JPH0890233A - Operation control method of welding robot - Google Patents

Operation control method of welding robot

Info

Publication number
JPH0890233A
JPH0890233A JP22631794A JP22631794A JPH0890233A JP H0890233 A JPH0890233 A JP H0890233A JP 22631794 A JP22631794 A JP 22631794A JP 22631794 A JP22631794 A JP 22631794A JP H0890233 A JPH0890233 A JP H0890233A
Authority
JP
Japan
Prior art keywords
welding
divided
robot
line
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22631794A
Other languages
Japanese (ja)
Other versions
JP2711076B2 (en
Inventor
Koichi Matsuda
浩一 松田
Akira Kitamura
章 北村
Kiyoshi Hashimoto
潔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22631794A priority Critical patent/JP2711076B2/en
Publication of JPH0890233A publication Critical patent/JPH0890233A/en
Application granted granted Critical
Publication of JP2711076B2 publication Critical patent/JP2711076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE: To execute operation control of a welding robot so that welding work sharing by plural welding robots is made uniform. CONSTITUTION: The center coordinate of weld line and estimated welding time of an object to be welded is operated in the data collecting process by a data collecting means 4, in a region dividing process by a region dividing means 4, by dividing a region to be welded so that a welding time of each welding robot 14 is made uniform, the method is configured so as to decide welding work sharing of plural welding robots 14. By this configuration, welding work of each welding robot is uniformly shared so as to reduce welding time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,溶接ロボットの運転制
御に係り,特に複数台の溶接ロボットで溶接を行うシス
テムにおいて,各溶接ロボットの溶接作業分担が均等に
なるように溶接ロボットの運転制御を行う方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to operation control of a welding robot, and particularly in a system in which welding is performed by a plurality of welding robots, operation control of the welding robots is performed so that the welding work is equally divided among the welding robots. Is about how to do.

【0002】[0002]

【従来の技術】近年,溶接作業の自動化が進展し,溶接
ロボットを使用して溶接作業の省力化を図ることが多く
なっている。特に,溶接対象が大きい場合には,その溶
接作業現場において複数の溶接ロボットの各々により溶
接対象の各溶接線の溶接作業を分担して溶接作業を行う
ことが溶接作業の能率向上の点で好ましい。このように
各溶接線の溶接作業を分担するとき,どの溶接ロボット
がどの溶接線の溶接作業を分担するのかを,決定する必
要があるが,その分担の決定方法は作業員が現場作業の
経験により大まかに決定しているのが現状である。そし
て,溶接作業の分担決定に従って各溶接ロボットをその
担当する作業領域内の溶接線に沿って溶接動作を実行す
るようにティーチングし,実際の溶接作業が行われてい
る。
2. Description of the Related Art In recent years, with the progress of automation of welding work, labor saving of welding work has been often performed by using a welding robot. In particular, when the welding target is large, it is preferable from the viewpoint of improving the efficiency of the welding work that the welding work of each welding line of the welding target is shared by each of the plurality of welding robots at the welding work site. . When the welding work of each welding line is shared in this way, it is necessary to determine which welding robot is to share the welding work of which welding line. The current situation is to decide roughly according to. Then, according to the allocation decision of the welding work, each welding robot is taught so as to execute the welding operation along the welding line in the work area in charge thereof, and the actual welding work is performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,溶接対
象が大型化して溶接線数が多くなり,使用する溶接ロボ
ットの台数が増えた場合には次のような問題が生じてい
る。即ち,溶接線数が増えると各溶接ロボットに分担さ
せるべき溶接線の組み合わせ数が非常に多くなる。その
ため,各溶接ロボットに溶接線を分担させて実際に溶接
作業を行った場合,それぞれ溶接ロボットに分担させる
溶接線の割り当てによって溶接終了時間にばらつきが生
じ,最短時間で全溶接作業を完了させることが困難にな
っている。これは,作業員が溶接対象物の各溶接線の溶
接作業分担をそれぞれの溶接ロボットに,現場作業での
経験に基づいて大まかに割り当てたために起こるのであ
り,各溶接ロボットにおける溶接完了時間にばらつきが
生じることが避けられず,溶接作業が必ずしも最短時間
にはならない場合が殆どであった。そこで,多数の溶接
線を有する溶接対象物において,最短時間で溶接作業が
完了するように各溶接ロボットに溶接線を分担させて溶
接作業を行うことが要望されている。本発明は,このよ
うな従来の技術における課題を解決するためになされた
ものであり,多数の溶接線を有する溶接対象の溶接作業
を複数の溶接ロボットで分担する場合において,各溶接
ロボットの作業分担が均等になるように溶接ロボットの
運転制御を行う溶接ロボットの運転制御方法を提供する
ことを目的とする。
However, when the size of the welding object is increased and the number of welding lines is increased, and the number of welding robots used is increased, the following problems occur. In other words, as the number of welding lines increases, the number of welding line combinations that should be shared by each welding robot increases significantly. Therefore, when the welding line is assigned to each welding robot and the welding work is actually performed, the welding end time varies depending on the assignment of the welding line assigned to each welding robot, and the entire welding work is completed in the shortest time. Has become difficult. This occurs because the worker roughly assigns the welding work division of each welding line of the welding object to each welding robot based on the experience in the field work, and the welding completion time varies among the welding robots. Inevitably, the welding work was not always performed in the shortest time. Therefore, it is desired that welding robots share welding lines with each other so that the welding work is completed in the shortest time on a welding object having a large number of welding lines. The present invention has been made in order to solve the above problems in the conventional technique, and in the case where a plurality of welding robots share the welding work of a welding target having a large number of welding lines, the work of each welding robot is performed. An object of the present invention is to provide an operation control method for a welding robot that controls the operation of the welding robot so that the shares are evenly distributed.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明は,共通の移動空間内に設置された溶接対象領
域を移動自在な複数の溶接ロボットで分担して溶接する
際の,各溶接ロボットの運転を制御する方法において,
溶接対象領域の全溶接線のデータを収集するデータ収集
工程と,上記データ収集工程で収集された全溶接線のデ
ータに基づき,各溶接ロボットの分担する溶接時間の合
計が均等になるように溶接対象領域を分割する領域分割
工程と,から成ることを特徴とする溶接ロボットの運転
制御方法である。さらには,上記データ収集工程では,
各溶接線の中心座標及び各溶接線の溶接に要する時間を
求めることによりデータ収集を行う溶接ロボットの運転
制御方法である。さらには,上記データ収集工程では,
溶接線を区分し,各区分毎の中心座標および区分毎の溶
接に要する時間を求めることによりデータ収集を行う溶
接ロボットの運転制御方法である。
According to the present invention for solving the above-mentioned problems, when welding is carried out by a plurality of movable welding robots sharing a welding target region installed in a common moving space, In the method of controlling the operation of the welding robot,
Based on the data collection process that collects the data of all the welding lines in the welding target area and the data of all the welding lines that were collected in the above data collection process, welding is performed so that the total welding time shared by each welding robot is equal. An operation control method for a welding robot, comprising: an area dividing step of dividing a target area. Furthermore, in the above data collection process,
This is a method for controlling the operation of a welding robot that collects data by obtaining the center coordinates of each welding line and the time required for welding each welding line. Furthermore, in the above data collection process,
It is a welding robot operation control method that collects data by dividing the welding line and determining the center coordinates for each division and the time required for welding for each division.

【0005】さらには,上記領域分割工程では,溶接対
象領域を縦横方向のいずれか一方の方向に該一方の方向
に並んだ溶接ロボットの組数で大分割領域に分割した時
の各大分割領域毎の溶接時間の合計が均等になるように
溶接対象領域を分割した後に,各大分割領域を他方の方
向に該他方の方向に並んだ溶接ロボットの台数でさらに
中分割領域に分割した時の各中分割領域毎の溶接時間の
合計が均等になるように各大分割領域を分割する溶接ロ
ボットの運転制御方法である。さらには,上記他方の方
向に並んだ溶接ロボットで1本の溶接線を分担して共同
で溶接する必要がある時には,上記領域分割工程で一旦
その共同で溶接すべき共同溶接線を除いて,残余の溶接
線について溶接対象領域を中分割領域まで分割した後
に,上記共同溶接線について大分割領域に分割する溶接
ロボットの運転制御方法である。さらには,上記複数の
溶接ロボットに故障中の溶接ロボットがある時には,そ
の故障中の溶接ロボットが占有する溶接対象領域を除い
た残余の溶接対象領域について,溶接対象領域を分割す
る溶接ロボットの運転制御方法である。さらには,上記
領域分割工程で分割された各中分割領域内を更に小分割
領域に分割し,各小分割領域間の溶接作業順序を溶接作
業のシュミレーション結果に基づいて決定する溶接ロボ
ットの運転制御方法である。
Further, in the area dividing step, each of the large divided areas is obtained when the area to be welded is divided into large divided areas by the number of sets of welding robots arranged in one of the vertical and horizontal directions. After dividing the area to be welded so that the total welding time for each is equal, the large divided areas are divided into medium divided areas by the number of welding robots arranged in the other direction. The operation control method for a welding robot divides each large divided area so that the total welding time for each medium divided area becomes equal. Furthermore, when it is necessary to jointly weld one welding line by the welding robots arranged in the other direction, except for the joint welding line that should be jointly welded in the area dividing step, This is an operation control method for a welding robot in which the welding target area is divided into medium-divided areas for the remaining welding lines, and then the joint welding line is divided into large divided areas. Furthermore, when there is a welding robot in failure among the plurality of welding robots, operation of the welding robot that divides the welding target area with respect to the remaining welding target area excluding the welding target area occupied by the welding robot in failure It is a control method. Further, the operation control of the welding robot, which further divides each of the medium-divided regions divided in the region dividing process into small divided regions and determines the welding work order between the small divided regions based on the simulation result of the welding work Is the way.

【0006】[0006]

【作用】本発明によれば,データ収集工程により,溶接
対象領域の全溶接線のデータが収集される。このように
収集された溶接線のデータに基づいて領域分割工程によ
り,各溶接ロボットの分担する溶接時間の合計が均等に
なるように溶接対象領域が分担される。従って,各溶接
ロボットの作業分担が均等になるように溶接ロボットの
運転制御を行うことができる。さらに,上記データ収集
工程では,各溶接線のデータを各溶接線の中心座標及び
各溶接線の溶接に要する時間を求めることによりデータ
を確実に収集することができる。さらに,上記データ収
集工程では,溶接線を区分し,各区分毎の中心座標及び
各溶接線の溶接に要する時間を求めることによりデータ
をより確実に収集することができる。さらに,上記領域
分割工程では,溶接対象領域が縦横方向のいずれか一方
の方向に該一方の方向に並んだ溶接ロボットの組数に基
づき,それぞれの溶接時間の合計が均等になるように大
分割領域に分割され,さらに他方の方向に並んだ溶接ロ
ボットの台数で,それぞれの溶接時間の合計が均等にな
るように中分割領域に分割される。これにより,各中分
割領域を各溶接ロボットが溶接するのに要する作業時間
がより均等になる。
According to the present invention, data of all welding lines in the welding target area is collected by the data collecting step. Based on the thus-collected welding line data, the region dividing process divides the welding target region so that the total welding time shared by the welding robots becomes even. Therefore, the operation control of the welding robots can be performed so that the work assignments of the welding robots are even. Further, in the data collecting step, the data of each welding line can be reliably collected by obtaining the center coordinates of each welding line and the time required for welding of each welding line. Further, in the data collecting step, the welding line is divided, and the central coordinates of each division and the time required for welding of each welding line are obtained, so that the data can be collected more reliably. Further, in the area dividing step, the welding target area is divided into one of the vertical and horizontal directions based on the number of sets of welding robots arranged in one of the directions so that the total welding time is equally divided. It is divided into regions, and the number of welding robots lined up in the other direction is divided into medium regions so that the total welding time is even. As a result, the work time required for each welding robot to weld each medium-divided region becomes more uniform.

【0007】さらに,上記他方の方向に並んだ溶接ロボ
ットで1本の溶接線を分担して共同で溶接する必要があ
る時には,上記領域分割工程で一旦その共同溶接線を除
いて,残余の溶接線について溶接対象領域を中分割領域
まで分割した後に,上記共同溶接線について大分割領域
に分割することにより対処可能である。さらに,故障中
の溶接ロボットがある時には,その溶接ロボットが占有
する溶接対象領域を除いた残余の溶接対象領域について
溶接対象領域を分割することにより対処可能である。さ
らに,上記領域分割工程では,分割された中分割領域が
さらに小分割領域に分割され,この各小分割領域に対し
て溶接作業順序が溶接作業のシュミレーション結果に基
づいて決定される。その溶接作業順序にしたがって溶接
作業を行えば,各溶接ロボットは最短の溶接時間で作業
を完了することができる。
Further, when it is necessary to jointly weld one welding line by welding robots arranged in the other direction, the joint welding line is temporarily removed in the area dividing step, and the remaining welding is performed. This can be dealt with by dividing the welding target area into middle-divided areas for lines and then dividing the joint welding line into large-divided areas. Furthermore, when there is a welding robot that is out of order, it can be dealt with by dividing the welding target area with respect to the remaining welding target area excluding the welding target area occupied by the welding robot. Further, in the area dividing step, the divided medium divided areas are further divided into small divided areas, and the welding operation sequence is determined for each of these small divided areas based on the simulation result of the welding operation. If welding work is performed according to the welding work sequence, each welding robot can complete the work in the shortest welding time.

【0008】[0008]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例について説明し,本発明の理解に供する。尚,
以下の実施例は,本発明を具体化した一例であって,本
発明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る溶接ロボットの運転
制御方法を適用可能なシステムの概略構成を示すブロッ
ク図,図2は本発明の溶接ロボットの運転制御方法を利
用した溶接ロボット等の概略配置を示す斜視図,図3は
本発明の溶接ロボットの運転制御方法を示すフロー図,
図4は溶接対象領域を分割する方法を示す摸式図,図5
は各溶接ロボット毎の溶接順序の決定方法を示す概略説
明図,図6は故障した溶接ロボットによる占有領域を示
す摸式図である。図2に示すように,多数の溶接線21
(図4のA参照)を有する溶接対象11を複数の溶接ロ
ボット14で溶接するために,溶接対象11を跨ぐよう
に5基の門型支柱12が設置され,この各門型支柱12
に各溶接ロボット14がそれぞれ移動機構13によって
X−Y−Z方向(縦横高さ方向)に移動自在に配置され
ている。上記溶接対象11は比較的溶接線数が多い大型
のものであり,複数(本実施例では10)台の溶接ロボ
ット14によって溶接対象11の溶接作業を分担してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. still,
The following examples are examples embodying the present invention and are not of the nature to limit the technical scope of the present invention. 1 is a block diagram showing a schematic configuration of a system to which a welding robot operation control method according to an embodiment of the present invention can be applied. FIG. 2 is a welding robot using the welding robot operation control method of the present invention. FIG. 3 is a perspective view showing the schematic arrangement of the welding robot, FIG. 3 is a flow chart showing the operation control method of the welding robot of the present invention,
FIG. 4 is a schematic diagram showing a method of dividing the welding target area, FIG.
Is a schematic explanatory view showing a method of determining a welding order for each welding robot, and FIG. 6 is a schematic diagram showing an area occupied by a defective welding robot. As shown in FIG. 2, a large number of welding lines 21
In order to weld a welding target 11 having a plurality of welding robots 14 (see FIG. 4A), five gate-shaped columns 12 are installed so as to straddle the welding targets 11.
Further, each welding robot 14 is arranged by the moving mechanism 13 so as to be movable in the XYZ directions (vertical and horizontal height directions). The welding target 11 is a large one having a relatively large number of welding lines, and a plurality of (10 in this embodiment) welding robots 14 share the welding work of the welding target 11.

【0009】本発明による溶接ロボットの運転制御方法
では,図3(a)に示すように,ステップS10で各溶
接線21を幾何的に定義するためのデータを収集し,次
のステップS11で複数の各溶接ロボット14の溶接作
業時間が均等となるように上記溶接対象11の溶接作業
分担を決定する。そして,最後のステップS12で決定
された溶接作業分担領域内での溶接ロボット14の作業
順を決定する。上記方法を適用可能な各溶接ロボット1
4の運転を制御するシステムは,図1に示すように,コ
ンピュータを利用した制御部2を有している。この制御
部2には,CPUを予め記憶されているプログラムに従
って動作させることによって構成されるデータ収集手段
3および領域分割手段4が設けられている。上記データ
収集手段3には,コンピュータを利用した製図システム
(以下,CADシステムという)1から上記溶接対象1
1における各溶接線21のデータが入力されている。こ
の各溶接線21のデータは,上記CADシステムで溶接
対象11を設計する際に,予めCADシステムにより演
算されている各溶接線21の座標,長さ及び角度等のデ
ータが利用される。これらのデータを利用することによ
り,各溶接線21を幾何的に定義することが容易にな
る。このように制御部2内のデータ収集手段3に各溶接
線21のデータが入力されると,該データ収集手段3で
各溶接線21の中心座標や予定溶接時間が演算される。
この演算された各溶接線21の中心座標や予定溶接時間
は,上記領域分割手段4に入力され,領域分割手段4に
より上記複数の各溶接ロボット14の溶接作業時間が均
等になるように,上記溶接対象11の溶接対象領域が分
割される。そして,このように設定された各溶接ロボッ
ト14の溶接対象領域内における各溶接線21のデータ
がインターフェース5を介して各溶接ロボット14へ伝
達され,各溶接ロボット14が伝達されたデータにより
各溶接線21に沿って溶接作業を実行するように各溶接
ロボット14をティーチングし,溶接作業が行われる。
In the welding robot operation control method according to the present invention, as shown in FIG. 3A, data for geometrically defining each welding line 21 is collected in step S10, and a plurality of data are collected in the next step S11. The division of the welding work of the welding target 11 is determined so that the welding work time of each welding robot 14 is equal. Then, the work order of the welding robot 14 in the welding work sharing area determined in the last step S12 is determined. Each welding robot 1 to which the above method can be applied
As shown in FIG. 1, the system for controlling the operation of No. 4 has a control unit 2 using a computer. The control unit 2 is provided with a data collecting unit 3 and a region dividing unit 4 configured by operating the CPU according to a program stored in advance. The data collecting means 3 includes a computer-based drawing system (hereinafter referred to as a CAD system) 1 to the welding target 1
The data of each welding line 21 in 1 is input. As the data of each welding line 21, when designing the welding target 11 by the CAD system, data such as coordinates, length and angle of each welding line 21 calculated in advance by the CAD system is used. By using these data, it becomes easy to geometrically define each welding line 21. In this way, when the data of each welding line 21 is input to the data collecting means 3 in the control unit 2, the data collecting means 3 calculates the center coordinates of each welding line 21 and the expected welding time.
The calculated center coordinates of each welding line 21 and the planned welding time are input to the area dividing means 4 so that the area dividing means 4 equalizes the welding work time of each of the plurality of welding robots 14. The welding target area of the welding target 11 is divided. Then, the data of each welding line 21 in the welding target area of each welding robot 14 thus set is transmitted to each welding robot 14 through the interface 5, and each welding robot 14 performs each welding by the transmitted data. Each welding robot 14 is taught to perform the welding operation along the line 21, and the welding operation is performed.

【0010】以下,上記システムの動作を上記方法と対
応づけて説明する。上記各溶接ロボット14の運転を制
御するシステムでは,図3(b)に示すように,まず,
上記CADシステム等(ステップS1)により設計され
た溶接対象領域内の溶接箇所を拾い出し,ステップS2
で上記データ収集手段3へ溶接線21のデータを送出す
る(データ収集工程)。このときデータ収集手段3では
横方向に並んだ溶接ロボット14が共同作業で溶接する
溶接線21(共同溶接線)のデータであれば,これを拾
い出し,演算対象から除外する(ステップS3)。共同
溶接線とは,例えば高さ方向の壁を2台のロボットが裏
表から同時に両面溶接するようなものをいう。また,故
障中の溶接ロボット14が予め判っている場合にはその
溶接ロボット14の溶接範囲のデータを除外(ステップ
S4)し,溶接対象となる溶接線21の中心座標および
溶接に要する時間を計算する。これによりデータが量子
化されて確実に収集できる。さらに,溶接線の長さを適
宜分割して溶接線を区分し,各区分毎の中心座標及び各
溶接線の座標に要する時間を求めて量子化することによ
り,データをより確実に収集することもできる。中心座
標と溶接時間が計算された溶接対象データは上記領域分
割手段4に送られ,溶接対象11の縦方向の分割が行わ
れる(ステップS5)。この分割には,分割数=縦方向
の溶接ロボット14の組数=溶接ロボット14の総数
(本実施例では10台)/横方向に並列される溶接ロボ
ット14の総数(本実施例では2台)の計算式が用いら
れ,本実施例では5等分に分割することが決定される。
この決定に基づき溶接作業の対象となる全ての溶接線2
1の溶接時間の合計が5等分され,大分割領域23(図
4のC参照)が決定される(領域分割工程)。具体的に
は以下のようになされる。
The operation of the above system will be described below in association with the above method. In the system that controls the operation of each of the welding robots 14, first, as shown in FIG.
Pick up a welding point in the welding target area designed by the CAD system or the like (step S1), and then execute step S2.
Then, the data of the welding line 21 is sent to the data collecting means 3 (data collecting step). At this time, in the data collection means 3, if the data of the welding line 21 (joint welding line) to be welded by the welding robots 14 arranged in the lateral direction in the joint work is picked up and excluded from the calculation target (step S3). The joint welding line is, for example, one in which two robots simultaneously weld both sides of the wall in the height direction from the front side to the back side. If the welding robot 14 in failure is known in advance, the data of the welding range of the welding robot 14 is excluded (step S4), and the center coordinates of the welding line 21 to be welded and the time required for welding are calculated. To do. This allows the data to be quantized and reliably collected. Furthermore, the length of the welding line is appropriately divided to divide the welding line, and the time required for the center coordinates of each division and the coordinates of each welding line is obtained and quantized to collect data more reliably. You can also The welding target data in which the central coordinates and the welding time are calculated is sent to the area dividing means 4 and the welding target 11 is divided in the vertical direction (step S5). For this division, the number of divisions = the number of welding robots 14 in the vertical direction = the total number of welding robots 14 (10 in this embodiment) / the total number of welding robots 14 arranged in the horizontal direction (2 in this embodiment). ) Is used, and in this embodiment, it is decided to divide into 5 equal parts.
Based on this decision, all welding lines 2 that are the target of welding work
The total welding time of 1 is divided into 5 equal parts, and the large divided region 23 (see C in FIG. 4) is determined (region dividing step). Specifically, this is done as follows.

【0011】ステップS1〜S4で求めた溶接線21の
中心座標位置を縦方向上部より走査し,溶接時間をたし
あわせていく。溶接時間の合計が総溶接時間/(縦方向
の溶接ロボット14の組数)の整数倍となったところで
境界線を設定する。これを(縦方向の溶接ロボット14
の組数−1)回行うことにより,ステップS5の分割が
行える。さらに,大分割領域23は横方向に並設される
溶接ロボット14の台数に基づき2等分され,中分割領
域24(図4のD参照)が決定される(ステップS
6)。具体的には以下のようになされる。各大分割領域
23で,横方向左から走査し,溶接時間をたしあわせて
いく。溶接時間の合計がステップS5の大分割領域23
内の溶接時間/横方向の溶接ロボット14の台数の整数
倍となったところで境界線を設定する。これを(横方向
の溶接ロボット14の台数−1)回行うことによりステ
ップS6の分割が行われる。以上の操作で各ロボットの
溶接分担が決定できる。ステップS3で除外された共同
溶接線については,上記ステップS5と同様に縦方向に
5分割することにより,それぞれの溶接ロボット14毎
の溶接時間が均等に分割された状態で各大分割領域23
に割り当てられ,更にこの割り当て分が,共同作業を行
う溶接ロボット14が分担する各中分割領域24にそれ
ぞれ加算される(ステップS7)。そして各溶接ロボッ
ト14で溶接作業順が決定される(ステップS8)。上
記データ収集工程及び領域分割工程では,図4に示すよ
うに,共同で溶接する部分を除いた各溶接線21のデー
タが,上記データ収集手段3により量子化される(図4
のA)。次いで各溶接線21は,各溶接線21の中心座
標にその溶接線21の溶接時間に応じて半径の異なる各
ドット22で定義される(図4のB)。この各ドット2
2を演算することによって全溶接時間を算出し,図3
(b)のステップS5に従って溶接時間が均等になるよ
うに5等分され,大分割領域23に分けられる。
The central coordinate position of the welding line 21 obtained in steps S1 to S4 is scanned from above in the vertical direction, and the welding time is added. The boundary line is set when the total welding time becomes an integral multiple of the total welding time / (the number of sets of the welding robot 14 in the vertical direction). This (vertical welding robot 14
The division of step S5 can be performed by performing the set number of -1) times. Further, the large divided area 23 is divided into two equal parts based on the number of welding robots 14 arranged side by side in the lateral direction, and the medium divided area 24 (see D in FIG. 4) is determined (step S).
6). Specifically, this is done as follows. Scanning is performed from the left in the horizontal direction in each of the large divided areas 23, and welding time is added. The total welding time is the large divided area 23 in step S5.
The boundary line is set when the number of welding robots in the figure / integral number of the number of welding robots 14 in the horizontal direction. By performing this (the number of welding robots 14 in the horizontal direction-1), the division in step S6 is performed. By the above operation, the welding share of each robot can be determined. The joint welding line excluded in step S3 is divided into five in the vertical direction in the same manner as in step S5, so that the welding time for each welding robot 14 is evenly divided and each large divided region 23 is divided.
Is further assigned to each of the medium-divided regions 24 shared by the welding robot 14 performing the joint work (step S7). Then, the welding work order is determined by each welding robot 14 (step S8). In the data collecting step and the area dividing step, as shown in FIG. 4, the data of each welding line 21 excluding the joint welding portion is quantized by the data collecting means 3 (FIG. 4).
A). Next, each welding line 21 is defined in the center coordinates of each welding line 21 by each dot 22 having a different radius according to the welding time of the welding line 21 (B in FIG. 4). Each dot 2
The total welding time is calculated by calculating 2
According to step S5 of (b), the welding time is divided into five equal parts so that the welding time is equalized, and the large divided regions 23 are divided.

【0012】更に,上記ステップS6において,各大分
割領域23毎に溶接時間をそれぞれ2等分して,各大分
割領域23を各中分割領域24にわけ,各溶接ロボット
14の溶接領域が決定される。このとき,図5に示すよ
うに,例えば溶接ロボット14aが分担する中分割領域
24aは,例えば小分割領域25に4等分される。そし
て,すべてのロボットが分割した領域を同じ順序で溶接
した場合の溶接作業シミュレーションを共同作業以外の
溶接線に続き共同作業の溶接線について行い,最も総作
業時間の短い作業順序を選ぶ。例えば,溶接ロボット1
4aについては,各小分割領域25をA1,B1,C
1,D1としたときに,A1から溶接を開始したとする
と,A1〜D1の溶接順の全組み合わせは次の通りであ
る。 A1→B1→C1→D1,A1→C1→B1→D1, A1→D1→B1→C1,A1→B1→D1→C1, A1→C1→D1→B1,A1→D1→C1→B1 上記溶接順で運転された場合を,それぞれシミュレーシ
ョンして,その結果に基づき溶接作業時間が最短となる
ように溶接順を決定する。このような各中分割領域24
内の小分割領域25の溶接順の決定は,中分割領域24
b〜24d…を分担する各溶接ロボット14b〜14d
について順次に行われる。尚,ここでは,各溶接分担領
域は4等分としたが,各ロボットが同一領域に存在する
時に,干渉が起こらなければよいので,この条件を満た
す任意の分割数にしてもよい。ただし,溶接シミュレー
ションを行う組み合わせ(回数)は増加する。
Further, in step S6, the welding time is divided into two equal parts for each of the large divided regions 23, the large divided regions 23 are divided into the medium divided regions 24, and the welding region of each welding robot 14 is determined. To be done. At this time, as shown in FIG. 5, for example, the medium divided region 24a shared by the welding robot 14a is divided into four equal divided regions 25, for example. Then, when all the robots weld the divided areas in the same order, a welding work simulation is performed for the welding line of the joint work following the welding line other than the joint work, and the work sequence with the shortest total work time is selected. For example, welding robot 1
For 4a, each subdivided area 25 is divided into A1, B1, C
Assuming that welding is started from A1 when the number is 1, D1, all combinations of the welding order of A1 to D1 are as follows. A1 → B1 → C1 → D1, A1 → C1 → B1 → D1, A1 → D1 → B1 → C1, A1 → B1 → D1 → C1, A1 → C1 → D1 → B1, A1 → D1 → C1 → B1 Welding order above The simulation is performed for each of the above cases, and the welding sequence is determined based on the simulation results so that the welding work time is the shortest. Each of these medium divided areas 24
The welding order of the small divided areas 25 in the
Each of the welding robots 14b to 14d sharing the tasks of b to 24d.
Are sequentially performed. Although each of the welding sharing areas is divided into four equal parts here, it is sufficient that interference does not occur when the robots are present in the same area, so any number of divisions that satisfy this condition may be used. However, the number of combinations (number of times) for welding simulation will increase.

【0013】また複数の溶接ロボット14に故障中の溶
接ロボット14がある場合には,図6に示すように,そ
の故障中の溶接ロボット14が占有している領域30
は,他の溶接ロボット14でも溶接することができなく
なる。このため,上記領域30内のドット22aは溶接
範囲から除外されて溶接対象11の溶接を完了させる。
また,1つの溶接線が1つのロボットの動作範囲を越え
た場合,溶接線単位で分担を決定すると実際にはその溶
接線すべてを溶接できない領域が発生する。このような
場合は,先述した溶接線を区分する方法を用いる。例え
ば1つのロボットで溶接できる領域で,対象となる溶接
線を区分しておき,分担を決定すればよい。このように
溶接ロボットの運転を制御すると,各溶接ロボット14
の溶接時間が殆ど等しくなり,従来のように作業員の経
験により大まかに各溶接ロボット14の溶接作業分担を
決定している場合と比較して,最短時間での溶接作業が
確実に実現される。尚,上記実施例では領域分割工程で
溶接対象領域を縦方向に分割して大分割領域23となし
た後,横方向に分割して中分割領域24としたが,実使
用に際しては縦横逆の順に分割してもよい。即ち,縦横
方向のいずれか一方の方向に分割後,他方の方向に分割
すればよい。尚,上記実施例では縦方向のロボットの各
組をなす横方向のロボット台数が全て2台の場合を示し
たが,実使用に際しては,各組ごとにロボット台数が異
なる場合であってもよい。
Further, when there is a welding robot 14 in failure among a plurality of welding robots 14, as shown in FIG. 6, the area 30 occupied by the welding robot 14 in failure is occupied.
Cannot be welded by another welding robot 14. Therefore, the dots 22a in the region 30 are excluded from the welding range, and the welding of the welding target 11 is completed.
Further, when one welding line exceeds the operating range of one robot, if the allocation is determined for each welding line, an area in which all the welding lines cannot be actually welded occurs. In such a case, the method of dividing the welding line described above is used. For example, in a region where one robot can weld, the target welding line may be divided and the sharing may be determined. When the operation of the welding robot is controlled in this way, each welding robot 14
The welding times are almost equal to each other, and the welding work in the shortest time is surely realized as compared with the conventional case where the welding work sharing of each welding robot 14 is roughly determined by the experience of the worker. . In the above embodiment, the welding target area is vertically divided into the large divided areas 23 in the area dividing step, and is then horizontally divided into the middle divided areas 24. You may divide in order. That is, it is only necessary to divide in one of the vertical and horizontal directions and then divide in the other direction. In the above embodiment, the number of robots in the horizontal direction forming each group of vertical robots is two, but in actual use, the number of robots may be different for each group. .

【0014】[0014]

【発明の効果】本発明にかかる溶接ロボットの運転制御
方法は,上記したように構成されているため,溶接対象
を各溶接ロボットの作業時間が均等になるように分割
し,各分割領域内の各溶接線の溶接作業時間を各々の溶
接ロボットにより最短時間に短縮した状態で溶接作業を
行うことができる。
Since the operation control method for the welding robot according to the present invention is configured as described above, the welding object is divided so that the work time of each welding robot becomes equal, and the welding robot is divided into each divided area. It is possible to perform the welding work in a state where the welding work time of each welding line is shortened to the shortest time by each welding robot.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る溶接ロボットの運転
制御方法を適用可能なシステムの概略構成を示すブロッ
ク図。
FIG. 1 is a block diagram showing a schematic configuration of a system to which a welding robot operation control method according to an embodiment of the present invention can be applied.

【図2】 溶接ロボットの運転制御方法を利用した溶接
ロボット等の概略配置を示す斜視図。
FIG. 2 is a perspective view showing a schematic arrangement of a welding robot and the like using the operation control method of the welding robot.

【図3】 本発明の溶接ロボットの運転制御方法を示す
フロー図。
FIG. 3 is a flowchart showing the operation control method of the welding robot of the present invention.

【図4】 溶接対象領域を分割する方法を示す摸式図。FIG. 4 is a schematic diagram showing a method of dividing a welding target area.

【図5】 各溶接ロボット毎の溶接順序の決定方法を示
す模式図。
FIG. 5 is a schematic diagram showing a method of determining a welding order for each welding robot.

【図6】 故障した溶接ロボットによる占有領域を示す
摸式図。
FIG. 6 is a schematic diagram showing an area occupied by a failed welding robot.

【符号の説明】[Explanation of symbols]

2…制御部 3…データ収集手段(データ収集工程を実行) 4…領域分割手段(領域分割工程を実行) 21…溶接線 23…大分割領域 24…中分割領域 25…小分割領域 2 ... Control unit 3 ... Data collecting means (executes data collecting process) 4 ... Region dividing means (executes region dividing process) 21 ... Welding line 23 ... Large divided region 24 ... Medium divided region 25 ... Small divided region

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 共通の移動空間内に設置された溶接対象
領域を移動自在な複数の溶接ロボットで分担して溶接す
る際の,各溶接ロボットの運転を制御する方法におい
て,溶接対象領域の全溶接線のデータを収集するデータ
収集工程と,上記データ収集工程で収集された全溶接線
のデータに基づき,各溶接ロボットの分担する溶接時間
の合計が均等になるように溶接対象領域を分割する領域
分割工程と,から成ることを特徴とする溶接ロボットの
運転制御方法。
1. A method for controlling the operation of each welding robot when welding is performed by sharing a welding target area installed in a common moving space with a plurality of movable welding robots. Based on the data collection process that collects welding line data and the data of all welding lines collected in the above data collection process, the welding target area is divided so that the total welding time shared by each welding robot is equal. An operation control method for a welding robot, which comprises a region dividing step.
【請求項2】 上記データ収集工程では,各溶接線の中
心座標及び各溶接線の溶接に要する時間を求めることに
よりデータ収集を行う請求項1記載の溶接ロボットの運
転制御方法。
2. The operation control method for a welding robot according to claim 1, wherein in the data collecting step, data is collected by obtaining a center coordinate of each welding line and a time required for welding each welding line.
【請求項3】 上記データ収集工程では,溶接線を区分
し,各区分毎の中心座標および区分毎の溶接に要する時
間を求めることによりデータ収集を行う請求項1記載の
溶接ロボットの運転制御方法。
3. The operation control method for a welding robot according to claim 1, wherein in the data collecting step, data is collected by dividing a welding line, and determining a center coordinate for each division and a time required for welding for each division. .
【請求項4】 上記領域分割工程では,溶接対象領域を
縦横方向のいずれか一方の方向に該一方の方向に並んだ
溶接ロボットの組数で大分割領域に分割した時の各大分
割領域毎の溶接時間の合計が均等になるように溶接対象
領域を分割した後に,各大分割領域を他方の方向に該他
方の方向に並んだ溶接ロボットの台数でさらに中分割領
域に分割した時の各中分割領域毎の溶接時間の合計が均
等になるように各大分割領域を分割する請求項1記載の
溶接ロボットの運転制御方法。
4. In the area dividing step, when the welding target area is divided into large divided areas by the number of sets of welding robots arranged in one of the vertical and horizontal directions, the large divided areas are divided into large divided areas. After dividing the welding target area so that the total welding time becomes even, the large divided areas are divided into medium divided areas by the number of welding robots arranged in the other direction. The operation control method for a welding robot according to claim 1, wherein each of the large divided regions is divided so that the total welding time for each of the medium divided regions becomes equal.
【請求項5】 上記他方の方向に並んだ溶接ロボットで
1本の溶接線を分担して共同で溶接する必要がある時に
は,上記領域分割工程で一旦その共同で溶接すべき共同
溶接線を除いて,残余の溶接線について溶接対象領域を
中分割領域まで分割した後に,上記共同溶接線について
大分割領域に分割する請求項4記載の溶接ロボットの運
転制御方法。
5. When it is necessary to jointly weld one welding line by the welding robots arranged in the other direction, the joint welding line to be jointly welded is excluded in the area dividing step. 5. The operation control method for a welding robot according to claim 4, wherein the welding target area of the remaining welding line is divided into medium divided areas, and then the joint welding line is divided into large divided areas.
【請求項6】 上記複数の溶接ロボットに故障中の溶接
ロボットがある時には,その故障中の溶接ロボットが占
有する溶接対象領域を除いた残余の溶接対象領域につい
て,溶接対象領域を分割する請求項1又は4記載の溶接
ロボットの運転制御方法。
6. The welding target area is divided into the remaining welding target areas excluding the welding target area occupied by the welding robot in failure when the plurality of welding robots have a welding robot in failure. The operation control method of the welding robot according to 1 or 4.
【請求項7】 上記領域分割工程で分割された各中分割
領域内を更に小分割領域に分割し,各小分割領域間の溶
接作業順序を溶接作業のシュミレーション結果に基づい
て決定する請求項4記載の溶接ロボットの運転制御方
法。
7. The medium-divided region divided in the region dividing step is further divided into small divided regions, and a welding work sequence between the small divided regions is determined based on a simulation result of the welding work. The operation control method of the welding robot described.
JP22631794A 1994-09-21 1994-09-21 Operation control method of welding robot Expired - Lifetime JP2711076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22631794A JP2711076B2 (en) 1994-09-21 1994-09-21 Operation control method of welding robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22631794A JP2711076B2 (en) 1994-09-21 1994-09-21 Operation control method of welding robot

Publications (2)

Publication Number Publication Date
JPH0890233A true JPH0890233A (en) 1996-04-09
JP2711076B2 JP2711076B2 (en) 1998-02-10

Family

ID=16843305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22631794A Expired - Lifetime JP2711076B2 (en) 1994-09-21 1994-09-21 Operation control method of welding robot

Country Status (1)

Country Link
JP (1) JP2711076B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024166B2 (en) 2014-09-16 2018-07-17 Honeywell International Inc. Turbocharger shaft and wheel assembly
US10041351B2 (en) 2014-09-16 2018-08-07 Honeywell International Inc. Turbocharger shaft and wheel assembly
US10047607B2 (en) 2013-12-05 2018-08-14 Honeywell International Inc. Welded shaft and turbine wheel assembly
JP2020035404A (en) * 2018-08-31 2020-03-05 ファナック株式会社 Teaching device for laser processing, teaching method, and teaching program
CN115415694A (en) * 2022-08-29 2022-12-02 无锡达诺精密钣金有限公司 Welding method, system and device for sheet metal process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047607B2 (en) 2013-12-05 2018-08-14 Honeywell International Inc. Welded shaft and turbine wheel assembly
US10024166B2 (en) 2014-09-16 2018-07-17 Honeywell International Inc. Turbocharger shaft and wheel assembly
US10041351B2 (en) 2014-09-16 2018-08-07 Honeywell International Inc. Turbocharger shaft and wheel assembly
JP2020035404A (en) * 2018-08-31 2020-03-05 ファナック株式会社 Teaching device for laser processing, teaching method, and teaching program
US11241759B2 (en) 2018-08-31 2022-02-08 Fanuc Corporation Teaching device, teaching method, and storage medium storing teaching program for laser machining
CN115415694A (en) * 2022-08-29 2022-12-02 无锡达诺精密钣金有限公司 Welding method, system and device for sheet metal process
CN115415694B (en) * 2022-08-29 2024-01-12 无锡达诺精密钣金有限公司 Welding method, system and device for sheet metal process

Also Published As

Publication number Publication date
JP2711076B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP6998228B2 (en) Robot work program creation support device, robot work program creation support method, and robot work support program
KR102626985B1 (en) Managing apparatus and managing system
JPH0890233A (en) Operation control method of welding robot
JP3293693B2 (en) Sheet metal cutting plotter
JP3611374B2 (en) Component mounting method
KR101845079B1 (en) A Planning Method for Robot Position and Tracking Path Using CAD Information of Object
JPH05127721A (en) Method and device for generating scrap line for laser process
JP3104535B2 (en) How to determine the work allocation of the robot
CN110476131A (en) Welding bead determines method, program, tutorial program and welding robot system
CN111015667B (en) Robot arm control method, robot, and computer-readable storage medium
JP2000293551A (en) Method and device for determining two-dimensional layout
JP2796016B2 (en) CAD system
CN116442247B (en) Control method of intelligent square cabin drilling and riveting system with cooperation of multiple robots
JP2009116754A (en) Working order setting device, method, and program, and storage medium
WO2008146930A1 (en) Device for determining installation position of robot and method for determining installation position of robot
JPH0778017A (en) Method and device for checking interference between bodies in motion
JPH06122025A (en) Followup method for work bending in press brake robot system
JP4626043B2 (en) Task assignment method and control device to which the task assignment method is applied
JP2002215214A (en) Method and unit for control
JPH0764891A (en) Information collecting method
JP3094525B2 (en) Thick film circuit drawing apparatus NC data creation method
JPH08141960A (en) Method for determining order and share of work of a plurality of robot
JP2001134311A (en) Method and device for preparing working data and recording medium
JP3302768B2 (en) Finite element splitting device
CN117754585A (en) Path planning method for automatic binding of reinforcing steel bars

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 16

EXPY Cancellation because of completion of term