertical and horizontal directions in each of the large divided areas. After dividing the welding target area so that the sum of the welding times is equal, each of the large divided areas is further divided into medium divided areas by the number of welding robots arranged in the other direction in the other direction. 2. The operation control method for a welding robot according to claim 1, wherein each of the large divided areas is divided such that the total welding time for each of the medium divided areas is equal.
【請求項5】 上記他方の方向に並んだ溶接ロボットで
1本の溶接線を分担して共同で溶接する必要がある時に
は,上記領域分割工程で一旦その共同で溶接すべき共同
溶接線を除いて,残余の溶接線について溶接対象領域を
中分割領域まで分割した後に,上記共同溶接線について
大分割領域に分割する請求項4記載の溶接ロボットの運
転制御方法。
5. When it is necessary to share one welding line with the welding robots arranged in the other direction and perform joint welding, the joint welding line to be jointly welded once in the region dividing step is excluded. 5. The operation control method for a welding robot according to claim 4, wherein the welding target area is divided into a middle divided area with respect to the remaining welding line, and then the joint welding line is divided into a large divided area.
【請求項6】 上記複数の溶接ロボットに故障中の溶接
ロボットがある時には,その故障中の溶接ロボットが占
有する溶接対象領域を除いた残余の溶接対象領域につい
て,溶接対象領域を分割する請求項1又は4記載の溶接
ロボットの運転制御方法。
6. When there is a defective welding robot among the plurality of welding robots, the welding target area is divided with respect to the remaining welding target area excluding the welding target area occupied by the failed welding robot. 5. The operation control method for a welding robot according to 1 or 4.
【請求項7】 上記領域分割工程で分割された各中分割
領域内を更に小分割領域に分割し,各小分割領域間の溶
接作業順序を溶接作業のシュミレーション結果に基づい
て決定する請求項4記載の溶接ロボットの運転制御方
法。
7. The method according to claim 4, wherein each of the intermediate divided areas divided in the area dividing step is further divided into small divided areas, and a welding operation sequence between the small divided areas is determined based on a simulation result of the welding operation. Operation control method of the welding robot described in the above.
JP22631794A 1994-09-21 1994-09-21 Operation control method of welding robot Expired - Lifetime JP2711076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22631794A JP2711076B2 (en) 1994-09-21 1994-09-21 Operation control method of welding robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22631794A JP2711076B2 (en) 1994-09-21 1994-09-21 Operation control method of welding robot

Publications (2)

Publication Number Publication Date
JPH0890233A JPH0890233A (en) 1996-04-09
JP2711076B2 true JP2711076B2 (en) 1998-02-10

Family

ID=16843305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22631794A Expired - Lifetime JP2711076B2 (en) 1994-09-21 1994-09-21 Operation control method of welding robot

Country Status (1)

Country Link
JP (1) JP2711076B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047607B2 (en) 2013-12-05 2018-08-14 Honeywell International Inc. Welded shaft and turbine wheel assembly
US10024166B2 (en) 2014-09-16 2018-07-17 Honeywell International Inc. Turbocharger shaft and wheel assembly
US10041351B2 (en) 2014-09-16 2018-08-07 Honeywell International Inc. Turbocharger shaft and wheel assembly
JP6838017B2 (en) 2018-08-31 2021-03-03 ファナック株式会社 Teaching device, teaching method, and teaching program for laser machining
CN115415694B (en) * 2022-08-29 2024-01-12 无锡达诺精密钣金有限公司 Welding method, system and device for sheet metal process

Also Published As

Publication number Publication date
JPH0890233A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JP2895672B2 (en) Multiple robot control method
EP1749621B1 (en) Robot programming device
US7937186B2 (en) Device and method for automatically setting interlock between robots
EP0923755B1 (en) Bending simulation method and apparatus therefor
US20220055214A1 (en) Method of planning works for robots and work planning device
US11327466B2 (en) Command-value generation apparatus
JP2711076B2 (en) Operation control method of welding robot
JP2003080393A (en) Welding deformation estimating method and welding deformation estimating device
EP0529077B1 (en) Method of teaching robot
JP6876640B2 (en) Contact judgment device and contact judgment method for CAE analysis
DE102021105772B4 (en) Interference determination apparatus and method
JP4816620B2 (en) Machining order setting device, machining order setting method, machining order setting program, and storage medium
JP2004358630A (en) Method for setting teaching data of robot
JPH06122025A (en) Followup method for work bending in press brake robot system
JP3104535B2 (en) How to determine the work allocation of the robot
JPH0778017A (en) Method and device for checking interference between bodies in motion
JP3248081B2 (en) Automatic program creation device with automatic cutting axis change function
JP2733935B2 (en) Equipment for creating CNC processing information
JPH0619992A (en) Cad system
JPH1173212A (en) Nc working simulation method and method for preparing work piece model data for the same
JPH07109564B2 (en) Automatic programming device for sheet metal processing
JP2597978B2 (en) How to create robot control data for cutting work
JPS6125211A (en) Parallel processing numerical controller
JPH03502143A (en) Workstations and how to operate them
JPH0916232A (en) Control method for low-rigidity robot

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 16

EXPY Cancellation because of completion of term