JP2707965B2 - 2-piece can with excellent impact resistance - Google Patents

2-piece can with excellent impact resistance

Info

Publication number
JP2707965B2
JP2707965B2 JP5354712A JP35471293A JP2707965B2 JP 2707965 B2 JP2707965 B2 JP 2707965B2 JP 5354712 A JP5354712 A JP 5354712A JP 35471293 A JP35471293 A JP 35471293A JP 2707965 B2 JP2707965 B2 JP 2707965B2
Authority
JP
Japan
Prior art keywords
resin
parameter
polyester resin
impact resistance
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5354712A
Other languages
Japanese (ja)
Other versions
JPH07178485A (en
Inventor
迪子 鶴丸
宏 松林
和久 増田
正恒 渋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP5354712A priority Critical patent/JP2707965B2/en
Publication of JPH07178485A publication Critical patent/JPH07178485A/en
Application granted granted Critical
Publication of JP2707965B2 publication Critical patent/JP2707965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、予め少なくとも缶胴内
面側になる金属面上に有機樹脂被膜を被覆した後、絞り
しごき加工又は、引伸し絞り加工して成形した耐衝撃性
に優れた2ピース金属缶に関するもので、より詳細には
軸配向及び面配向されたポリエステル樹脂被覆を缶内面
に配設した内面被膜の耐衝撃性、密着性に優れた絞りし
ごき加工した2ピース缶および引伸し絞り加工した2ピ
ース缶に関する。
BACKGROUND OF THE INVENTION The present invention relates to an impact-resistant steel sheet which is formed by coating an organic resin film on at least a metal surface on the inner surface side of a can body before drawing and ironing or drawing and drawing. More specifically, it relates to a piece metal can, and more specifically, a two-piece can which is drawn and ironed with excellent impact resistance and adhesion of an inner surface coating in which an axially and plane-oriented polyester resin coating is disposed on the inner surface of the can and a stretch drawing. It relates to a processed two-piece can.

【0002】[0002]

【従来の技術】従来、熱可塑性ポリエステルのフィルム
を鋼板等の金属素材に熱接着させ、この被覆金属構造物
を絞りしごき加工に付して、分子配向されたポリエステ
ルの被覆を缶内面に密着した状態で設けた絞りしごき缶
は例えば特開昭60−172637号公報に記載されて
いるように既に知られている。しかし、これらに記載さ
れている缶は、耐衝撃性が充分でないため内容物が充填
された後、輸送中に衝撃を受けたり、カートンに詰めた
状態で落下した場合には缶内面を被覆しているポリエス
テル系有機樹脂被膜に亀裂が生じ、金属基板が内容物に
直接接触するようになるため、缶胴金属が溶出したり、
金属が腐食して孔があき内容物が漏洩する等の問題があ
った。そのため輸送中に衝撃を受けたり、カートンに詰
めた状態で落下した場合でも缶内面のポリエステル系有
機樹脂被膜に亀裂を生じない缶の要求が多くなった。
2. Description of the Related Art Conventionally, a thermoplastic polyester film is thermally bonded to a metal material such as a steel plate, and the coated metal structure is drawn and ironed, so that a molecularly oriented polyester coating is adhered to the inner surface of the can. The drawn ironing can provided in the state is already known, for example, as described in Japanese Patent Application Laid-Open No. 60-172637. However, the cans described in these documents do not have sufficient impact resistance, so if the contents are filled and then subjected to an impact during transportation or dropped in a carton, the inner surface of the can is covered. Cracks occur in the polyester-based organic resin coating that is in place, and the metal substrate comes into direct contact with the contents.
There were problems such as corrosion of the metal, perforation and leakage of the contents. Therefore, there has been an increasing demand for cans that do not crack the polyester-based organic resin coating on the inner surface of the can even if they are impacted during transportation or fall in a carton.

【0003】[0003]

【発明が解決しようとする課題】前述の特開昭60−1
72637では、内面被覆に分子配向された、即ち配向
結晶のC軸が軸配向したポリエステルの被覆を缶内面に
密着した状態で設けることが提案されている。しかし、
このような被覆であっても缶壁に存在するC軸が軸配向
した結晶の(100)面の法線がランダムな方向を向い
ている状態にあると、繊維状組織と類似の組織になって
おり、衝撃を受けた際にはC軸に平行に樹脂被膜が割れ
ることが解明された。この問題を解決しないと缶の耐衝
撃性は向上しない。
The above-mentioned Japanese Patent Application Laid-Open No. Sho 60-1
No. 72637 proposes to provide a polyester coating having a molecular orientation on the inner surface coating, that is, a polyester with the C-axis of the oriented crystal being axially oriented, in close contact with the inner surface of the can. But,
Even with such a coating, if the normal of the (100) plane of the crystal in which the C axis present on the can wall is oriented in a random direction, the structure becomes similar to the fibrous structure. It was clarified that the resin film cracked parallel to the C axis when subjected to an impact. Unless this problem is solved, the impact resistance of the can is not improved.

【0004】この問題を解決するため種々研究し本発明
者は、缶胴部内面を被覆する樹脂として固有粘度(I
V)が0.60以上のポリエステル樹脂を用い、且つポ
リエステル樹脂被膜中の配向結晶のC軸が缶高さ方向に
軸配向している度合を表すパラメーターAを0.40以
上に制御し、且つC軸が缶高さ方向へ軸配向している配
向結晶の(100)面が樹脂被膜面に平行に存在する割
合(面配向度)を表すパラメーターBを0.00以上に
制御することが、耐衝撃性、耐食性を向上させるのに有
効であることを解明し、問題を解決した。
[0004] In order to solve this problem, various studies have been made, and the inventor of the present invention has found that the resin for coating the inner surface of the can body has an intrinsic viscosity (I).
V) using a polyester resin having a value of 0.60 or more, and controlling a parameter A representing the degree of the C-axis of the oriented crystal in the polyester resin film in the can height direction to 0.40 or more; By controlling the parameter B, which represents the proportion (plane orientation degree) of the (100) plane of the oriented crystal in which the C axis is axially oriented in the can height direction in parallel with the resin coating surface, is controlled to 0.00 or more. It was clarified that it was effective in improving impact resistance and corrosion resistance, and the problem was solved.

【0005】[0005]

【課題を解決した手段】本発明は、 「1. 予め少なくとも缶胴内面側になる金属面上に有
機樹脂被膜を被覆した後、絞りしごき加工又は、引伸し
絞り加工してなる2ピース金属缶において、該有機樹脂
被膜は主成分が配向結晶を含むポリエステル樹脂であ
り、該ポリエステル樹脂層の固有粘度(IV)が0.6
0以上であり、該配向結晶の缶高さ方向への軸配向度を
表すパラメーターAが、 A≧0.40 であり、缶高さ方向ヘ軸配向している結晶の面配向度を
表すパラメーターBが、 B≧0.00 であることを特徴とする缶胴部の耐衝撃性が優れた2ピ
ース金属缶。 2. パラメーターAがポリエステル樹脂被膜中の配向
結晶のうちC軸が缶高さ方向に軸配向している結晶の存
在度合を示すパラメーターである、1項に記載された耐
衝撃性が優れた2ピース金属缶。 3. パラメーターBがポリエステル樹脂被膜中のC軸
が缶高さ方向に軸配向している配向結晶の(100)面
が樹脂被膜に平行に存在する度合を示すパラメーターで
ある、1項に記載された耐衝撃性が優れた2ピース金属
缶。」に関する。
Means for Solving the Problems The present invention provides a two-piece metal can which is obtained by first coating an organic resin film on at least the metal surface on the inner side of the can body and then drawing and ironing or drawing and drawing. The organic resin film is mainly composed of a polyester resin containing oriented crystals, and the polyester resin layer has an intrinsic viscosity (IV) of 0.6.
0 or more, a parameter A representing the degree of axial orientation of the oriented crystal in the can height direction is A ≧ 0.40, and a parameter representing the degree of plane orientation of the crystal that is axially oriented in the can height direction. B is a two-piece metal can excellent in impact resistance of the can body, wherein B ≧ 0.00. 2. Parameter A is a parameter indicating the degree of existence of crystals in which the C axis is axially oriented in the height direction of the can among the oriented crystals in the polyester resin film, and the two-piece metal having excellent impact resistance described in 1 above can. 3. Parameter B is a parameter indicating the degree to which the (100) plane of the oriented crystal in which the C axis in the polyester resin film is axially oriented in the height direction of the can is parallel to the resin film. 2-piece metal can with excellent impact properties. About.

【0006】[0006]

【作用】本発明の特徴の一つである軸配向度パラメータ
ーAと軸配向結晶の面配向度パラメーターBについて説
明する。
The axial orientation parameter A and the plane orientation parameter B of the axially oriented crystal, which are one of the features of the present invention, will be described.

【0007】パラメーターAは、缶壁のポリエステル樹
脂被膜中の結晶のうち、C軸がフィルム面に平行になっ
ている結晶のなかでの、C軸が缶高さ方向へ軸配向して
いる結晶の存在度合(軸配向度)を表している。
[0007] Parameter A is a crystal in which the C axis is axially oriented in the height direction of the can among the crystals in the polyester resin coating on the can wall where the C axis is parallel to the film surface. Represents the degree of existence (degree of axial orientation).

【0008】パラメーターBは、缶壁のポリエステル系
樹脂被膜中にある缶高さ方向へ軸配向している結晶の面
配向度を表すものである。本発明で言うパラメーターB
は通常の測定で得られる面配向度とは意味が異なる。通
常測定される面配向度は、結晶のC軸が缶高さ方向に配
向している配向結晶だけでなく、フィルム表面に(10
0)面が平行な配向結晶であれば全て含んだ面配向度で
あるが、パラメーターBは、缶高さ方向へ軸配向してい
る結晶の中で、フィルム表面に(100)面が平行な配
向結晶の存在度合を表している。
[0008] Parameter B represents the degree of plane orientation of crystals axially oriented in the can height direction in the polyester resin coating on the can wall. Parameter B in the present invention
Has a different meaning from the plane orientation degree obtained by ordinary measurement. The degree of plane orientation usually measured is not only about the oriented crystal whose C axis is oriented in the height direction of the can, but also on the film surface.
0) The plane orientation degree includes all plane-oriented crystals parallel to each other, but the parameter B is such that among the crystals which are axially oriented in the can height direction, the (100) plane is parallel to the film surface. This indicates the degree of existence of the oriented crystal.

【0009】本発明においてはポリエステル系樹脂被膜
について、法線が配向結晶のC軸と約8〜10度傾いて
いる(−105)面の存在状態を測定することにより、
C軸が缶高さ方向へ軸配向している結晶の(100)面
の面配向度を測定する。PET系結晶、PBT系結晶い
ずれも三斜晶であり、C軸は(−105)面の法線とそ
れぞれ約8度、約10度傾いている。
In the present invention, the presence state of the (-105) plane in which the normal line is inclined by about 8 to 10 degrees with respect to the C axis of the oriented crystal is measured for the polyester resin film.
The degree of plane orientation of the (100) plane of the crystal whose C axis is axially oriented in the height direction of the can is measured. Both the PET-based crystal and the PBT-based crystal are triclinic, and the C-axis is inclined by about 8 degrees and about 10 degrees with the normal to the (-105) plane, respectively.

【0010】PET系結晶の例でパラメーターBの説明
をする。配向結晶のC軸が缶高さ方向に軸配向し、且つ
[100]方向が樹脂被膜上面側方向にあり、且つ(1
00)面が樹脂被膜面に平行に存在する(面配向してい
る)と、図2に示すX線回折測定で、回折ピークは回転
角度90度、270度からそれぞれ約8度ずれた約98
度、約278度の位置に現れる。一方、配向結晶のC軸
が缶高さ方向に軸配向しており、且つ[100]方向が
樹脂被膜下面側方向にあり、且つ(100)面が樹脂被
膜面に平行に存在する(面配向している)と、回折ピー
クは回転角度約82度、約262度の位置に現れる。
The parameter B will be described using an example of a PET crystal. The C-axis of the oriented crystal is axially oriented in the height direction of the can, the [100] direction is in the direction of the upper surface of the resin film, and (1
When the (00) plane exists parallel to the resin coating surface (plane oriented), the diffraction peak in the X-ray diffraction measurement shown in FIG.
Degrees, about 278 degrees. On the other hand, the C axis of the oriented crystal is axially oriented in the height direction of the can, the [100] direction is on the lower surface side of the resin film, and the (100) plane exists parallel to the resin film surface (plane orientation). ), The diffraction peak appears at a position at a rotation angle of about 82 degrees and about 262 degrees.

【0011】従って、図2に示すX線回折測定で、回折
ピークが90度近傍では約82度、約98度の二ケ所
に、又270度近傍では約262度、278度の二ケ所
に現れるのは、C軸が缶高さ方向に軸配向しており、且
つ[100]方向が樹脂被膜上面方向にあり、且つ(1
00)面が樹脂被膜面に平行である配向結晶と、C軸が
缶高さ方向に軸配向しており、[100]方向が樹脂被
膜下面側方向にあり、且つ(100)面が樹脂被膜面に
平行である配向結晶とが存在していることによる。
Therefore, in the X-ray diffraction measurement shown in FIG. 2, diffraction peaks appear at about 82 degrees and about 98 degrees near 90 degrees, and at about 262 degrees and 278 degrees near 270 degrees. Is that the C axis is axially oriented in the can height direction, the [100] direction is in the direction of the upper surface of the resin coating, and (1)
The (00) plane is oriented crystal parallel to the resin coating surface, the C axis is axially oriented in the can height direction, the [100] direction is on the lower side of the resin coating, and the (100) plane is the resin coating. This is due to the presence of oriented crystals that are parallel to the plane.

【0012】一方、C軸が缶高さ方向に軸配向していて
も、(100)面が樹脂被膜面に平行になっていず、ラ
ンダムな方向を向いている場合、即ち軸配向結晶が面配
向していない場合には、図2に示すX線回折測定で、9
0度付近と270度付近の回折ピークが分離せず一つ現
れる。即ち、缶高さ方向へ軸配向している結晶の面配向
度が大きい程90度近傍と270度近傍のピークの分離
が大きくなる。以上より、図2に示すX線回折測定で9
0度付近、270度付近の回折ピーク形状(分離状態)
から本発明で定義したパラメーターBはポリエステル樹
脂被膜中の缶高さ方向へ軸配向している結晶の面配向の
程度を表していることが明らかである。
On the other hand, even when the C-axis is axially oriented in the height direction of the can, the (100) plane is not parallel to the resin coating surface and is oriented in a random direction. In the case of not being oriented, the X-ray diffraction measurement shown in FIG.
One diffraction peak near 0 degree and about 270 degree appears without separation. That is, as the degree of plane orientation of the crystal axially oriented in the can height direction increases, the separation of peaks near 90 ° and 270 ° increases. As described above, the X-ray diffraction measurement shown in FIG.
Diffraction peak shape near 0 degree and 270 degree (separation state)
It is clear from the above that the parameter B defined in the present invention represents the degree of plane orientation of crystals axially oriented in the height direction of the can in the polyester resin film.

【0013】本発明は、缶胴部に固有粘度が0.60以
上のポリエステル樹脂を用い、且つポリエステル樹脂被
膜中の配向結晶のC軸が缶高さ方向に軸配向している度
合を表すパラメーターAを0.40以上に制御し、且つ
C軸が缶高さ方向へ軸配向している配向結晶の(10
0)面が樹脂被膜面に平行に存在する割合(面配向度)
を表すパラメーターBを0.00以上に制御することに
より缶のポリエステル被膜の耐衝撃性と耐食性を著しく
向上させることが出来た。使用するポリエステル樹脂の
固有粘度(IV)とパラメーターAおよびパラメーター
Bが本発明で規定する範囲内になくてはならないこと
は、実施例と比較例で具体的に明らかにする。
In the present invention, a polyester resin having an intrinsic viscosity of 0.60 or more is used for the body of the can, and a parameter indicating the degree to which the C axis of the oriented crystal in the polyester resin film is axially oriented in the height direction of the can. A is controlled to 0.40 or more, and (10) of the oriented crystal in which the C axis is axially oriented in the can height direction.
0) Ratio of plane parallel to resin coating surface (plane orientation degree)
By controlling the parameter B representing 0.00 or more to 0.00 or more, the impact resistance and corrosion resistance of the polyester film of the can were significantly improved. The Examples and Comparative Examples clearly show that the intrinsic viscosity (IV) and the parameters A and B of the polyester resin used must be within the ranges specified in the present invention.

【0014】本発明で使用する金属板としては、板厚が
0.1〜1.0mmであり、金属の種類としては、すず
めっき鋼板、TFS、Niめっき鋼板、Alめっき鋼
板、純アルミニウム板、アルミニウム合金板が好適に使
用出来る。
The metal plate used in the present invention has a thickness of 0.1 to 1.0 mm, and the types of metal include tin-plated steel plate, TFS, Ni-plated steel plate, Al-plated steel plate, pure aluminum plate, Aluminum alloy plates can be suitably used.

【0015】本発明の樹脂の主成分である結晶性ポリエ
ステル樹脂としては、ポリエチレンテレフタレート、ポ
リブチレンテレフタレート、ポリエチレンナフタレート
及びその共重合体、ブレンド物が使用される。共重合ポ
リエチレンテレフタレートの共重合成分は酸成分でもア
ルコール成分でも良い。該酸成分としてはイソフタル
酸、フタル酸、ナフタレンジカルボン酸等の芳香族二塩
基酸、アジピン酸、アゼライン酸、セバシン酸、デカン
ジカルボン酸等の脂肪族ジカルボン酸、シクロヘキサン
ジカルボン酸の如き脂環族ジカルボン酸等が挙げられ、
またアルコール成分としてはブタンジオール、ヘキサン
ジオール等の脂肪族ジオール、シクロヘキサンジメタノ
ールの如き脂環族ジオール等が挙げられる。これらは単
独又は二種以上を使用することが出来る。これらの結晶
性ポリエステルは単層又は2層以上の複層として使用出
来る。
As the crystalline polyester resin which is a main component of the resin of the present invention, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and copolymers and blends thereof are used. The copolymer component of the copolymerized polyethylene terephthalate may be an acid component or an alcohol component. Examples of the acid component include aromatic dibasic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decane dicarboxylic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. Acids and the like,
Examples of the alcohol component include aliphatic diols such as butanediol and hexanediol, and alicyclic diols such as cyclohexanedimethanol. These can be used alone or in combination of two or more. These crystalline polyesters can be used as a single layer or as two or more layers.

【0016】[0016]

【実施例】まずはじめに本発明の2ピース金属缶の製造
方法を簡単に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a method for manufacturing a two-piece metal can according to the present invention will be briefly described.

【0017】例1 主成分が固有粘度0.60以上の結
晶性ポリエステル樹脂を金属板上に熱被覆した後急冷
し、結晶化度10%以下のポリエステル樹脂被覆金属板
を得た後、樹脂被覆面を缶内面側として総絞り比1.5
以上で絞り成形し、次いで総リダクション15%以上の
しごき加工を行い、その後樹脂被覆層の主体となるポリ
エステル樹脂の融点より60℃低い温度から融点を越え
ない温度範囲で熱処理することにより効率よく製造する
ことが出来る。
Example 1 A crystalline polyester resin whose main component is an intrinsic viscosity of 0.60 or more is heat-coated on a metal plate and then quenched to obtain a polyester resin-coated metal plate having a crystallinity of 10% or less. The total drawing ratio is 1.5 with the surface as the inner side of the can.
Efficient production by drawing in the above manner, then ironing to a total reduction of 15% or more, and then heat-treating at a temperature not higher than the melting point of the polyester resin, which is the main component of the resin coating layer, by 60 ° C. You can do it.

【0018】例2 主成分が固有粘度0.60以上の結
晶性ポリエステル樹脂を金属板上の片面又は両面に熱被
覆した後急冷し、結晶化度10%以下のポリエステル樹
脂被覆金属板を得た後、樹脂被覆面を缶内面側として総
絞り比1.5以上で、且つ総リダクションを20%以上
とした引伸し絞り加工を行い、その後樹脂被覆層の主体
となるポリエステル樹脂の融点より60℃低い温度から
融点を越えない温度範囲で熱処理することにより効率よ
く製造することが出来る。
Example 2 A crystalline polyester resin whose main component is an intrinsic viscosity of 0.60 or more was heat-coated on one or both surfaces of a metal plate and then quenched to obtain a polyester resin-coated metal plate having a crystallinity of 10% or less. After that, the drawing is performed with the resin-coated surface as the inner surface of the can with a total drawing ratio of 1.5 or more and a total reduction of 20% or more, and then 60 ° C. lower than the melting point of the polyester resin that is the main component of the resin coating layer. By performing the heat treatment in a temperature range not exceeding the melting point from the temperature, it is possible to efficiently manufacture.

【0019】つぎに実施例について本発明を具体的に説
明する。実施例、比較例を通じ、ポリエステル樹脂の結
晶化度、固有粘度(IV)の測定、リダクションの計
算、パラメーターA、Bの測定、は下記のように行っ
た。
Next, the present invention will be described in detail with reference to examples. Throughout the examples and comparative examples, the measurement of the crystallinity and intrinsic viscosity (IV) of the polyester resin, the calculation of the reduction, and the measurement of the parameters A and B were performed as follows.

【0020】1. ポリエステル樹脂の結晶化度、固有
粘度(IV)の測定 結晶性ポリエステル樹脂の結晶化度の測定は、文献(S
EN−I GAKKAISHI,Vol.33,No.
10(1977),780〜)の方法で行った。すなわ
ちX線回折散乱強度分布を結晶及び非晶相からの寄与に
分離し、Bragg角に関する積分強度比として算出し
た。結晶性ポリエステル樹脂の固有粘度(IV)の測定
は、缶胴内面の樹脂層を金属板から剥離したのち、o−
クロロフェノール中で25℃で測定した。
1. Measurement of Crystallinity and Intrinsic Viscosity (IV) of Polyester Resin The measurement of crystallinity of crystalline polyester resin is described in the literature (S
EN-I GAKKAIISHI, Vol. 33, no.
10 (1977), 780-). That is, the X-ray diffraction scattering intensity distribution was separated into contributions from a crystal phase and an amorphous phase, and calculated as an integrated intensity ratio with respect to the Bragg angle. The intrinsic viscosity (IV) of the crystalline polyester resin was measured by peeling the resin layer on the inner surface of the can body from the metal plate and then measuring the o-
Measured in chlorophenol at 25 ° C.

【0021】2. リダクションの計算法 リダクションはつぎのように計算した。 リダクション=(原板厚さ−缶胴厚さ)×100/原板
厚さ
2. Calculation method of reduction Reduction was calculated as follows. Reduction = (thickness of original sheet-thickness of can body) x 100 / thickness of original sheet

【0022】3. パラメーターA、Bの測定 測定は以下の手順で行った。缶胴中央部からポリエステ
ル系樹脂膜を剥離し、X線回折装置に剥離樹脂膜を透過
法でセットする(このとき、θ=2θ=0度の状態でX
線入射ビームに対し剥離樹脂膜が垂直になるようにセッ
トする)。次に、X線回折角度2θをPET系ポリエス
テル樹脂の(−105)面の回折角度42.9度(PB
T系ポリエステル樹脂の場合は、2θ=39.0度)に
セットする。剥離樹脂膜をX線回折測定面における膜法
線を軸として0.5度/秒の速度で0〜360度回転さ
せ、下記X線回折条件で横軸に回転角度、縦軸にX線回
折強度とした(−105)X線回折強度曲線を得る。こ
こで、回転角度0、及び180度を缶の周方向、90度
を缶底方向、270度を缶高さ方向に対応させる。
3. Measurement of parameters A and B Measurement was performed according to the following procedure. The polyester resin film is peeled from the center of the can body, and the peeled resin film is set on the X-ray diffractometer by a transmission method (at this time, X = 2θ = 0 degree X
The release resin film is set to be perpendicular to the line incident beam). Next, the X-ray diffraction angle 2θ was changed to the diffraction angle of 42.9 degrees (PB
In the case of a T-based polyester resin, it is set to 2θ = 39.0 degrees). The release resin film is rotated at a rate of 0.5 ° / sec from 0 to 360 ° with the film normal on the X-ray diffraction measurement surface as the axis, and the horizontal axis represents the rotation angle and the vertical axis represents the X-ray diffraction under the following X-ray diffraction conditions. An (-105) X-ray diffraction intensity curve as intensity is obtained. Here, the rotation angles 0 and 180 degrees correspond to the circumferential direction of the can, 90 degrees to the can bottom direction, and 270 degrees to the can height direction.

【0023】X線回折条件 ターゲット:Cu、管球電圧40Kv、管球電流40m
A、発散スリット:1°、検出スリット:0.3mm、 次に、X線回折角度2θ=45.0度に設定する以外
は、上と同様にして、X線回折強度曲線を得る。これを
バックグランドとする。2θ=42.9度X線回折強度
曲線(PBT系は、2θ=39.0度のX線回折強度曲
線)から、2θ=45.0度のX線回折曲線を減算する
ことにより、(−105)結晶面の回折強度曲線を得る
(図1)。パラメーターAは、次のように定義する(図
1)。 X:回転角0〜360度における(−105)面強度の
全面積 Y:回転角90±30度の範囲面積と、270±30度
の範囲面積を合計した面積 A=Y/X
X-ray diffraction conditions Target: Cu, tube voltage 40 Kv, tube current 40 m
A, divergence slit: 1 °, detection slit: 0.3 mm, Next, an X-ray diffraction intensity curve is obtained in the same manner as above, except that the X-ray diffraction angle 2θ is set to 45.0 degrees. This is the background. By subtracting the X-ray diffraction curve at 2θ = 45.0 degrees from the X-ray diffraction intensity curve at 2θ = 42.9 degrees (PBT type X-ray diffraction intensity curve at 2θ = 39.0 degrees), (−− 105) Obtain a diffraction intensity curve of the crystal plane (FIG. 1). Parameter A is defined as follows (FIG. 1). X: Total area of (-105) plane strength at a rotation angle of 0 to 360 degrees Y: Total area of a range area of a rotation angle of 90 ± 30 degrees and a range area of 270 ± 30 degrees A = Y / X

【0024】パラメーターAは、C軸がフィルム面に平
行になっているPET系結晶全結晶のなかでの、C軸が
缶高さ方向へ配向している結晶の度合を示す。すなわち
PET系結晶の缶高さ方向への軸配向度合を表す。
The parameter A indicates the degree of the crystal in which the C axis is oriented in the height direction of the can among all the crystals of the PET crystal having the C axis parallel to the film surface. That is, it indicates the degree of axial orientation of the PET crystal in the height direction of the can.

【0025】PET系樹脂の場合、パラメーターBは、
次のように定義する。図2の90°付近において、次の
ようにC1、D1、E1を求め、H1、W1を算出し、
パラメーターB1を求める。 C1:98±2度の範囲での最も大きい強度(PBT系
樹脂の場合は100±2度の範囲での最も大きい強度) D1:82±2度の範囲での最も大きい強度(PBT系
樹脂の場合は80±2度の範囲での最も大きい強度) E1:90±2度の範囲での最も小さい強度(PBT系
樹脂の場合も同様) H1=(C1+D1)/2 W1=H1−E1 B1=W1/H1 図2の270度付近においても同様に、C2、D2、E
2、H2、W2を求め、パラメーターB2を求める。 C2:278±2度の範囲での最も大きい強度(PBT
系樹脂の場合は280±2度の範囲での最も大きい強
度) D2:262±2度の範囲での最も大きい強度(PBT
系樹脂の場合は260±2度の範囲での最も大きい強
度) E2:270±2度の範囲での最も小さい強度(PBT
系樹脂の場合も同様) H2=(C2十D2)/2 W2=H2−E2 B2=W2/H2 そして、B1とB2の平均をこの缶体のパラメーターB
とする。パラメーターBは、C軸が缶ハイト方向へ配向
している結晶のうちで、面配向{(100)面がフィル
ム表面に平行}をしている結晶の度合を示す。面配向し
ている結晶が多いとBは大きくなる。実施例、比較例を
通じ、各試験は次のように行った。
In the case of PET resin, parameter B is
It is defined as follows. At around 90 ° in FIG. 2, C1, D1, and E1 are obtained as follows, and H1 and W1 are calculated.
Obtain the parameter B1. C1: The largest strength in the range of 98 ± 2 degrees (the largest strength in the range of 100 ± 2 degrees in the case of the PBT resin) D1: The largest strength in the range of 82 ± 2 degrees (PBT resin In the case, the largest strength in the range of 80 ± 2 degrees) E1: The smallest strength in the range of 90 ± 2 degrees (the same applies to the PBT resin) H1 = (C1 + D1) / 2 W1 = H1-E1 B1 = W1 / H1 Similarly, at around 270 degrees in FIG.
2, H2 and W2 are determined, and parameter B2 is determined. C2: The largest intensity in the range of 278 ± 2 degrees (PBT
D2: The largest strength in the range of 262 ± 2 degrees (PBT)
E2: The smallest strength in the range of 270 ± 2 degrees (PBT)
H2 = (C2 × D2) / 2 W2 = H2-E2 B2 = W2 / H2 Then, the average of B1 and B2 is calculated as the parameter B of this can body.
And Parameter B indicates the degree of the crystal whose plane orientation (the (100) plane is parallel to the film surface) among crystals whose C axis is oriented in the direction of the can height. B increases when there are many plane-oriented crystals. Throughout the examples and comparative examples, each test was performed as follows.

【0026】缶側壁耐衝撃性試験 作製した絞りしごき缶、引伸し絞り缶あるいは絞り缶ま
たは引伸し缶にコカ・コーラライト(日本コカ・コーラ
株式会社商品名)を低温で充填し、コーテイングされた
アルミ蓋を巻締め、5日間室温に保管した後5℃に2日
貯蔵した後、5℃のままで缶胴のネック開始点直下と缶
壁中央部に重さ700gの直角ブロックを高さ50mm
から落とすことにより缶胴に衝撃的変形をあたえ、更
に、2日間5℃に保管した後開缶し、缶胴の衝撃変形部
を通電測定し、0.1mA未満を○、0.1mA以上を
×と評価した。通電測定は、1%NaCl溶液を含んだ
スポンジを衝撃変形部に接触させ、スポンジ内の電極
(陰極)と缶体との間に6.0vの電圧をかけ、流れる
電流を測定した。
Can side wall impact resistance test The prepared drawn ironed can, drawn drawn can or drawn can or drawn can is filled with Coca-Colalite (trade name of Nippon Coca-Cola Co., Ltd.) at a low temperature and coated with an aluminum lid. After being stored at room temperature for 5 days and then stored at 5 ° C for 2 days, a right-angled block having a weight of 700 g is placed at a temperature of 5 ° C directly below the neck start point of the can body and at the center of the can wall at a height of 50 mm.
The can body is subjected to shock deformation by dropping it from the container. After storing at 5 ° C. for 2 days, the can is opened, and the impact deformation part of the can body is subjected to current measurement. X was evaluated. In the energization measurement, a sponge containing a 1% NaCl solution was brought into contact with the impact deforming portion, a voltage of 6.0 V was applied between an electrode (cathode) in the sponge and the can body, and a flowing current was measured.

【0027】輸送試験 缶側壁耐衝撃性評価用と同様にして製缶及び内容物(コ
カ・コーラライト)充填を行った後、24缶入りの段ボ
ール製箱入れ、トラック貨物便で往復1,100Km
の輸送試験を行った。各種類10箱(240缶)試験し
た。輸送試験後、37℃で1年間保管後、開缶し内容物
中に溶出した鉄量を原子吸光法で分析した。また輸送に
より受けた缶胴変形部の缶内面腐食の状態の観察を行っ
た。鉄溶出量は240缶の平均値を示す。
Transport Test After making cans and filling the contents (Coca-Colalite) in the same manner as for the evaluation of the impact resistance to the side wall of the cans , put them in a cardboard box containing 24 cans, and reciprocate them by truck cargo service. 100km
Transport test. Each type was tested in 10 boxes (240 cans). After the transport test, after storing at 37 ° C. for one year, the can was opened and the amount of iron eluted in the contents was analyzed by an atomic absorption method. Also, the state of corrosion of the inner surface of the can of the deformed can body received by transportation was observed. The iron elution amount indicates the average value of 240 cans.

【0028】実施例1−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み30μmでIVが0.85の非晶状
態の結晶性ポリエステル樹脂(ポリエチレンテレフタレ
ート/イソフタレート系)を熱被覆し、急冷した。この
樹脂の被覆後の結晶化度を表1に示す。この片面樹脂被
覆すずめっき鋼板を用い、樹脂被覆面が缶内面になるよ
うにして、直径142mmにブランキングし、1st絞
り比1.6でカップを成形後、再絞り(2nd絞り比
1.3)としごき成形(3工程、総リダクション67
%)を行い、内径65.8mmの絞りしごきカップを成
形した。この絞りしごきカップを、缶高さが123mm
になるようにトリムし、洗浄乾燥した後、加熱温度21
0℃(ポリエステル樹脂の融点より21℃低い温度)2
分で処理した。その後、外面印刷と焼付を行い、缶上部
を内径57.25mmに縮径するとともにフランジを成
形し、絞りしごき缶を得た。この缶の缶胴について、I
V及びパラメーターAとBを測定し、缶側壁耐衝撃性試
験及び輸送試験を行った。その結果を表1に示す。
Example 1-1 A crystalline polyester resin (polyethylene terephthalate / polyethylene terephthalate) having a thickness of 30 μm and an IV of 0.85 was coated on one side of a 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. (Isophthalate-based) and quenched. Table 1 shows the crystallinity of the resin after coating. Using this one-sided resin-coated tin-plated steel sheet, the resin-coated surface is blanked to a diameter of 142 mm so that the resin-coated surface is the inner surface of the can, a cup is formed at the first drawing ratio of 1.6, and then redrawn (2nd drawing ratio of 1.3). ) And ironing (3 steps, total reduction 67)
%) To form a drawn and ironed cup having an inner diameter of 65.8 mm. This squeezed ironing cup can be 123mm in height
After trimming, washing and drying, heating temperature 21
0 ° C (21 ° C lower than the melting point of polyester resin) 2
Processed in minutes. Thereafter, printing and baking were performed on the outer surface, the upper part of the can was reduced in diameter to 57.25 mm, and a flange was formed. About the can body of this can, I
V and parameters A and B were measured, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the results.

【0029】実施例1−2、比較例1−1、1−2 実施例1−2は、すずめっき鋼板に被覆した有機樹脂被
膜がイソフタル酸系共重合PBTであり、樹脂IVが
0.71であること以外は実施例1−1と同様にして絞
りしごき缶を作製し、X線回折角度2θが39.0度で
あること以外は実施例1−1と同様にしてパラメータ
A、Bを測定し、缶側壁耐衝撃性試験及び輸送試験を行
った。樹脂の被覆後の結晶化度と試験結果を表1に示
す。尚、洗浄乾燥した後の加熱温度200℃は、ポリエ
ステル樹脂の融点より12℃低い温度である。
Example 1-2, Comparative Examples 1-1, 1-2 In Example 1-2, the organic resin film coated on the tin-plated steel sheet was an isophthalic acid-based copolymerized PBT, and the resin IV was 0.71. Except that X-ray diffraction angle 2θ was 39.0 degrees, and parameters A and B were changed in the same manner as in Example 1-1. Measurement was performed, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after the resin coating and the test results. The heating temperature of 200 ° C. after washing and drying is a temperature 12 ° C. lower than the melting point of the polyester resin.

【0030】比較例1−1は、すずめっき鋼板の片面
(内面側)に5μm厚さの熱硬化樹脂を塗布した後焼付
したこと以外は実施例1−1と同様にして絞りしごき缶
を製缶し、実施例1−1と同様にしてパラメーターA、
Bを測定し、缶側壁耐衝撃性試験及び輸送試験を行っ
た。試験結果を表1に示す。
In Comparative Example 1-1, a drawn and ironed can was manufactured in the same manner as in Example 1-1 except that a thermosetting resin having a thickness of 5 μm was applied to one side (inner side) of the tin-plated steel sheet and then baked. Can, and the parameters A and A were obtained in the same manner as in Example 1-1.
B was measured, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the test results.

【0031】比較例1−2は、熱被覆する樹脂が熱結晶
性のないポリエステル樹脂(ポリエチレンテレフタレー
ト/イソフタレート系)であること以外は実施例1−1
と同様にして絞りしごき缶を製缶し、実施例1−1と同
様にしてIV及びパラメーターA、Bを測定し、缶側壁
耐衝撃性試験及び輸送試験を行った。樹脂の被覆後の結
晶化度と試験結果を表1に示す。
Comparative Example 1-2 is the same as Example 1-1 except that the resin to be thermally coated is a polyester resin having no thermal crystallinity (polyethylene terephthalate / isophthalate).
In the same manner as in Example 1, a drawn and ironed can was made, IV and parameters A and B were measured in the same manner as in Example 1-1, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after the resin coating and the test results.

【0032】実施例2−1、2−2、2−3、比較例2
−1、2−2 実施例2−1、2−2、2−3、比較例2−1、2−2
は、被覆する樹脂のIVを変えることにより、缶内面の
有機樹脂被膜のIVがそれぞれ0.74、0.66、
0.60、0.58、0.55にすること以外は実施例
1−1と同様にして絞りしごき缶を作製し、実施例1−
1と同様にして、IV及びパラメーターAとBを測定
し、缶側壁耐衝撃性試験及び輸送試験を行った。樹脂の
被覆後の結晶化度と試験結果を表1に示す。尚、洗浄乾
燥した後の加熱温度210℃は、使用したポリエステル
樹脂の融点よりそれぞれ21℃、23℃、25℃、26
℃、27℃、低い温度である。
Examples 2-1, 2-2, 2-3, Comparative Example 2
-1, 2-2 Examples 2-1 2-2, 2-3, Comparative Examples 2-1 2-2
By changing the IV of the resin to be coated, the IV of the organic resin coating on the inner surface of the can is 0.74, 0.66,
A drawn and ironed can was prepared in the same manner as in Example 1-1 except that the values were changed to 0.60, 0.58, and 0.55.
IV and parameters A and B were measured in the same manner as in Example 1, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after the resin coating and the test results. The heating temperature after washing and drying was 210 ° C., 21 ° C., 23 ° C., 25 ° C. and 26 ° C., respectively, from the melting point of the polyester resin used.
° C, 27 ° C, low temperature.

【0033】実施例3−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み30μmでIVが0.85の二軸延
伸状態の結晶性ポリエステル樹脂(ポリエチレンテレフ
タレート/イソフタレート系)を熱被覆し、ラミネート
板(成形前)のポリエステル樹脂の結晶化度が5%にな
るように230℃での保持時間を調整した後に、急冷し
た。この片面樹脂被覆すずめっき鋼板を用いたこと以外
は実施例1−1と同様にして、絞りしごき缶を得た。こ
の缶の缶胴について、IV及びパラメーターAとBを測
定し、缶側壁耐衝撃性試験及び輸送試験を行った。その
結果を表1に示す。
Example 3-1 A biaxially stretched crystalline polyester resin (polyethylene terephthalate) having a thickness of 30 μm and an IV of 0.85 was coated on one surface of a 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. / Isophthalate type), and after quenching after adjusting the holding time at 230 ° C. so that the crystallinity of the polyester resin of the laminate plate (before molding) was 5%. A drawn and ironed can was obtained in the same manner as in Example 1-1, except that this one-sided resin-coated tin-plated steel sheet was used. The IV and parameters A and B of the can body were measured, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the results.

【0034】比較例3−1、3−2 比較例3−1、3−2は、ラミネート板(成形前)のポ
リエステル樹脂の結晶化度がそれぞれ15%、24%で
あること以外は実施例3−1と同様にして絞りしごき缶
を作製し、実施例3−1と同様にしてIV及びパラメー
ターA、Bを測定し、缶側壁耐衝撃性試験及び輸送試験
を行った。樹脂の被覆後の結晶化度と試験結果を表1に
示す。
Comparative Examples 3-1 and 3-2 Comparative examples 3-1 and 3-2 were the same as the examples except that the crystallinity of the polyester resin of the laminated plate (before molding) was 15% and 24%, respectively. A drawn and ironed can was prepared in the same manner as in 3-1. IV and parameters A and B were measured in the same manner as in Example 3-1. A can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after the resin coating and the test results.

【0035】実施例4−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み30μmでIVが0.85の非晶状
態の結晶性ポリエステル樹脂(ポリエチレンテレフタレ
ート/イソフタレート系)を熱被覆し、ラミネート板
(成形前)のポリエステル樹脂の結晶化度が10%にな
るように210℃での保持時間を調整した後に、急冷し
た。この片面樹脂被覆すずめっき鋼板を用いたこと以外
は実施例1−1と同様にして、絞りしごき缶を得た。こ
の缶の缶胴について、IV及びパラメーターAとBを測
定し、缶側壁耐衝撃性試験及び輸送試験を行った。その
結果を表1に示す。
Example 4-1 A crystalline polyester resin (polyethylene terephthalate / polyethylene terephthalate / polyester) having a thickness of 30 μm and an IV of 0.85 was coated on one side of a 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. (Isophthalate-based), and after the holding time at 210 ° C. was adjusted so that the crystallinity of the polyester resin of the laminated plate (before molding) was 10%, the mixture was quenched. A drawn and ironed can was obtained in the same manner as in Example 1-1, except that this one-sided resin-coated tin-plated steel sheet was used. The IV and parameters A and B of the can body were measured, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the results.

【0036】比較例4−1 比較例4−1は、ラミネート板(成形前)のポリエステ
ル樹脂の結晶化度が18%であること以外は実施例4−
1と同様にして絞りしごき缶を作製し、実施例4−1と
同様にしてIV及びパラメーターA、Bを測定し、缶側
壁耐衝撃性試験及び輸送試験を行った。試験結果を表1
に示す。
Comparative Example 4-1 Comparative Example 4-1 is similar to Example 4 except that the crystallinity of the polyester resin of the laminate (before molding) is 18%.
In the same manner as in Example 1, a drawn ironing can was prepared, and the IV and parameters A and B were measured in the same manner as in Example 4-1 to perform a can side wall impact resistance test and a transport test. Table 1 shows the test results.
Shown in

【0037】実施例5−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み17μmでIVが0.85の非晶状
態の結晶性ポリエステル樹脂(ポリエチレンテレフタレ
ート/イソフタレート系)を熱被覆し、急冷した。この
樹脂の被覆後の結晶化度を表1に示す。この片面樹脂被
覆すずめっき鋼板を用い、樹脂被覆面が缶内面になるよ
うにして、直径142mmにブランキングし、1st絞
り比1.6でカップを成形後、再絞り(2nd絞り比
1.3)としごき成形(3工程、総リダクション40
%)を行い、内径65.8mmの絞りしごきカップを成
形した。この絞りしごきカップを、缶高さが60mmに
なるようにトリムし、洗浄乾燥した後、加熱温度210
℃(ポリエステル樹脂の融点より21℃低い温度)2分
で処理した。その後、外面印刷と焼付を行い、缶上部を
63.5mmに縮径するとともにフランジを成形し、絞
りしごき缶を得た。この缶の缶胴について、IV及びパ
ラメーターAとBを測定し、缶側壁耐衝撃性試験及び輸
送試験を行った。その結果を表1に示す。
Example 5-1 A crystalline polyester resin (polyethylene terephthalate / polyethylene terephthalate / polyethylene terephthalate) having a thickness of 17 μm and an IV of 0.85 was coated on one side of a 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. (Isophthalate-based) and quenched. Table 1 shows the crystallinity of the resin after coating. Using this one-sided resin-coated tin-plated steel sheet, the resin-coated surface is blanked to a diameter of 142 mm so that the resin-coated surface is the inner surface of the can, a cup is formed at the first drawing ratio of 1.6, and then redrawn (2nd drawing ratio of 1.3). ) And ironing (3 steps, total reduction 40)
%) To form a drawn and ironed cup having an inner diameter of 65.8 mm. The squeezed ironing cup was trimmed so that the can height became 60 mm, washed and dried, and then heated at a heating temperature of 210 mm.
C. (a temperature 21 ° C. lower than the melting point of the polyester resin) for 2 minutes. Thereafter, outer surface printing and printing were performed, the upper part of the can was reduced in diameter to 63.5 mm, a flange was formed, and a drawn ironed can was obtained. The IV and parameters A and B of the can body were measured, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the results.

【0038】実施例5−2、比較例5−1、5−2 実施例5−2は、熱被覆した樹脂の厚みが13μmで、
しごき加工が2工程で総リダクションが20%、トリム
高さが50mmであること以外は実施例5−1と同様に
して絞りしごき缶を作製し、,実施例5−1と同様にし
てIV及びパラメーターA、Bを測定し、缶側壁耐衝撃
性試験及び輸送試験を行った。樹脂の被覆後の結晶化度
と試験結果を表1に示す。比較例5−1は、熱被覆した
樹脂の厚みが11μmで、しごき加工が1工程で総しご
き率が10%、トリム高さが40mmであること以外は
実施例5−1と同様にして絞りしごき缶を作製し、実施
例5−1と同様にしてIV及びパラメーターA、Bを測
定し、缶側壁耐衝撃性試験及び輸送試験を行った。樹脂
の被覆後の結晶化度と試験結果を表1に示す。比較例5
−2は、熱被覆した樹脂の厚みが10μmで、しごき加
工がなく、絞りのみの加工で、トリム高さが40mmで
あること以外は実施例5−1と同様にして絞り缶を作製
し、実施例5−1と同様にしてIV及びパラメーター
A、Bを測定し、缶側壁耐衝撃性試験及び輸送試験を行
った。樹脂の被覆後の結晶化度と試験結果を表1に示
す。
Example 5-2, Comparative Examples 5-1 and 5-2 In Example 5-2, the thickness of the heat-coated resin was 13 μm.
A drawn ironing can was produced in the same manner as in Example 5-1 except that ironing was performed in two steps, the total reduction was 20%, and the trim height was 50 mm. Parameters A and B were measured, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after the resin coating and the test results. Comparative Example 5-1 was drawn in the same manner as in Example 5-1 except that the thickness of the heat-coated resin was 11 μm, the ironing was performed in one step, the total ironing rate was 10%, and the trim height was 40 mm. An ironed can was prepared, IV and parameters A and B were measured in the same manner as in Example 5-1, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after the resin coating and the test results. Comparative Example 5
-2, the thickness of the heat-coated resin is 10 μm, there is no ironing process, and only drawing is performed, and a drawn can is produced in the same manner as in Example 5-1 except that the trim height is 40 mm. IV and parameters A and B were measured in the same manner as in Example 5-1 to perform a can side wall impact resistance test and a transport test. Table 1 shows the crystallinity after the resin coating and the test results.

【0039】実施例6−1、6−2、比較例6−1〜6
−3 実施例6−1、6−2、比較例6−1、6−2、6−3
は、洗浄乾燥後の加熱処理がそれぞれ210℃(ポリエ
ステル樹脂の融点より21℃低い温度)0.5分、18
0℃(ポリエステル樹脂の融点より51℃低い温度)2
分、100℃(ポリエステル樹脂の融点より131℃低
い温度)2分、無し、250℃(ポリエステル樹脂の融
点より19℃高い温度)2分であること以外は実施例1
−1と同様にして絞りしごき缶を作製し、実施例1−1
と同様にしてIV及びパラメーターA、Bを測定し、缶
側壁耐衝撃性試験及び輸送試験を行った。樹脂の被覆後
の結晶化度と試験結果を表1に示す。
Examples 6-1 and 6-2, Comparative Examples 6-1 to 6
-3 Examples 6-1 and 6-2, Comparative Examples 6-1 and 6-2 and 6-3
The heat treatment after washing and drying was performed at 210 ° C. (a temperature 21 ° C. lower than the melting point of the polyester resin) for 0.5 minute and 18 minutes, respectively.
0 ° C (Temperature 51 ° C lower than the melting point of polyester resin) 2
Example 1 except that the temperature was 100 ° C. (temperature 131 ° C. lower than the melting point of the polyester resin) for 2 minutes, and none was 250 ° C. (temperature 19 ° C. higher than the melting point of the polyester resin) for 2 minutes.
In the same manner as in Example 1, a drawn and ironed can was prepared.
IV and parameters A and B were measured in the same manner as described above, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after the resin coating and the test results.

【0040】実施例7−1 0.245mm厚み、テンパー4、TFSの片面に厚み
14μmでIVが0.85の非晶状態の結晶性ポリエス
テル樹脂(ポリエチレンテレフタレート/イソフタレー
ト系)、他面に印刷を行った厚み14μmの非晶状態の
結晶性ポリエステル樹脂(ポリエチレンテレフタレート
/イソフタレート系)を熱被覆し、急冷した。この缶内
面側樹脂の被覆後の結晶化度を表1に示す。この両面樹
脂被覆TFSを用い、印刷面が外面になるようにして、
直径142mmにブランキングし、1st引伸し絞り
(絞り比1.6)でカップを成形後、2nd引伸し絞り
(絞り比1.3、総リダクション30%)を行い、内径
65.8mmの引伸し絞りカップを成形した。この引伸
し絞りカップを、缶高さが50mmになるようにトリム
した。このカップを加熱温度210℃(ポリエステル樹
脂の融点より21℃低い温度)2分で処理した。その
後、缶上部を内径63.5mmに縮径するとともにフラ
ンジを成形し、引伸し絞り缶を得た。この缶の缶胴内面
樹脂について、IV及びパラメーターAとBを測定し、
缶側壁耐衝撃性試験及び輸送試験を行った。その結果を
表1に示す。
Example 7-1 Amorphous crystalline polyester resin (polyethylene terephthalate / isophthalate) having a thickness of 14 μm and an IV of 0.85 on one surface of 0.245 mm thick, temper 4 and TFS, and printing on the other surface The resulting mixture was heat-coated with a 14 μm-thick amorphous crystalline polyester resin (polyethylene terephthalate / isophthalate system) and quenched. Table 1 shows the crystallinity of the can inner surface side resin after coating. Using this double-sided resin-coated TFS, the printing surface is the outer surface,
After blanking to a diameter of 142 mm, forming a cup by first stretching and drawing (drawing ratio 1.6), performing 2nd drawing and drawing (drawing ratio 1.3, total reduction 30%), and drawing a drawn cup with an inner diameter of 65.8 mm Molded. The drawn draw cup was trimmed so that the can height became 50 mm. This cup was treated at a heating temperature of 210 ° C. (a temperature 21 ° C. lower than the melting point of the polyester resin) for 2 minutes. Thereafter, the upper portion of the can was reduced in diameter to 63.5 mm, and a flange was formed. IV and parameters A and B were measured for the resin on the inner surface of the can body of this can,
A can side wall impact resistance test and a transport test were performed. Table 1 shows the results.

【0041】実施例7−2 実施例7−2は、熱被覆した樹脂の厚みが13μmであ
り、総リダクションが20%になるように引伸し絞り成
形し、トリム高さが50mmであること以外は実施例7
−1と同様にして引伸し絞り缶を作製し、実施例7−1
と同様にしてIV及びパラメーターA、Bを測定し、缶
側壁耐衝撃性試験及び輸送試験を行った。缶内面側樹脂
の被覆後の結晶化度と試験結果を表1に示す。
Example 7-2 Example 7-2 was performed except that the thickness of the heat-coated resin was 13 μm, the film was stretched and drawn so that the total reduction was 20%, and the trim height was 50 mm. Example 7
In the same manner as in Example 1, a drawn drawn can was prepared.
IV and parameters A and B were measured in the same manner as described above, and a can side wall impact resistance test and a transport test were performed. Table 1 shows the crystallinity after coating the resin on the inner surface of the can and the test results.

【0042】[0042]

【表1】 [Table 1]

【0043】(註) 表1中の耐衝撃性は前述の評価方
法に従い、○は衝撃変形部の通電が0.1mA以下、×
は0.1mA以上であることを示す。0.1mA以上の
缶は実用上問題がある。表中a〜は次の事項を意昧す
る記号である。 a イソフタル酸系共重合PET b 熱硬化性樹脂 c 樹脂結晶性 d 缶胴樹脂固有粘度(IV) e 評価パラメータ(*:ピークなし) f ラミネート後(加工前)の結晶化度(%) g 配向結晶 h 熱結晶 j 絞りしごき k 引伸絞り m リダクション(%) n 缶壁耐衝撃性 o 成形欠陥大 p 缶内面の腐食状態 q 異常なし r 穿孔 s 点状腐食 t 孔食 u 鉄溶出量(ppm) v イソフタル酸系共重合PBT
(Note) The impact resistance in Table 1 was determined in accordance with the above evaluation method.
Indicates that it is 0.1 mA or more. A can of 0.1 mA or more has a practical problem. In the table, a to v are symbols meaning the following items. a Isophthalic acid-based copolymer PET b Thermosetting resin c Resin crystallinity d Can intrinsic viscosity (IV) e Evaluation parameter (*: no peak) f Crystallinity (%) after lamination (before processing) g Orientation Crystal h Thermal crystal j Drawing ironing k Drawing drawing m Reduction (%) n Can wall impact resistance o Large molding defect p Corrosion state of can inner surface q No abnormality r Drilling s Pointy corrosion t Pitting corrosion u Iron elution amount (ppm) v Isophthalic acid copolymerized PBT

【0044】(評価) 実施例1−1、1−2、2−1〜2−3、3−1、4−
1、5−1、5−2、6−1、6−2、7−1、7−2
から、缶胴内面のポリエステル樹脂が結晶性ポリエステ
ルであり、パラメーターAが0.40以上、パラメータ
ーBが0.00以上、IVが0.60以上では缶側壁耐
衝撃性が良好であることがわかる。比較例1−1、1−
2から、缶胴内面の被覆樹脂がポリエステル樹脂であっ
ても非結晶性である場合は、缶壁部のポリエステル樹脂
は配向結晶にならず(パラメーターA、パラメーターB
が測定不可能)、IVが0.60以上であっても耐衝撃
性が劣ることが分かる。また、缶胴内面の被覆樹脂が熱
硬化性樹脂では絞りしごき成形時に樹脂欠陥が発生し、
缶として不適であることが分かる。比較例3−1、3−
2、4−1、5−1、5−2、6−3から、ラミネート
樹脂が結晶性ポリエステル樹脂であり、IVが0.60
以上であっても、パラメーターAが0.40を下回り、
パラメーターBが0.00を下回ると耐衝撃性が劣るこ
とが分かる。比較例2−1、2−2から、ラミネート樹
脂が結晶性ポリエステル樹脂であり、パラメーターAが
0.40以上、パラメーターBが0.00以上であって
も、IVが0.60を下回ると耐衝撃性が劣ることが分
かる。比較例6−1、6−2から、ラミネート樹脂が結
晶性ポリエステル樹脂であり、パラメーターが0.4
0以上で、IVが0.60以上であっても、パラメータ
ーBが0.00を下回ると耐衝撃性が劣ることが分か
る。
(Evaluation) Examples 1-1, 1-2, 2-1 to 2-3, 3-1 and 4-
1,5-1,5-2,6-1,6-2,7-1,7-2
It can be seen that the polyester resin on the inner surface of the can body is a crystalline polyester, and that the parameter A is 0.40 or more, the parameter B is 0.00 or more, and the IV is 0.60 or more, the can side wall impact resistance is good. . Comparative Examples 1-1 and 1-
According to 2, when the coating resin on the inner surface of the can body is non-crystalline even if the coating resin is a polyester resin, the polyester resin on the can wall does not become oriented crystal (parameters A and B).
It can be seen that even if the IV is 0.60 or more, the impact resistance is inferior. In addition, when the coating resin on the inner surface of the can body is a thermosetting resin, resin defects occur during drawing and ironing,
It turns out that it is unsuitable as a can. Comparative Examples 3-1 and 3-
From 2,4-1,5-1,5-2 and 6-3, the laminate resin is a crystalline polyester resin and the IV is 0.60
Even above, the parameter A falls below 0.40,
When the parameter B is less than 0.00, the impact resistance is poor. From Comparative Examples 2-1 and 2-2, even when the laminating resin is a crystalline polyester resin and the parameter A is 0.40 or more and the parameter B is 0.00 or more, the IV is less than 0.60 and the resistance is low. It can be seen that the impact properties are poor. From Comparative Examples 6-1 and 6-2, the laminate resin was a crystalline polyester resin and the parameter A was 0.4.
Even if the IV is 0.60 or more, the impact resistance is poor when the parameter B is less than 0.00.

【0045】[0045]

【発明の効果】本発明は、缶胴内面側になる金属面上に
主成分が、特定の固有粘度(IV)と、特定の軸配向度
と、特定の面配向度のポリエステル樹脂被膜を設けるこ
とにより金属缶の耐衝撃性が著しく向上する効果を奏す
る。
According to the present invention, a polyester resin film having a principal component having a specific intrinsic viscosity (IV), a specific degree of axial orientation, and a specific degree of plane orientation is provided on a metal surface on the inner side of the can body. This has the effect of significantly improving the impact resistance of the metal can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】X線回折強度図である。FIG. 1 is an X-ray diffraction intensity diagram.

【図2】X線回折強度図である。FIG. 2 is an X-ray diffraction intensity diagram.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B65D 8/04 B65D 8/04 G Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication // B65D 8/04 B65D 8/04 G

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予め少なくとも缶胴内面側になる金属面
上に有機樹脂被膜を被覆した後、絞りしごき加工又は、
引伸し絞り加工してなる2ピース金属缶において、該有
機樹脂被膜は主成分が配向結晶を含むポリエステル樹脂
であり、該ポリエステル樹脂層の固有粘度(IV)が
0.60以上であり、該配向結晶の缶高さ方向への軸配
向度を表すパラメーターAが、 A≧0.40 であり、缶高さ方向ヘ軸配向している結晶の面配向度を
表すパラメーターBが、 B≧0.00 であることを特徴とする缶胴部の耐衝撃性が優れた2ピ
ース金属缶。
1. An organic resin film is coated on at least a metal surface on the inner side of a can body before drawing and ironing, or
In a two-piece metal can formed by drawing and drawing, the organic resin film is mainly composed of a polyester resin containing oriented crystals, and the intrinsic viscosity (IV) of the polyester resin layer is 0.60 or more, and The parameter A indicating the degree of axial orientation in the can height direction is A ≧ 0.40, and the parameter B indicating the degree of plane orientation of the crystal that is axially oriented in the direction of the can height is B ≧ 0.00 A two-piece metal can having excellent impact resistance of a can body.
【請求項2】 パラメーターAがポリエステル樹脂被膜
中の配向結晶のうちC軸が缶高さ方向に軸配向している
結晶の存在度合を示すパラメーターである、請求項1に
記載された耐衝撃性が優れた2ピース金属缶。
2. The impact resistance according to claim 1, wherein the parameter A is a parameter indicating a degree of existence of crystals in which the C axis is axially oriented in the height direction of the can among the oriented crystals in the polyester resin film. Excellent 2-piece metal can.
【請求項3】 パラメーターBがポリエステル樹脂被膜
中のC軸が缶高さ方向に軸配向している配向結晶の(1
00)面が樹脂被膜に平行に存在する度合を示すパラメ
ーターである、請求項1に記載された耐衝撃性が優れた
2ピース金属缶。
3. The parameter B is (1) of an oriented crystal in which the C axis in the polyester resin film is axially oriented in the height direction of the can.
2. The two-piece metal can with excellent impact resistance according to claim 1, wherein the parameter is a parameter indicating a degree of the (00) plane existing parallel to the resin film.
JP5354712A 1993-12-22 1993-12-22 2-piece can with excellent impact resistance Expired - Fee Related JP2707965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5354712A JP2707965B2 (en) 1993-12-22 1993-12-22 2-piece can with excellent impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5354712A JP2707965B2 (en) 1993-12-22 1993-12-22 2-piece can with excellent impact resistance

Publications (2)

Publication Number Publication Date
JPH07178485A JPH07178485A (en) 1995-07-18
JP2707965B2 true JP2707965B2 (en) 1998-02-04

Family

ID=18439403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5354712A Expired - Fee Related JP2707965B2 (en) 1993-12-22 1993-12-22 2-piece can with excellent impact resistance

Country Status (1)

Country Link
JP (1) JP2707965B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3575117B2 (en) * 1995-06-06 2004-10-13 東洋製罐株式会社 Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance and method for producing the same
US6136395A (en) * 1995-06-07 2000-10-24 Toyo Seikan Kaisha Ltd. Can body having improved impact
JP4773006B2 (en) * 2001-09-14 2011-09-14 大和製罐株式会社 Manufacturing method of aluminum can
CN100545045C (en) * 2003-06-23 2009-09-30 东洋制罐株式会社 The resin-coated aluminum seamless tank body of breakage resistant luer and anti-flange crack during transportation
JP4622736B2 (en) * 2005-08-12 2011-02-02 Jfeスチール株式会社 Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans
JP4961696B2 (en) * 2005-08-12 2012-06-27 Jfeスチール株式会社 Two-piece can manufacturing method and two-piece laminated can

Also Published As

Publication number Publication date
JPH07178485A (en) 1995-07-18

Similar Documents

Publication Publication Date Title
US4735835A (en) Seam covered welded can
KR100254294B1 (en) Method of producing seamless cans
JPH0755552B2 (en) Deep drawing can manufacturing method
US5753328A (en) Polyester-metal laminated sheet and seamless cans using the same
JP2677172B2 (en) Laminated squeeze container with excellent aroma retention and impact resistance
JP2970459B2 (en) Seamless cans
JP2707965B2 (en) 2-piece can with excellent impact resistance
JP3189551B2 (en) Polyester film for metal plate lamination
JP3951203B2 (en) Polyester film for metal plate lamination molding
AU2019337040A1 (en) Polyester film and method for producing same
US6136395A (en) Can body having improved impact
JP3876459B2 (en) Polyester film, laminated metal plate, method for producing the same, and metal container
EP0747135B1 (en) Drawn and wall-ironed can body having excellent corrosion resistance and flavor retention and production method thereof
JP3826450B2 (en) Method for producing film-coated metal plate for can manufacturing process and method for producing printing can
JP4562212B2 (en) Biaxially stretched polyester film for container molding
JP3489167B2 (en) Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance, and method for producing the same
JPH0890717A (en) Polyester resin laminated metal panel and production thereof
JP2918775B2 (en) Polyester resin laminated metal plate
EP0748856B1 (en) A can body having improved impact resistance
JPH11151752A (en) Polyester film for metal panel laminating molding processing
JP4338108B2 (en) Polyester film for metal plate lamination molding
JPH06102464B2 (en) Squeezing or squeezing from laminated material-ironing can and its manufacturing method
JPH09300567A (en) Film for easy open end can and laminate
JP2000186161A (en) Polyester film for laminating use
JP4211954B2 (en) Polyester film for metal plate lamination molding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees