JP2710608B2 - Organic film processing method - Google Patents

Organic film processing method

Info

Publication number
JP2710608B2
JP2710608B2 JP8071435A JP7143596A JP2710608B2 JP 2710608 B2 JP2710608 B2 JP 2710608B2 JP 8071435 A JP8071435 A JP 8071435A JP 7143596 A JP7143596 A JP 7143596A JP 2710608 B2 JP2710608 B2 JP 2710608B2
Authority
JP
Japan
Prior art keywords
laser beam
irradiation
organic film
irradiating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8071435A
Other languages
Japanese (ja)
Other versions
JPH09239573A (en
Inventor
ハバ ベルガセム
幸雄 森重
和幸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NEC Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NEC Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8071435A priority Critical patent/JP2710608B2/en
Priority to SG1997000504A priority patent/SG55279A1/en
Priority to TW086102390A priority patent/TW317074B/zh
Priority to DE19708254A priority patent/DE19708254A1/en
Publication of JPH09239573A publication Critical patent/JPH09239573A/en
Application granted granted Critical
Publication of JP2710608B2 publication Critical patent/JP2710608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • B41J2/1634Manufacturing processes machining laser machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/081Blowing of gas, e.g. for cooling or for providing heat during solder reflowing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/086Using an inert gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • H05K2203/108Using a plurality of lasers or laser light with a plurality of wavelengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機フィルム加工方
法に関し、特に高密度多層配線や、LSIのフィルムパ
ッケージの基板として有用なポリイミド・銅箔等の有機
絶縁膜/導電層からなるフィルム基板や、プリンタヘッ
ド等に用いられる有機フィルム基板に、微細なビアホー
ルを形成する有機フィルム加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic film processing method, and more particularly, to a film substrate comprising an organic insulating film / conductive layer such as a polyimide / copper foil useful as a substrate for high-density multilayer wiring or an LSI film package; The present invention relates to an organic film processing method for forming fine via holes in an organic film substrate used for a printer head or the like.

【0002】[0002]

【従来の技術】多層配線基板技術は、パーソナルコンピ
ュータや、大型コンピュータのLSI実装用に発展し、
現在、装置コストの低減と、実装デバイスの高速化への
対応を図るために、良好な高周波特性を有する絶縁フィ
ルムを用いた高密度実装技術の実用化が望まれている。
なかでも、有機フィルムと金属層とを張り合わせてなる
フィルム基板に微細なビアホールを高スループットで、
安価に形成する方法が求められている。
2. Description of the Related Art Multilayer wiring board technology has been developed for LSI mounting of personal computers and large-scale computers.
At present, practical use of a high-density mounting technology using an insulating film having good high-frequency characteristics is desired in order to reduce the device cost and to increase the speed of mounting devices.
Above all, fine via holes are formed at high throughput on a film substrate consisting of an organic film and a metal layer,
There is a demand for an inexpensive method.

【0003】また、インクジェットプリンタ等の応用で
は、膜厚が100μm程度の有機フィルム基板に、微細
な多数のビアホールを、安価なコストで、しかも高速に
形成する方法が求められている。
In addition, for application to ink jet printers and the like, there is a demand for a method of forming a large number of fine via holes on an organic film substrate having a thickness of about 100 μm at a low cost and at a high speed.

【0004】この種の有機フィルム加工方法として、本
発明者らは、例えば特願平7−145687号に有機絶
縁膜と導電層からなるフィルム基板に高いアスペクト比
を持ち導電層との界面に絶縁層を残さずに信頼性に優れ
る、ビアホールを形成する方法を提案している。即ち、
上記特願平7−145687号には、有機物質を含有す
る絶縁フィルムからなる基板において、ビアホールの形
成箇所に、基板に吸収のある波長のパルスレーザ光を照
射した後、一の照射部のビアホール底部の残留膜をパル
ス幅200ns以下の第2のパルスレーザ光の照射によ
り蒸散除去し、さらに、基板を超音波洗浄することによ
り、ビアホール側壁部の付着物を洗浄除去して、微細な
ビアホールを高いスループットで形成できることが記載
されている。
As a method of processing an organic film of this type, the present inventors have disclosed, for example, in Japanese Patent Application No. 7-145687 that a film substrate comprising an organic insulating film and a conductive layer has a high aspect ratio and has an insulating film at the interface with the conductive layer. A method of forming a via hole which is excellent in reliability without leaving a layer is proposed. That is,
Japanese Patent Application No. 7-145687 discloses that, in a substrate made of an insulating film containing an organic material, a portion where a via hole is formed is irradiated with a pulsed laser beam having a wavelength that absorbs the substrate, and then the via hole in one irradiated portion is irradiated. The bottom residual film is evaporated and removed by irradiating a second pulse laser beam having a pulse width of 200 ns or less, and further, the substrate is subjected to ultrasonic cleaning to remove and remove attached matter on the via hole side wall, thereby forming a fine via hole. It is described that it can be formed with high throughput.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
願平7−145687号に記載された、従来のビアホー
ル形成法においては、工程の最後に、超音波洗浄が必要
とされており、このため工程数が増加し、製造コストを
低減することが難しい。
However, in the conventional via hole forming method described in Japanese Patent Application No. 7-145687, ultrasonic cleaning is required at the end of the process. The number increases, and it is difficult to reduce the manufacturing cost.

【0006】また、上記公報に記載の従来の方法におい
ては、プリンタヘッドへ微細なビアホールを形成する用
途においては、絶縁フィルムに機構保持部品が組付けら
れた状態で加工する必要が生じることから、超音波洗浄
で必要とされる溶液処理工程を適用することができない
場合もある。
Further, in the conventional method described in the above-mentioned publication, it is necessary to work in a state where a mechanism holding component is mounted on an insulating film in a case where a fine via hole is formed in a printer head. In some cases, the solution processing step required for ultrasonic cleaning cannot be applied.

【0007】従って、本発明は、上記問題点に鑑みてな
されたものであって、レーザ照射工程のみで有機フィル
ム加工を可能とし、低コスト、かつウェットプロセスを
不要とした有機フィルム加工方法を提供することを目的
とする。
[0007] Accordingly, the present invention has been made in view of the above problems, and provides an organic film processing method which enables an organic film processing only by a laser irradiation step, and which is low cost and does not require a wet process. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、有機物質を含む絶縁層と金属層とを積層
してなるフィルム基板へ、第1の所定時間幅のパルス幅
を有する第1のパルスレーザ光を、1ショット以上、前
記フィルム基板のビアホール形成部に対して照射し、前
記絶縁層のレーザ光照射部を熱分解、又は熱分解に伴う
ガス発生の少なくともいずれかの反応を起こさせる工程
と、前記絶縁層における前記第1のパルスレーザ光の照
射部に、第2の所定時間幅の第2のパルスレーザ光を照
射してビアホール底部の残留膜を蒸散除去する工程と、
を含む有機フィルム加工形成方法において、前記第2の
パルスレーザ光の照射ビーム径を、前記第1のパルスレ
ーザ光のビーム径よりも大とし、前記絶縁層の熱変性し
た領域を覆う範囲にまで拡大したことを特徴とする有機
フィルム加工方法を提供する。
In order to achieve the above object, according to the present invention, a pulse width of a first predetermined time width is applied to a film substrate formed by laminating an insulating layer containing an organic substance and a metal layer. One or more shots of the first pulsed laser beam are applied to the via hole forming portion of the film substrate, and the laser beam irradiated portion of the insulating layer is thermally decomposed or at least one of gas generation accompanying the pyrolysis. And irradiating the first pulsed laser beam irradiation portion of the insulating layer with a second pulsed laser beam having a second predetermined time width to evaporate and remove the residual film at the bottom of the via hole. ,
Wherein the irradiation beam diameter of the second pulsed laser beam is larger than the beam diameter of the first pulsed laser beam, so that the irradiation beam diameter of the second pulsed laser beam covers a thermally denatured region of the insulating layer. Provided is an organic film processing method characterized by being enlarged.

【0009】本発明の有機フィルム加工方法は、有機物
質を含む絶縁層と金属層とを積層してなるフィルム基板
へ、10μsから20msの範囲のパルス幅の第1のパ
ルスレーザ光を、1ショット以上、前記フィルム基板の
ビアホール形成部に照射し、前記第1のパルスレーザ光
の照射による前記絶縁層の温度上昇を介して前記絶縁層
の前記第1のパルスレーザ光照射部を熱分解、又は熱分
解に伴うガス発生の少なくともいずれかの反応を起こさ
せる工程と、前記絶縁層における前記第1のパルスレー
ザ光の照射部に、パルス幅略200ns以下、ピークパ
ワー密度略10MW/cm2以上の照射強度の第2のパ
ルスレーザ光を照射して、ビアホール底部の残留膜を蒸
散除去する工程と、を含み、前記第2のパルスレーザ光
の照射ビーム径を、前記第1のパルスレーザ光のビーム
径よりも大とし、前記絶縁層の熱変性した領域を覆う範
囲にまで拡大したことを特徴とする。
According to the organic film processing method of the present invention, a first pulsed laser beam having a pulse width in the range of 10 μs to 20 ms is applied to a film substrate formed by laminating an insulating layer containing an organic substance and a metal layer for one shot. Above, irradiate the via-hole forming portion of the film substrate, and thermally decompose the first pulsed laser beam irradiating portion of the insulating layer through the temperature rise of the insulating layer due to the irradiation of the first pulsed laser beam, or A step of causing at least one of the reactions of gas generation accompanying the thermal decomposition, and applying a pulse width of about 200 ns or less and a peak power density of about 10 MW / cm 2 or more to the irradiation portion of the insulating layer with the first pulsed laser beam. Irradiating a second pulsed laser beam of irradiation intensity to evaporate and remove the residual film at the bottom of the via hole, the irradiation beam diameter of the second pulsed laser beam, The beam diameter of the first pulsed laser beam is larger than the beam diameter of the first pulsed laser beam, and is expanded to a range covering the thermally denatured region of the insulating layer.

【0010】本発明は、有機物質を含んでなるフィルム
(「有機フィルム」という)へ、第1の所定時間幅のパ
ルス幅を有する第1のパルスレーザ光を、1ショット以
上、前記有機フィルムのビアホール形成部に対して照射
し、前記第1のパルスレーザ光の照射部において前記有
機フィルムに熱分解、又は熱分解に伴うガス発生の少な
くともいずれかの反応を起こさせる工程と、前記有機フ
ィルムにおける前記第1のパルスレーザ光の照射部に、
前記第1のパルスレーザ光よりも大の、前記有機フィル
ムの熱変性した領域を覆う範囲にまで広げたビーム径
と、第2の所定時間幅のパルス幅と、を有する第2のパ
ルスレーザ光を照射する工程と、を含むことを特徴とす
る有機フィルム加工方法を提供する。
According to the present invention, a film containing an organic substance (referred to as an “organic film”) is irradiated with a first pulsed laser beam having a pulse width of a first predetermined time width for one or more shots of the organic film. Irradiating the via-hole forming portion, and thermally decomposing the organic film in the irradiating portion of the first pulsed laser beam, or causing a reaction of at least one of gas generation accompanying the thermal decomposition, and In the irradiation section of the first pulse laser light,
A second pulsed laser beam having a beam diameter larger than the first pulsed laser beam and expanded to a range covering the thermally denatured region of the organic film, and a pulse width having a second predetermined time width. And a step of irradiating the organic film.

【0011】また、本発明の有機フィルム加工方法は、
有機物質を含んでなるフィルム(「有機フィルム」)
へ、10μsから20msの範囲のパルス幅の第1のパ
ルスレーザ光を、1ショット以上、前記有機フィルムの
ビアホール形成部に対して照射し、前記第1のパルスレ
ーザ光の照射による前記有機フィルムの温度上昇を介し
て、前記有機フィルムの前記第1のパルスレーザ光照射
部を熱分解、又は熱分解に伴うガス発生の少なくともい
ずれかの反応を起こさせる工程と、前記有機フィルムに
おける前記第1のパルスレーザ光の照射部に、照射ビー
ム径を前記第1のパルスレーザ光よりも大の、前記有機
フィルムの熱変性した領域を覆う範囲にまで広げた、パ
ルス幅略200ns以下、ピークパワー密度略10MW
/cm2以上の照射強度の第2のパルスレーザ光を照射
する工程と、を含むことを特徴とする。
Further, the organic film processing method of the present invention comprises:
Films containing organic substances ("organic films")
Irradiates a first pulse laser beam having a pulse width in a range of 10 μs to 20 ms to a via hole forming portion of the organic film for at least one shot, and irradiates the organic film with the first pulse laser beam. A step of thermally decomposing the first pulsed laser beam irradiating section of the organic film via a temperature rise, or causing a reaction of at least one of gas generation accompanying the thermal decomposition, and the first step of the organic film. In the irradiation part of the pulse laser beam, the irradiation beam diameter is expanded to a range larger than the first pulse laser beam and covering the thermally denatured region of the organic film, the pulse width is approximately 200 ns or less, and the peak power density is approximately. 10MW
Irradiating a second pulsed laser beam having an irradiation intensity of / cm 2 or more.

【0012】[0012]

【作用】本発明の原理・作用を以下に説明する。本発明
は、第1のパルスレーザ光の照射により生じたビアホー
ル側壁部の付着物を、レーザビーム径を、第1のパルス
レーザ光照射よりも、熱分解物が付着する範囲を含むよ
うに、拡大させてなるパルス幅が好ましくは200ns
以下の第2のパルスレーザ光を、第1のパルスレーザ光
照射部に続けて照射することにより、付着物そのものの
吸収により発生する衝撃波を利用して、吹き飛ばすこと
が可能であるとの、実験結果に基づき、完成されたもの
である。
The principle and operation of the present invention will be described below. The present invention provides a method in which a deposit on a side wall of a via hole generated by irradiation with a first pulsed laser beam has a laser beam diameter larger than that of the first pulsed laser beam irradiation so as to include a range to which a thermal decomposition product is attached. The expanded pulse width is preferably 200 ns
Experiments show that by irradiating the first pulsed laser light irradiating part with the following second pulsed laser light continuously, it is possible to blow off using a shock wave generated by absorption of the attached matter itself. It has been completed based on the results.

【0013】従来、絶縁膜と導電膜が積層された基板へ
のビアホール形成方法において、ビアホール底の残留膜
を短パルスレーザ光を照射することにより蒸散除去でき
ることは知られていたが、蒸散除去用の照射ビームが第
1のパルスレーザ光のビーム径と同じであったがため
に、第2のパルスレーザ光を照射した後にも、なお、ビ
アホール側壁の付着物は除去されず、このため、第2の
パルスレーザ光照射後において、ビアホール側壁の付着
物を除去するための超音波洗浄工程が必要とされてい
た。
Conventionally, in a method of forming a via hole in a substrate on which an insulating film and a conductive film are laminated, it has been known that the residual film at the bottom of the via hole can be removed by irradiating a short pulse laser beam. Since the irradiation beam of the above was the same as the beam diameter of the first pulsed laser light, even after the irradiation of the second pulsed laser light, the adhered matter on the side wall of the via hole was not removed. After the second pulse laser beam irradiation, an ultrasonic cleaning step was required to remove the deposits on the side walls of the via holes.

【0014】これに対して、本発明によれば、ビアホー
ル側壁部の付着物除去のための超音波洗浄工程を不用と
したものであり、少ない工程数で、微細なビアホールを
制御性よく、且つ高いスループットで形成することを可
能としたものである。このように、本発明は、加工工程
中にウェットプロセスを不要としたことから、適用可能
な加工対象を拡大でき、かつ、製造コストを大幅に低減
することができるという利点を有する。
On the other hand, according to the present invention, the ultrasonic cleaning step for removing the deposit on the side wall of the via hole is unnecessary, and the number of steps is small, and the fine via hole can be controlled with good controllability. This enables formation with high throughput. As described above, the present invention has an advantage that the applicable processing target can be expanded and the manufacturing cost can be significantly reduced because the wet process is not required during the processing step.

【0015】[0015]

【発明の実施の形態】本発明の実施形態について図面を
参照して以下に詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】[0016]

【実施形態1】図1は、本発明の一実施形態に係る加工
工程を工程順に模式的に示す図である。
[Embodiment 1] FIG. 1 is a view schematically showing processing steps according to an embodiment of the present invention in the order of steps.

【0017】被加工基板は、厚さ30μmのポリイミド
2、厚さ10μmの銅3からなる実装用フィルム基板と
した。レーザ光照射中は、窒素ガスを10リットル/分
の流量で基板上の照射部に吹き付けて加工を行なった。
The substrate to be processed was a mounting film substrate made of polyimide 2 having a thickness of 30 μm and copper 3 having a thickness of 10 μm. During laser beam irradiation, processing was performed by spraying a nitrogen gas at a flow rate of 10 liters / minute onto an irradiation portion on the substrate.

【0018】第1の工程においては、図1(A)に示す
ように、波長515nmのアルゴンレーザ光を超音波変
調器で0.3msのパルス幅にして得た第1のパルスレ
ーザ光1を、照射ビーム径40μm、照射間隔10ms
で2ショット照射した。照射強度は500kW/cm2
である。
In the first step, as shown in FIG. 1A, a first pulse laser beam 1 obtained by converting an argon laser beam having a wavelength of 515 nm into a pulse width of 0.3 ms with an ultrasonic modulator is used. , Irradiation beam diameter 40 μm, irradiation interval 10 ms
For two shots. Irradiation intensity is 500 kW / cm 2
It is.

【0019】図1(B)に、第1のパルスレーザ光の照
射後の加工形状を断面図にて示す。図1(B)におい
て、ビアホールは底部径は40μmで、上部径は70μ
mであった。ビアホール側壁部には、厚さ30μm程度
の分解物4が付着し(「付着物」という)、ビアホール
底部にはポリイミドの変性した残留膜7が薄く残ってい
る。
FIG. 1B is a sectional view showing a processed shape after the irradiation of the first pulse laser beam. In FIG. 1B, the via hole has a bottom diameter of 40 μm and an upper diameter of 70 μm.
m. A decomposition product 4 having a thickness of about 30 μm adheres to the side wall of the via hole (referred to as “adhered matter”), and a thin residual polyimide-modified film 7 remains at the bottom of the via hole.

【0020】続いて第2の工程において、図1(C)に
示すように、QswYAGレーザの第2高調波からなる
第2のパルスレーザ光5(照射ビーム径70μm、パル
ス幅10ns、照射ピークパワー密度100MW/cm
2)を1ショット照射する。
Subsequently, in a second step, as shown in FIG. 1C, a second pulse laser beam 5 (irradiation beam diameter 70 μm, pulse width 10 ns, irradiation peak power) composed of the second harmonic of the QswYAG laser Density 100 MW / cm
2 ) Irradiate one shot.

【0021】図1(D)に、第2のパルスレーザ光5照
射後の加工形状を断面図にて示す。図1(D)に示すよ
うに、ビアホール底部の残留膜と同時にビアホール側壁
の付着物も吹き飛ばされ、側壁の滑らかなビアホール6
を形成することができた。また電子顕微鏡による観察で
も、ビアホール側壁部に付着物の残留は見られなかっ
た。
FIG. 1D is a sectional view showing a processed shape after the irradiation of the second pulse laser beam 5. As shown in FIG. 1 (D), deposits on the side wall of the via hole are blown off simultaneously with the residual film on the bottom of the via hole, and the via hole 6 having a smooth side wall is formed.
Could be formed. Also, observation by an electron microscope showed that no deposits remained on the side wall of the via hole.

【0022】そして、形成したビアホールに電界メッキ
により銅を埋め込んだ所、100%近い歩留まりで、再
現性よくきれいにビアホールを埋め込むことができた。
このことは、本発明によるビアホールの形状の再現性が
よいこと、及び付着物をきれいに除去できていることを
示す別の証拠である。
When copper was buried in the formed via hole by electroplating, the via hole could be buried with good reproducibility at a yield of nearly 100%.
This is another proof that the reproducibility of the shape of the via hole according to the present invention is good and that the attached matter can be removed cleanly.

【0023】一方、比較例として、第2のパルスレーザ
光5の照射ビーム径を、第1のパルスレーザ光1と同じ
40μmにして照射した場合には、低部の残留膜はきれ
いに除去されるのに対し、ビアホール側壁の付着物は除
去できなかった。
On the other hand, as a comparative example, when the irradiation is performed with the irradiation beam diameter of the second pulse laser beam 5 set to 40 μm, which is the same as that of the first pulse laser beam 1, the lower residual film is removed clearly. On the other hand, the deposit on the side wall of the via hole could not be removed.

【0024】[0024]

【実施形態2】以上、上記実施形態の説明では、電子部
品の実装基板へのビアホール形成に本発明を適用した場
合について説明したが、次に、本発明の第2の実施形態
として、プリンタヘッド等への応用において実用に供さ
れる厚さ100μm程度のポリイミドフィルムへの微細
な穴開けの例を以下に説明する。
[Embodiment 2] In the above description of the embodiment, the case where the present invention is applied to the formation of a via hole in a mounting board of an electronic component has been described. Next, as a second embodiment of the present invention, a printer head will be described. An example of fine perforations in a polyimide film having a thickness of about 100 μm, which is practically used in application to the like, will be described below.

【0025】本実施形態においては、前記第1の実施形
態と同様な構成のレーザ光源を用い、ポリイミドフィル
ムへ貫通穴を開けた。
In the present embodiment, a through hole was made in the polyimide film using a laser light source having the same configuration as in the first embodiment.

【0026】第1の工程における第1のパルスレーザ光
1(図1(A)参照)の照射条件は、ビーム径40μ
m、パルス幅0.3ms、パルス数6ショット、照射間
隔10ms、照射強度500kW/cm2とした。
The irradiation condition of the first pulsed laser beam 1 (see FIG. 1A) in the first step is as follows.
m, pulse width 0.3 ms, pulse number 6 shots, irradiation interval 10 ms, irradiation intensity 500 kW / cm 2 .

【0027】また、第2の工程における第2のパルスレ
ーザ光5(図1(C)参照)の照射条件は、照射ビーム
径120μm、パルス幅10ns、照射ピークパワー密
度100MWcm2、1ショットとした。
The irradiation conditions of the second pulsed laser beam 5 (see FIG. 1C) in the second step were as follows: irradiation beam diameter 120 μm, pulse width 10 ns, irradiation peak power density 100 MWcm 2 , and one shot. .

【0028】得られたビアホールは、底径80μm、上
部径110μmであった。本実施形態で用いたポリイミ
ドフィルムは、実装基板とは異なり、熱伝導のよい銅箔
がないために、ポリイミド膜内の熱拡散により、ビアホ
ール径は横方向に拡大するが、第2のパルスレーザ光5
の照射後のビアホール側壁には付着物は残らず、前記第
1の実施形態の場合に比べ、側壁の滑らかさに優れる傾
向が観測された。
The obtained via hole had a bottom diameter of 80 μm and an upper diameter of 110 μm. Unlike the mounting substrate, the polyimide film used in the present embodiment does not have a copper foil having good heat conductivity, and the thermal diffusion in the polyimide film increases the via hole diameter in the lateral direction. Light 5
No deposits remained on the side walls of the via holes after the irradiation, and a tendency that the side walls were more excellent in smoothness than in the case of the first embodiment was observed.

【0029】プリンタヘッド等のビアホール形成では、
インクの流れを制御するため、側壁の滑らかさに優れる
こと、及びビアホールの傾斜角が制御できること、が重
要であるが、本実施形態に係るビアホールの形成方法に
よれば、側壁の滑らかさに優れること、傾斜角は、第1
のパルスレーザ光1のショット数により変化させること
ができるので、実用的に有効な方法であることが判っ
た。
In forming a via hole in a printer head or the like,
In order to control the flow of ink, it is important that the side wall is excellent in smoothness and that the inclination angle of the via hole can be controlled. However, according to the via hole forming method according to the present embodiment, the side wall is excellent in smoothness. That the inclination angle is the first
It can be changed according to the number of shots of the pulse laser light 1, and thus it has been found that this is a practically effective method.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
少ない工程数で微細なビアホールを制御性よく、且つ高
いスループットで形成することができるという効果を有
すると共に、加工工程中にウェットプロセスが不要とさ
れているため、加工対象をひろくでき、且つ製造コスト
を大幅に低減できるという効果を有する。
As described above, according to the present invention,
It has the effect that a fine via hole can be formed with high controllability and high throughput with a small number of steps, and since a wet process is not required during the processing step, the processing target can be widened and the manufacturing cost can be increased. Can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の加工工程を工程順に模式
的に示す図である。
FIG. 1 is a view schematically showing processing steps according to an embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1 第1のパルスレーザ光 2 ポリイミド 3 銅 4 分解物 5 第2のパルスレーザ光 6 ビアホール 7 残留膜 REFERENCE SIGNS LIST 1 first pulse laser beam 2 polyimide 3 copper 4 decomposition product 5 second pulse laser beam 6 via hole 7 residual film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/46 H01L 23/14 R (72)発明者 石川 和幸 東京都港区新橋5丁目11番3号 住友金 属鉱山株式会社内 (56)参考文献 特開 昭52−85596(JP,A) 特開 昭59−76687(JP,A) 特開 平1−278796(JP,A)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location H05K 3/46 H01L 23/14 R (72) Inventor Kazuyuki Ishikawa 5-11 Shimbashi, Minato-ku, Tokyo No. 3 Sumitomo Metal Mining Co., Ltd. (56) References JP-A-52-85596 (JP, A) JP-A-59-76687 (JP, A) JP-A-1-278796 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機物質を含む絶縁層と金属層とを積層し
てなるフィルム基板へ、第1の所定時間幅のパルス幅を
有する第1のパルスレーザ光を、1ショット以上、前記
フィルム基板のビアホール形成部に対して照射し、前記
絶縁層のレーザ光照射部を熱分解、又は熱分解に伴うガ
ス発生の少なくともいずれかの反応を起こさせる工程
と、 前記絶縁層における前記第1のパルスレーザ光の照射部
に、第2の所定時間幅の第2のパルスレーザ光を照射し
てビアホール底部の残留膜を蒸散除去する工程と、 を含む有機フィルム加工形成方法において、 前記第2のパルスレーザ光の照射ビーム径を、前記第1
のパルスレーザ光のビーム径よりも大とし、前記絶縁層
の熱変性した領域を覆う範囲にまで拡大したことを特徴
とする有機フィルム加工方法。
A first pulsed laser beam having a pulse width of a first predetermined time width is applied to a film substrate formed by laminating an insulating layer containing an organic substance and a metal layer for at least one shot. Irradiating the via-hole forming portion of the insulating layer to thermally decompose the laser beam irradiating portion of the insulating layer, or causing at least one reaction of gas generation accompanying the thermal decomposition, and the first pulse in the insulating layer Irradiating a laser beam irradiation section with a second pulse laser beam having a second predetermined time width to evaporate and remove a residual film at the bottom of the via hole. The irradiation beam diameter of the laser beam is
3. A method of processing an organic film, wherein the beam diameter is larger than the beam diameter of the pulse laser light, and the pulse laser beam is expanded to a range covering the thermally denatured region of the insulating layer.
【請求項2】有機物質を含む絶縁層と金属層とを積層し
てなるフィルム基板へ、10μsから20msの範囲の
パルス幅の第1のパルスレーザ光を、1ショット以上、
前記フィルム基板のビアホール形成部に照射し、前記第
1のパルスレーザ光の照射による前記絶縁層の温度上昇
を介して前記絶縁層の前記第1のパルスレーザ光照射部
を熱分解、又は熱分解に伴うガス発生の少なくともいず
れかの反応を起こさせる工程と、 前記絶縁層における前記第1のパルスレーザ光の照射部
に、パルス幅略200ns以下、ピークパワー密度略1
0MW/cm2以上の照射強度の第2のパルスレーザ光
を照射して、ビアホール底部の残留膜を蒸散除去する工
程と、 を含み、 前記第2のパルスレーザ光の照射ビーム径を、前記第1
のパルスレーザ光のビーム径よりも大とし、前記絶縁層
の熱変性した領域を覆う範囲にまで拡大したことを特徴
とする有機フィルム加工方法。
2. A first pulse laser beam having a pulse width in a range of 10 μs to 20 ms is applied to a film substrate formed by laminating an insulating layer containing an organic substance and a metal layer for one shot or more.
By irradiating the via hole forming portion of the film substrate with the first pulsed laser beam, the first pulsed laser beam irradiated portion of the insulating layer is thermally decomposed or thermally decomposed through the temperature rise of the insulating layer due to the irradiation of the first pulsed laser beam. Causing a reaction of at least one of gas generation accompanying the above, and irradiating the first pulsed laser beam on the insulating layer with a pulse width of about 200 ns or less and a peak power density of about 1
Irradiating a second pulsed laser beam having an irradiation intensity of 0 MW / cm 2 or more to evaporate and remove the residual film at the bottom of the via hole. 1
3. A method of processing an organic film, wherein the beam diameter is larger than the beam diameter of the pulse laser light, and the pulse laser beam is expanded to a range covering the thermally denatured region of the insulating layer.
【請求項3】有機物質を含んでなるフィルム(「有機フ
ィルム」という)へ、第1の所定時間幅のパルス幅を有
する第1のパルスレーザ光を、1ショット以上、前記有
機フィルムのビアホール形成部に対して照射し、前記第
1のパルスレーザ光の照射部において前記有機フィルム
に熱分解、又は熱分解に伴うガス発生の少なくともいず
れかの反応を起こさせる工程と、 前記有機フィルムにおける前記第1のパルスレーザ光の
照射部に、前記第1のパルスレーザ光のビーム径よりも
大の、前記有機フィルムの熱変性した領域を覆う範囲に
まで広げたビーム径と、第2の所定時間幅のパルス幅
と、を有する第2のパルスレーザ光を照射する工程と、 を含むことを特徴とする有機フィルム加工方法。
3. A via-hole is formed in a film containing an organic substance (hereinafter, referred to as "organic film") by applying a first pulsed laser beam having a pulse width of a first predetermined time width for at least one shot to the organic film. Irradiating the organic film in the first pulsed laser beam irradiating portion, and causing the organic film to undergo at least one of the following reactions: A first pulse laser beam irradiating part, a beam diameter larger than the beam diameter of the first pulse laser beam, which is expanded to a range covering the thermally denatured region of the organic film, and a second predetermined time width Irradiating a second pulse laser beam having the following pulse width:
【請求項4】有機物質を含んでなるフィルム(「有機フ
ィルム」)へ、10μsから20msの範囲のパルス幅
の第1のパルスレーザ光を、1ショット以上、前記有機
フィルムのビアホール形成部に対して照射し、前記第1
のパルスレーザ光の照射による前記有機フィルムの温度
上昇を介して、前記有機フィルムの前記第1のパルスレ
ーザ光照射部を熱分解、又は熱分解に伴うガス発生の少
なくともいずれかの反応を起こさせる工程と、 前記有機フィルムにおける前記第1のパルスレーザ光の
照射部に、照射ビーム径を前記第1のパルスレーザ光の
ビーム径よりも大の、前記有機フィルムの熱変性した領
域を覆う範囲にまで拡げたビーム径を有し、パルス幅略
200ns以下、ピークパワー密度略10MW/cm2
以上の照射強度を有する第2のパルスレーザ光を照射す
る工程と、 を含むことを特徴とする有機フィルム加工方法。
4. A method according to claim 1, wherein a first pulse laser beam having a pulse width in a range of 10 μs to 20 ms is applied to a film containing an organic substance (“organic film”) by one or more shots to a via hole forming portion of the organic film. And irradiate the first
Through the temperature rise of the organic film due to the irradiation of the pulse laser light, the first pulse laser light irradiation part of the organic film is caused to undergo a thermal decomposition or a reaction of at least one of gas generation accompanying the thermal decomposition. The step of irradiating the first pulsed laser beam irradiation portion of the organic film with an irradiation beam diameter larger than the beam diameter of the first pulsed laser beam and covering the heat-denatured region of the organic film. It has a beam diameter expanded to about 200 ns or less in pulse width, and a peak power density of about 10 MW / cm 2
Irradiating a second pulsed laser beam having the above-described irradiation intensity.
【請求項5】レーザ光照射部に、ガスを吹き付けること
を特徴とする請求項1乃至請求項4のいずれか一に記載
の有機フィルム加工方法。
5. The method of processing an organic film according to claim 1, wherein a gas is blown onto the laser beam irradiation section.
【請求項6】前記第2のパルスレーザ光の照射ビーム径
が、前記第1のパルスレーザ光の照射により生成された
開口側壁部の熱分解付着物の、前記有機物質を含む絶縁
層又はフィルムの表面側の、外径にまで及ぶように設定
されたことを特徴とする請求項1から請求項4のいずれ
か一に記載の有機フィルム加工方法。
6. An insulating layer or film containing the organic substance of the pyrolytic deposit on the side wall of the opening generated by the irradiation of the first pulsed laser beam, the irradiation beam diameter of the second pulsed laser beam being applied. The method for processing an organic film according to any one of claims 1 to 4, wherein the surface is set so as to reach the outer diameter.
JP8071435A 1996-03-01 1996-03-01 Organic film processing method Expired - Fee Related JP2710608B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8071435A JP2710608B2 (en) 1996-03-01 1996-03-01 Organic film processing method
SG1997000504A SG55279A1 (en) 1996-03-01 1997-02-27 Method of working an organic film
TW086102390A TW317074B (en) 1996-03-01 1997-02-27
DE19708254A DE19708254A1 (en) 1996-03-01 1997-02-28 Perforating organic film by two successive pulsed laser beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8071435A JP2710608B2 (en) 1996-03-01 1996-03-01 Organic film processing method

Publications (2)

Publication Number Publication Date
JPH09239573A JPH09239573A (en) 1997-09-16
JP2710608B2 true JP2710608B2 (en) 1998-02-10

Family

ID=13460466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8071435A Expired - Fee Related JP2710608B2 (en) 1996-03-01 1996-03-01 Organic film processing method

Country Status (4)

Country Link
JP (1) JP2710608B2 (en)
DE (1) DE19708254A1 (en)
SG (1) SG55279A1 (en)
TW (1) TW317074B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766654B1 (en) * 1997-07-28 2005-05-20 Matsushita Electric Works Ltd METHOD FOR MANUFACTURING A CIRCUIT BOARD
DE19739450A1 (en) * 1997-09-09 1999-03-18 Deutsche Telekom Ag Arrangement for input coupling of light into a light conducting fiber
JPH11238831A (en) 1997-12-16 1999-08-31 Shinko Electric Ind Co Ltd Tape carrier and its manufacture
JP4502092B2 (en) * 2000-03-15 2010-07-14 住友金属鉱山株式会社 Processing method of laminated film base material
DE50313280D1 (en) * 2003-10-06 2011-01-05 Siemens Ag Method of making a hole
DE102004047798A1 (en) * 2004-09-29 2006-04-06 Robert Bosch Gmbh Method for cleaning a resonator
EP1806203A1 (en) * 2006-01-10 2007-07-11 Siemens Aktiengesellschaft Method of producing a hole
AT12316U1 (en) 2008-10-30 2012-03-15 Austria Tech & System Tech Method for integrating an electronic component into a printed circuit board
JP6690803B1 (en) * 2018-08-03 2020-04-28 大日本印刷株式会社 Thermal transfer image receiving sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002301A1 (en) * 1984-10-16 1986-04-24 Advanced Laser Systems, Inc. Laser drilling apparatus and method
DE3742770A1 (en) * 1987-12-17 1989-06-29 Akzo Gmbh MICRO / ULTRAFILTRATION MEMBRANES WITH DEFINED PORO SIZE BY IRRADIATION WITH PULSE LASERS AND METHOD FOR THE PRODUCTION THEREOF
US5319183A (en) * 1992-02-18 1994-06-07 Fujitsu Limited Method and apparatus for cutting patterns of printed wiring boards and method and apparatus for cleaning printed wiring boards

Also Published As

Publication number Publication date
TW317074B (en) 1997-10-01
DE19708254A1 (en) 1997-09-04
SG55279A1 (en) 1998-12-21
JPH09239573A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
EP0430116B1 (en) Method for forming through holes in a polyimide substrate
US5614114A (en) Laser system and method for plating vias
US5173441A (en) Laser ablation deposition process for semiconductor manufacture
US5182230A (en) Laser methods for circuit repair on integrated circuits and substrates
US6037103A (en) Method for forming hole in printed board
JP2710608B2 (en) Organic film processing method
JPH0371236B2 (en)
JP5261484B2 (en) Method for providing a patterned buried conductive layer using laser assisted etching of a dielectric buildup layer
US4898648A (en) Method for providing a strengthened conductive circuit pattern
US5246745A (en) Laser-induced chemical vapor deposition of thin-film conductors
JP2006310346A (en) Device and method of forming functional film pattern, and electronic equipment
EP0806128B1 (en) Method of selectively removing a metallic layer from a non-metallic substrate
JPH07308791A (en) Via hole forming method and film cutting method
JP2983481B2 (en) Printed circuit board manufacturing method
JPH10341069A (en) Method of forming via-hole
WO2005034595A1 (en) Method of forming via hole in resin layer
JP2001168061A (en) Target for forming film on semiconductor substrate by laser irradiation and method of production
JP3998974B2 (en) Circuit board patterning method
JP4502092B2 (en) Processing method of laminated film base material
JP3062142B2 (en) Method for manufacturing multilayer printed wiring board
KR102632428B1 (en) Method for performing delamination of a polymer film
JP3343812B2 (en) Via hole forming method and laser processing apparatus
JP3758263B2 (en) Manufacturing method of electronic component mounting board
JP3245820B2 (en) Laser drilling method
Gu et al. Nd: YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees