JP4622736B2 - Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans - Google Patents
Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans Download PDFInfo
- Publication number
- JP4622736B2 JP4622736B2 JP2005234553A JP2005234553A JP4622736B2 JP 4622736 B2 JP4622736 B2 JP 4622736B2 JP 2005234553 A JP2005234553 A JP 2005234553A JP 2005234553 A JP2005234553 A JP 2005234553A JP 4622736 B2 JP4622736 B2 JP 4622736B2
- Authority
- JP
- Japan
- Prior art keywords
- piece
- molded body
- radius
- final molded
- laminated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/30—Iron, e.g. steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
- B32B2439/66—Cans, tins
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Laminated Bodies (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
Description
本発明は、例えばエアゾール缶のような加工度の高い2ピース缶の製造に好適なラミネート鋼板、2ピース缶の製造方法および加工度の高い2ピースラミネート缶に関するものである。 The present invention relates to a laminated steel plate suitable for manufacturing a two-piece can having a high degree of processing such as an aerosol can, for example, and a two-piece laminated can having a high degree of processing.
エアゾール用金属容器には、大別して2ピース缶と3ピース缶が存在する。2ピース缶は、シーム部(溶接部)が存在しないことで外観が美麗である反面、一般的に加工程度が高い。3ピース缶はシーム部が存在することで、2ピース缶に比較すると、外観性が劣るが、一般的に加工程度が低い。この為、市場においては小容量で高級品には2ピース缶が多く使用され、大容量で低価格品には3ピース缶が多く使用されている。 There are roughly two-piece cans and three-piece cans for aerosol metal containers. The two-piece can has a beautiful appearance due to the absence of a seam portion (welded portion), but generally has a high degree of processing. The three-piece can has a seam portion, and its appearance is inferior to that of the two-piece can. However, the degree of processing is generally low. For this reason, in the market, two-piece cans are often used for small-scale and high-end products, and three-piece cans are often used for large-capacity and low-priced products.
エアゾール2ピース缶における金属素材は、一般的に、高価で板厚の厚いアルミニウムなどが用いられており、安価で板厚の薄いぶりきやティンフリースチールなどの鋼板素材はほとんど用いられていない。その理由は、エアゾール2ピース缶は加工度が高いため、絞り加工やDI加工の適用が難しく、アルミニウムでは軟質金属材料に対して適用可能なインパクト成形を適用して製造しているからである。このような状況下、安価で、薄くても強度の高いぶりきやティンフリースチールなどの鋼板素材を用いることができれば、産業的な意義は非常に大きい。 The metal material in the aerosol two-piece can is generally made of expensive and thick aluminum or the like, and inexpensive and thin steel plate materials such as tinplate and tin-free steel are hardly used. The reason is that the aerosol two-piece can has a high degree of processing, so that it is difficult to apply drawing or DI processing, and aluminum is manufactured by applying impact molding applicable to a soft metal material. Under such circumstances, industrial significance is very large if steel sheets such as tinplate and tin-free steel that are inexpensive and thin but have high strength can be used.
従来、ラミネート鋼板の絞り加工及びDI加工法は種々提案されているが、エアゾール2ピース缶のように、絞り加工比が高く、缶高さ方向の延伸度が大きな缶体の製造法は提案されていない。 Conventionally, various methods of drawing and DI processing of laminated steel sheets have been proposed, but a method of manufacturing a can body having a high drawing ratio and a high degree of drawing in the can height direction, such as an aerosol two-piece can, has been proposed. Not.
例えば、特許文献1〜3は、樹脂被覆金属板の絞り加工及び絞りしごき加工の加工方法を開示したものであるが、特許文献1〜3に記載の加工度(特許文献1〜3では絞り比)は本発明で規定するものよりも低い範囲にある。特許文献1〜3は飲料缶、食缶などをターゲットとしており、飲料缶、食缶は、本発明で規定する加工度の範囲より低い加工度の缶体であるためである。 For example, Patent Documents 1 to 3 disclose a processing method for drawing and drawing ironing of a resin-coated metal plate, but the degree of processing described in Patent Documents 1 to 3 (the drawing ratio in Patent Documents 1 to 3). ) Is in a range lower than that defined in the present invention. This is because Patent Documents 1 to 3 target beverage cans, food cans, and the like, and beverage cans and food cans are can bodies having a processing degree lower than the range of processing degrees defined in the present invention.
特許文献2、3においては、樹脂層の剥離防止や加工後のバリア性を意図して、加工中、及びあるいは加工の途中段階、あるいは最終段階で熱処理を施すことが記載されており、特許文献2では配向性熱可塑性樹脂が用いられ、特許文献3では飽和ポリエステルとアイオノマーのコンパウンド材などが用いられている。
特許文献4、5は、主として樹脂の融点以上で熱処理を施すことによって内部応力を緩和するものであり、缶成形後の段階で適用することが記載されている。また、その缶体の加工度は、明細書本文や実施例の記載を見る限り低い。
また、特許文献2は、内部応力の緩和と配向結晶化促進の為の熱処理の提案であり、現在、飲料缶などで一般的に用いられる手法となっている。特許文献中に明確な記載はないが、配向結晶化は、融点以下の温度で促進する為、熱処理温度は融点以下だと推定される。また、本文、実施例の記載を見る限り、本発明で規定する加工度に比較するとそれより低い加工度のものを対象としていることがわかる。
従来技術においては、ラミネート鋼板を用いてエアゾール2ピース缶のように高加工度の成形を行う缶体の製造法は提案されていなかった。そこで、発明者らは、ラミネート鋼板を用いて、絞りしごき加工によって有底筒状に成形後その開口部近傍部分を縮径加工する加工度の高い2ピース缶を製造したところ、高加工特有の問題が発生、具体的には、樹脂層の剥離と破断の問題があった。発明者らの検討の結果、定性的には熱処理が有効であったが、それだけでは十分ではなく、高加工度領域において樹脂層の剥離が避けられなかった。したがって、先行技術を単純に適用しても樹脂層剥離の問題は解決できなかった。また、熱処理工程以降の工程で樹脂層の加工性が劣化する問題もあった。 In the prior art, there has been no proposal for a method of manufacturing a can body that uses a laminated steel plate to form a high-working degree like an aerosol two-piece can. Therefore, the inventors manufactured a two-piece can with a high degree of processing that uses a laminated steel plate to form a bottomed cylindrical shape by drawing ironing and then reduces the diameter of the vicinity of the opening. A problem occurred, specifically, there was a problem of peeling and breaking of the resin layer. As a result of investigations by the inventors, heat treatment was qualitatively effective, but that was not sufficient, and peeling of the resin layer was inevitable in a high workability region. Therefore, even if the prior art is simply applied, the problem of the resin layer peeling cannot be solved. In addition, there is a problem that the workability of the resin layer deteriorates in the steps after the heat treatment step.
本発明の課題は、上記問題点を解決し、エアゾール2ピース缶のような高加工度の缶体を製造してもラミネート樹脂層の剥離と破断を防止できる2ピース缶用ラミネート鋼板および2ピース缶の製造方法を提供することである。また本発明の課題は、ラミネート鋼板を用いたエアゾール2ピース缶の如き高加工度の缶体を提供することである。
The object of the present invention is to solve the above-mentioned problems and to provide a two-piece laminated steel sheet and two-piece can that can prevent the peeling and breakage of the laminated resin layer even if a highly processed can body such as an aerosol two-piece can is manufactured. It is to provide a method for manufacturing a can. Moreover, the subject of this invention is providing the can body of the high workability like the
高加工度の加工において樹脂層に求められる重要な特性は、変形のし易さであると考える。発明者らの検討によると、ポリエチレンテレフタレート共重合系、あるいはポリブチレンテレフタレート共重合系が有望であることがわかった。そして、この樹脂を被覆したラミネート鋼板を多段成形して2ピース缶を製造する際に、成形の途中段階で特定の条件で熱処理することで、樹脂層の剥離と破断を防止でき、高加工度の2ピース缶を製造できることがわかった。本発明はこの知見に基づく。 It is considered that an important characteristic required for the resin layer in processing at a high degree of processing is ease of deformation. According to the study by the inventors, it has been found that a polyethylene terephthalate copolymer system or a polybutylene terephthalate copolymer system is promising. And when producing a two-piece can by multi-stage forming the laminated steel sheet coated with this resin, it is possible to prevent exfoliation and breakage of the resin layer by heat-treating under specific conditions in the middle of the forming process. It was found that a two-piece can was manufactured. The present invention is based on this finding.
上記課題を解決する本発明の手段は次のとおりである。 Means of the present invention for solving the above-mentioned problems are as follows.
(1)最終成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の関係を満足する2ピース缶の製造に使用するラミネート鋼板であって、鋼板の少なくとも片面に、ジカルボン酸成分とジオール成分の縮重合で得られ、ジカルボン酸成分はテレフタル酸を主成分とし、その他の共重合成分に、イソフタル酸成分を含み、あるいは含まず、ジオール成分として、エチレングリコール及び/または、ブチレングリコールを主成分として、その他の共重合成分に、ジエチレングリコール、シクロヘキサンジオ−ルを含み、あるいは含まない樹脂であって、共重合成分がモル比で8mol%未満であり、面配向係数が0.06以下のポリエステル樹脂被覆層を有することを特徴とする2ピース缶用ラミネート鋼板(第1発明)。 (1) The height h, maximum radius r, and minimum radius d (including the case where r and d are the same) of the final molded body are compared with the radius R of the circular plate before molding in which the weight is equivalent to the final molded body. A laminated steel plate used for manufacturing a two-piece can satisfying the relationship of 0.1 ≦ d / R ≦ 0.25 and 1.5 ≦ h / (R−r) ≦ 4, Obtained by polycondensation of a dicarboxylic acid component and a diol component on one side. The dicarboxylic acid component is mainly composed of terephthalic acid, and the other copolymer component includes or does not include an isophthalic acid component. And / or a resin comprising butylene glycol as a main component and other copolymer components containing or not containing diethylene glycol and cyclohexanediol, wherein the copolymer components are less than 8 mol% in molar ratio. , Two-piece can for laminated steel sheet, wherein a plane orientation coefficient has a 0.06 or less of the polyester resin coating layer (first invention).
(2)ラミネート鋼板の円状板を多段成形して、最終成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の関係を満足する最終成形体を製造する際に、ラミネート鋼板として請求項1に記載のラミネート鋼板を使用することを特徴とする2ピース缶の製造方法(第2発明)。 (2) The circular plate of the laminated steel sheet is formed in multiple stages, and the height h, the maximum radius r, and the minimum radius d (including the case where r and d are the same) of the final molded body are equivalent to the weight of the final molded body. To produce a final molded body satisfying the relationship of 0.1 ≦ d / R ≦ 0.25 and 1.5 ≦ h / (R−r) ≦ 4 with respect to the radius R of the circular plate before molding. When manufacturing, the laminated steel plate of Claim 1 is used as a laminated steel plate, The manufacturing method of 2 piece cans (2nd invention) characterized by the above-mentioned.
(3) (2)に記載の最終成形体を製造する際に、成形の中間段階において、成形体をその温度が150℃以上、ポリエステル樹脂の融点以下となるように加熱する熱処理を1回以上行うことを特徴とする2ピース缶の製造方法(第3発明)。 (3) When producing the final molded article according to (2), at a middle stage of molding, the molded body is heated once or more so that the temperature is 150 ° C. or higher and the melting point of the polyester resin or lower. A method for producing a two-piece can (third invention).
(4)前記熱処理は、中間段階の成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体の開口部先端に対応する絞り加工前の円状板位置の半径Rに対して、0.2≦d/R≦0.5、かつ1.5≦h/(R−r)≦2.5の関係を満足する中間段階において行うことを特徴とする(3)に記載の2ピース缶の製造方法(第4発明)。 (4) In the heat treatment, the height h, the maximum radius r, and the minimum radius d (including the case where r and d are the same) of the intermediate molded body are before the drawing process corresponding to the tip of the opening of the final molded body. For the radius R of the circular plate position, performing in an intermediate stage satisfying the relationship of 0.2 ≦ d / R ≦ 0.5 and 1.5 ≦ h / (R−r) ≦ 2.5 A method for producing a two-piece can according to (3), which is characterized (fourth invention).
(5) (2)〜(4)のいずれかに記載の方法により製造した2ピースラミネート缶(第5発明)。 (5) A two-piece laminate can manufactured by the method according to any one of (2) to (4) (fifth invention).
本発明のラミネート鋼板を用いて2ピース缶を製造すると樹脂層の剥離と破断を防止して高加工度の2ピース缶を製造することができる。本発明のラミネート鋼板を多段成形して本発明で規定する高加工度の2ピース缶を製造する際に、成形の中間段階において、成形体をその温度が150℃以上、ポリエステル樹脂の融点以下となるように加熱する熱処理を1回以上行うことで樹脂層の剥離と破断を防止できる。本発明法で製造された2ピース缶は、高加工度が必要なエアゾール2ピース缶等の用途に使用することができる。 When a two-piece can is manufactured using the laminated steel sheet of the present invention, it is possible to manufacture a two-piece can with a high degree of processing by preventing the resin layer from peeling and breaking. When producing a two-piece can having a high workability as defined in the present invention by multi-stage forming the laminated steel sheet of the present invention, in the intermediate stage of molding, the molded body has a temperature of 150 ° C. or higher and a melting point of the polyester resin or lower. It is possible to prevent the resin layer from being peeled off and broken by performing the heat treatment to be heated once or more. The two-piece can manufactured by the method of the present invention can be used for applications such as an aerosol two-piece can that requires a high degree of processing.
本発明の実施の形態と限定理由について説明する。 The embodiment of the present invention and the reason for limitation will be described.
図1は本発明の缶体の製造工程の一実施形態を説明する図で、円形状ブランクを絞り加工(DI加工を含む)で有底筒状の成形体に成形し、さらに前記の成形体の開口部近傍を縮径加工して、開口部付近が縮径された2ピース缶を製造する工程順を示している。 FIG. 1 is a diagram for explaining an embodiment of a can manufacturing process according to the present invention, in which a circular blank is formed into a bottomed cylindrical formed body by drawing (including DI processing), and the formed body is further described. The order of steps for manufacturing a two-piece can in which the vicinity of the opening is reduced in diameter and the vicinity of the opening is reduced is shown.
図1において、1は加工前の円板状ブランク(ブランクシート)、2は基体部で成形体のストレート壁部分(工程Dでは縮径加工されていないストレート壁部分)、3はドーム形状部、4はネック形状部で縮径加工されたストレート壁部分、5はテーパ形状部で、縮径加工後のテーパ壁部分である。
In FIG. 1, 1 is a disc-shaped blank (blank sheet) before processing, 2 is a base portion and a straight wall portion of the molded body (a straight wall portion not subjected to diameter reduction processing in Step D), 3 is a dome-shaped portion,
まず円状板ブランク1に1段または複数段の絞り加工(DI加工を含む)を行い、所定の缶径(半径r;缶外面の半径)を有する有底筒状の成形体に成形する(工程A)。次に成形体の底部を上方に凸状形状に成形してドーム形状部3を形成するドーム加工を行い(工程B)、さらに成形体の開口側端部をトリムする(工程C)。次に成形体の開口側部分に1段または複数段の縮径加工を行い成形体の開口部側部分を所定の缶径(半径d;缶外面の半径)に縮径加工し、所望の最終成形体(2ピース缶)を得る。図中、R0は成形前円状板ブランク1の半径、h、r、dは、各々、成形途中の段階の成形体または最終成形体の高さ、最大半径、最小半径、Rは最終成形体と重量が等価となる成形前の円状板の半径R最終成形体と重量が等価となる成形前の円状板の半径である。本2ピース缶の製造工程では、工程Aは最大半径と最小半径が同一、すなわちr=dであり、工程Dはr>dである。 First, one or a plurality of stages of drawing (including DI processing) is performed on the circular plate blank 1 to form a bottomed cylindrical molded body having a predetermined can diameter (radius r; radius of can outer surface) ( Step A). Next, the bottom of the molded body is formed in a convex shape upward to perform dome processing for forming the dome-shaped portion 3 (step B), and the opening side end of the molded body is trimmed (step C). Next, one or more stages of diameter reduction processing are performed on the opening side portion of the molded body to reduce the diameter of the opening side portion of the molded body to a predetermined can diameter (radius d: radius of the can outer surface). A molded body (2-piece can) is obtained. In the figure, R0 is the radius of the circular blank 1 before molding, h, r, and d are the height of the molded body or final molded body in the middle of molding, the maximum radius, the minimum radius, and R is the final molded body, respectively. And the radius R of the circular plate before molding that is equivalent to the weight R and the radius of the circular plate before molding that is equivalent in weight to the final molded body. In the manufacturing process of the two-piece can, the maximum radius and the minimum radius of the process A are the same, that is, r = d, and the process D is r> d.
最終成形体と重量が等価となる成形前の円状板の半径Rは、最終成形体の測定重量に基づき決定される。すなわち、最終成形体の重量を測定し、この重量と同じにな重量になる成形前の円状板の寸法(半径)を求め、これを最終成形体と重量が等価となる成形前の円状板の半径Rとする。缶体の製造工程の途中で缶端部がトリムされるが、最終成形体と重量が等価となる成形前の円状板の半径Rは、トリムの影響が排除されているので、より適切な加工度の評価が可能になる。 The radius R of the circular plate before molding that is equivalent in weight to the final molded body is determined based on the measured weight of the final molded body. That is, the weight of the final molded body is measured, the dimension (radius) of the circular plate before molding that becomes the same weight as this weight is obtained, and this is the circular shape before molding in which the weight is equivalent to the final molded body. Let it be the radius R of the plate. The can end is trimmed during the manufacturing process of the can body, but the radius R of the circular plate before molding, which is equivalent in weight to the final molded body, is more appropriate because the influence of trim is eliminated. The degree of processing can be evaluated.
このように円状板ブランクに絞り加工(DI加工を含む)、縮径加工を適用して作成される2ピース缶においては、樹脂層は、高さ方向に伸ばされ周方向に縮むこととなる。加工度が高い場合、樹脂の変形量が大きくなり、樹脂層の破断につながる。本発明では加工度の指標として、縮み程度を表すパラメータd/Rだけでなく、さらに缶高さ方向の伸びと関連するパラメータh/(R−r)を用いる。これは、高加工度領域において、加工度を表現するのに、絞り比に加えて、伸び量も加味する必要があるからである。即ち、縮みの程度と伸びの程度で加工度を規定することで、樹脂層の変形度合いを定量化していることとなる。樹脂層は高さ方向に伸び、周方向に縮むことで、剥離しやすくなるので、縮みの程度に加えて、高さ方向の伸び量も重要な因子となる。 Thus, in a two-piece can created by applying drawing (including DI processing) and diameter reduction processing to a circular plate blank, the resin layer is stretched in the height direction and contracted in the circumferential direction. . When the degree of processing is high, the amount of deformation of the resin increases, leading to the breakage of the resin layer. In the present invention, not only the parameter d / R indicating the degree of shrinkage but also the parameter h / (R−r) related to the elongation in the can height direction is used as an index of the degree of processing. This is because, in the high workability region, it is necessary to consider the elongation amount in addition to the drawing ratio in order to express the workability. That is, by defining the degree of processing by the degree of shrinkage and the degree of elongation, the degree of deformation of the resin layer is quantified. Since the resin layer extends in the height direction and shrinks in the circumferential direction, it becomes easy to peel off. In addition to the degree of shrinkage, the amount of elongation in the height direction is an important factor.
本発明では、最終的に製造された缶体(最終成形体)の加工度について、最終成形体の高さh、最大半径r、最小半径dを、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の缶径を満足する範囲に規定する。 In the present invention, regarding the degree of processing of the finally manufactured can body (final molded body), the height h, the maximum radius r, and the minimum radius d of the final molded body are set so that the weight is equivalent to that of the final molded body. Is defined in a range satisfying the can diameter of 0.1 ≦ d / R ≦ 0.25 and 1.5 ≦ h / (R−r) ≦ 4.
前述したように、本発明の目的は、ラミネート鋼板を用いて、従来技術では困難であった高加工度の缶体を製造できるようにすることである。従来技術では、ラミネート鋼板を用いて、縮みの程度を規定するパラメータd/Rが0.25以下を満足し、かつ伸びの程度を規定するパラメータh/(R−r)が1.5以上を同時に満足する高加工度の缶体を製造することが困難であった。そのため、本発明では、製造する缶体の加工度d/Rを0.25以下、かつh/(R−r)を1.5以上に規定した。 As described above, an object of the present invention is to make it possible to manufacture a can body having a high workability, which has been difficult with the prior art, by using a laminated steel plate. In the prior art, using a laminated steel sheet, the parameter d / R that defines the degree of shrinkage satisfies 0.25 or less, and the parameter h / (R−r) that defines the degree of elongation is 1.5 or more. At the same time, it was difficult to produce a can with a high degree of processing that was satisfactory. Therefore, in the present invention, the working degree d / R of the can body to be manufactured is regulated to 0.25 or less, and h / (R−r) is regulated to 1.5 or more.
縮みの程度を規定するパラメータd/Rが0.1以下になり、または伸びの程度を規定するパラメータh/(R−r)が4を超える高い加工度であると、成形が可能であってもいたずらに成形段数が増加したり、または加工硬化に伴い板の伸び限界に達し、板破断する問題が生じたりするためである。そのため、本発明では、製造する缶体の加工度について、0.1≦d/R、かつh/(R−r)≦4と規定した。 Molding is possible when the parameter d / R that defines the degree of shrinkage is 0.1 or less, or the parameter h / (R−r) that defines the degree of elongation is a high degree of processing exceeding 4. This is because the number of forming steps increases unnecessarily, or the elongation limit of the plate is reached with work hardening, and the plate breaks. Therefore, in the present invention, the degree of processing of the can body to be manufactured is defined as 0.1 ≦ d / R and h / (R−r) ≦ 4.
なお、本発明が対象とする多段成形は、絞り加工、絞り・しごき加工、縮径加工のうちのいずれかの加工またはこれらを組み合わせた加工である。縮径加工を含む場合は、最終成形体の寸法dは、r>dである。縮径加工を含まない場合は、最終成形体の寸法はr=d(r、dは最終成形体の缶径)である。 Note that the multi-stage forming that is the subject of the present invention is any one of drawing, drawing / ironing, diameter reduction, or a combination of these. When the diameter reduction process is included, the dimension d of the final molded body is r> d. When the diameter reduction processing is not included, the size of the final molded body is r = d (r and d are can diameters of the final molded body).
本発明では、前述の2ピース缶の製造に使用する素材金属板として、ポリエステル樹脂を被覆したラミネート鋼板を規定している。 In this invention, the laminated steel plate which coat | covered the polyester resin is prescribed | regulated as a raw material metal plate used for manufacture of the above-mentioned 2 piece can.
下地金属素材が、鋼板であるのは、アルミニウムなどに比較して安価であり、経済性に優れるからである。鋼板は、一般的なティンフリースチールやぶりきなどを用いると良い。ティンフリースチールは、例えば、表面に付着量50〜200mg/m2の金属クロム層と、金属クロム換算の付着量が3〜30mg/m2のクロム酸化物層を有することが好ましい。ぶりきは0.5〜15g/m2のめっき量を有するものが好ましい。板厚は、特に限定されないが、例えば、0.15〜0.30mmの範囲のものを適用できる。また、経済性を考慮に入れなければ、本技術はアルミニウム素材にも単純に適用できる。 The reason why the base metal material is a steel plate is that it is cheaper and more economical than aluminum. As the steel plate, it is preferable to use general tin-free steel or tinplate. Tin-free steel, for example, a metal layer of chromium coating weight 50-200 mg / m 2 on the surface, the adhesion amount of metal chromium conversion preferably has an chromium oxide layer of 3 to 30 mg / m 2. The tinplate preferably has a plating amount of 0.5 to 15 g / m 2 . Although plate | board thickness is not specifically limited, For example, the thing of the range of 0.15-0.30 mm is applicable. Moreover, this technology can be simply applied to an aluminum material if economic efficiency is not taken into consideration.
前述の高加工度の加工において樹脂層に求められる重要な特性は、変形のし易さであると考えられ、発明者らの検討によると、カルボン酸成分とジオール成分の縮重合で得られ、ジカルボン酸成分はテレフタル酸を主成分とし、その他の共重合成分に、イソフタル酸成分を含み、あるいは含まず、ジオール成分として、エチレングリコール及び/または、ブチレングリコールを主成分として、その他の共重合成分に、ジエチレングリコール、シクロヘキサンジオ−ルを含み、あるいは含まないポリエステル樹脂が有望であることがわかった。そのため、本発明では、樹脂層の樹脂種を上記の樹脂に規定した。 The important characteristic required for the resin layer in the above-described high processing degree is considered to be easy to deform, and according to the study by the inventors, it is obtained by condensation polymerization of a carboxylic acid component and a diol component, The dicarboxylic acid component is mainly composed of terephthalic acid, and the other copolymer components are either composed of or not including the isophthalic acid component, the diol component is composed of ethylene glycol and / or butylene glycol as the main component, and other copolymer components. Further, it has been found that a polyester resin containing or not containing diethylene glycol and cyclohexanediol is promising. Therefore, in this invention, the resin seed | species of the resin layer was prescribed | regulated to said resin.
しかし、このポリエステル樹脂は、共重合比率が高い場合は、低い場合に比較すると、内部応力が発生し易い傾向にあり、結果として樹脂の剥離が生じやすい傾向にあることがわかった。詳細原因は不明であるが、配向のし易さ、し難さが関与しているものと考えられる。缶成形によって樹脂は周方向に縮み変形、高さ方向に伸び変形を受け、缶高さ方向に配向する傾向がある。この時、分子形状が単純な方が複雑なものに比較してスムーズに並びやすく、結果として内部応力が生じ難いのではないかと考えている。即ち、同等の変形を受けた時、分子形状が単純な低共重合化比率のものの方が、高いものに比べて、変形の際に生じる内部応力が増加し難いと考えられつのである。この観点から、本発明では、共重合成分の比率を8mol%未満と規定した。 However, it has been found that when the copolymer ratio is high, the polyester resin tends to generate internal stress as compared with a low copolymer ratio, and as a result, the resin tends to be peeled off. Although the detailed cause is unknown, it is considered that the ease of orientation and difficulty are involved. By can molding, the resin shrinks in the circumferential direction, undergoes deformation in the height direction, and tends to be oriented in the can height direction. At this time, it is considered that the simple molecular shape is easier to arrange smoothly than the complicated one, and as a result, internal stress is less likely to occur. That is, when subjected to equivalent deformation, it is considered that the internal stress generated during deformation is less likely to increase when the low copolymerization ratio with a simple molecular shape is higher than when the molecular shape is high. From this viewpoint, in the present invention, the ratio of the copolymerization component is defined as less than 8 mol%.
また、本発明で規定する高加工度の成形に樹脂層が追随する為には、ラミネート鋼板の樹脂層の初期の配向も重要であることが判明した。即ち、2軸延伸等で作成されたフィルムは面方向に配向しているが、ラミネート後も配向が高い状態にあると、加工に追随できず、破断にいたる。このような観点から、本発明では面配向係数を0.06以下と規定した。面配向係数の高い2軸延伸フィルムを用いてこのようなラミネート鋼板を作成するには、ラミネート時の温度を上げ、十分に配向結晶を融解してやればよい。あるいは、押出し法によって作成されたフィルムは、ほとんど無配向であるので、この観点からは好適である。同様に、鋼板に直接溶融樹脂をラミネートするダイレクトラミネート法も同様の理由で好適となる。 Further, it has been found that the initial orientation of the resin layer of the laminated steel sheet is also important in order for the resin layer to follow the molding with a high workability specified in the present invention. That is, the film produced by biaxial stretching or the like is oriented in the plane direction. However, if the orientation is high after lamination, it cannot follow the processing and breaks. From such a viewpoint, in the present invention, the plane orientation coefficient is defined as 0.06 or less. In order to produce such a laminated steel sheet using a biaxially stretched film having a high plane orientation coefficient, it is only necessary to raise the temperature during lamination and sufficiently melt the oriented crystals. Or since the film produced by the extrusion method is almost non-orientated, it is suitable from this viewpoint. Similarly, a direct laminating method in which a molten resin is directly laminated on a steel plate is also suitable for the same reason.
本発明で規定するラミネート鋼板は、樹脂層中に顔料や滑剤、安定剤などの添加剤を加えて用いても良いし、本発明で規定する樹脂層に加えて他の機能を有する樹脂層を上層または下地鋼板との中間層に配置しても良い。 The laminated steel sheet defined in the present invention may be used by adding additives such as pigments, lubricants and stabilizers in the resin layer, or a resin layer having other functions in addition to the resin layer defined in the present invention. You may arrange | position in the intermediate | middle layer with an upper layer or a base steel plate.
樹脂層の厚みが厚くなると内部応力の増大が大きく、剥離性は厳しくなるが、本発明で規定する樹脂層を用いると、厚い樹脂層であっても好適に用いることができる。樹脂厚は加工程度やその他要求特性に応じて適宜選択すればよいが、例えば、10μm以上50μm以下のものが好適に使用できる。特に20μm以上の樹脂層が厚い範囲においては、本発明の効果の寄与が大きい領域である。 As the thickness of the resin layer increases, the increase in internal stress increases and the peelability becomes severe. However, when the resin layer defined in the present invention is used, even a thick resin layer can be suitably used. The resin thickness may be appropriately selected according to the degree of processing and other required characteristics. For example, a resin thickness of 10 μm or more and 50 μm or less can be suitably used. Particularly in the range where the resin layer of 20 μm or more is thick, this is a region where the effect of the present invention is greatly contributed.
本発明で規定するラミネート鋼板は、鋼板の少なくとも一方の面に本発明で規定する樹脂層が被覆されていればよい。 In the laminated steel sheet defined in the present invention, it suffices that at least one surface of the steel sheet is coated with the resin layer defined in the present invention.
また、鋼板へのラミネート方法は特に限定されないが、2軸延伸フィルム、あるいは無延伸フィルムを熱圧着させる熱圧着法、Tダイなどを用いて鋼板上に直接樹脂層を形成させる押し出し法など適宜選択すればよく、いずれも十分な効果が得られることが確認されている。 The method of laminating to the steel plate is not particularly limited, but is appropriately selected such as a thermocompression bonding method in which a biaxially stretched film or an unstretched film is thermocompression bonded, and an extrusion method in which a resin layer is directly formed on the steel plate using a T die. It has been confirmed that sufficient effects can be obtained.
本発明で規定する高加工度の缶体を作製する場合に、加工条件や樹脂種によっては密着力の低下が生じる。したがって、缶体の用途や仕様に応じて必要な密着力を確保する必要があるが、この場合、多段成形の途中の段階で、成形体をその温度が150℃以上、ポリエステル樹脂の融点以下となるように加熱する熱処理を1回以上行うことが有効である。この熱処理は、加工によって生じる内部応力を緩和する為のものであるが、内部応力を緩和することで密着性を高める効果がある。即ち、本発明で定める高加工度の缶体は、樹脂層において歪の程度が大きく、大きな内部応力が生じやすい傾向にある。その結果、この内部応力を駆動力として樹脂層の剥離が生じてしまう場合がある。成形の途中段階で適切な熱処理を施すと、その内部応力が緩和され、密着力の低下が抑制できる。しかしながらこの熱処理によって、樹脂の配向結晶化が進んで樹脂層の加工性を低下させる負の側面がある。特に、本発明が規定する高加工度の領域では、熱処理後にも加工が必要な場合があり、その加工においては、樹脂の配向結晶化によって樹脂は破断しやすくなるので、配向結晶は有害である。 When producing a can body having a high degree of processing defined in the present invention, the adhesion force is reduced depending on processing conditions and resin types. Therefore, it is necessary to ensure the necessary adhesion according to the use and specifications of the can body. In this case, the temperature of the molded body is 150 ° C. or higher and the melting point of the polyester resin or lower in the middle of multistage molding. It is effective to perform the heat treatment for heating at least once. This heat treatment is intended to relieve internal stress caused by processing, but has the effect of improving adhesion by relieving internal stress. That is, the high workability can body defined in the present invention has a large degree of strain in the resin layer and tends to generate large internal stress. As a result, the resin layer may peel off using this internal stress as a driving force. When an appropriate heat treatment is performed in the middle of molding, the internal stress is relaxed, and a decrease in adhesion can be suppressed. However, this heat treatment has a negative aspect in which the oriented crystallization of the resin proceeds and the processability of the resin layer is lowered. In particular, in a high workability region defined by the present invention, processing may be necessary even after heat treatment, and in that processing, the resin is easily broken by orientation crystallization of the resin, and the orientation crystal is harmful. .
このような観点から、本発明では樹脂種の限定に加えて熱処理条件及び熱処理のタイミングを定めている。 From such a viewpoint, in the present invention, in addition to the limitation of the resin type, the heat treatment conditions and the heat treatment timing are determined.
本発明では、熱処理条件として、中間段階において、成形体をその温度が150℃以上、ポリエステル樹脂の融点以下となるように加熱することを規定する。熱処理温度がポリエステル樹脂の融点を超えると、表層の肌荒れや、樹脂が接触物に付着したりするなどの弊害が現れる。一方、熱処理温度の下限は、内部応力緩和の効率を考慮して定められたものである。即ち、ポリエステル樹脂のガラス転移点Tg以上の温度では内部応力の緩和が進むが、低すぎると緩和に要する時間がかかりすぎる。この観点から下限温度を150℃と定めている。従って、処理時間が問題にならないような生産プロセスにおいては本発明の技術思想を用いて150℃未満の熱処理温度を選択できるが、一般的には生産性が悪化する。より望ましい熱処理温度は170℃以上、ポリエステル樹脂の融点−20℃以下である。 In the present invention, the heat treatment condition is defined as heating the molded body so that its temperature is 150 ° C. or higher and the melting point of the polyester resin or lower in an intermediate stage. When the heat treatment temperature exceeds the melting point of the polyester resin, adverse effects such as rough skin on the surface and adhesion of the resin to the contact material appear. On the other hand, the lower limit of the heat treatment temperature is determined in consideration of the efficiency of internal stress relaxation. That is, relaxation of the internal stress proceeds at a temperature equal to or higher than the glass transition point Tg of the polyester resin, but if it is too low, it takes too much time for relaxation. From this viewpoint, the lower limit temperature is set to 150 ° C. Therefore, in a production process where the processing time does not become a problem, a heat treatment temperature of less than 150 ° C. can be selected using the technical idea of the present invention, but generally the productivity is deteriorated. A more desirable heat treatment temperature is 170 ° C. or higher and the melting point of the polyester resin is −20 ° C. or lower.
本発明では、熱処理を行うタイミングを、中間段階の成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体の開口部先端に対応する絞り加工前の円状板位置の半径Rに対して、0.2≦d/R≦0.5、かつ1.5≦h/(R−r)≦2.5の関係を満足する中間段階で行うことを規定する。 In the present invention, the timing at which the heat treatment is performed is a drawing in which the height h, maximum radius r, and minimum radius d (including the case where r and d are the same) of the intermediate molded body correspond to the tip of the opening of the final molded body. At an intermediate stage satisfying the relationship of 0.2 ≦ d / R ≦ 0.5 and 1.5 ≦ h / (R−r) ≦ 2.5 with respect to the radius R of the circular plate position before processing Specify what to do.
熱処理のタイミングを上記のように定めたのは、加工度が前記範囲にあると熱処理が最も効果的に行なわれるからである。即ち、加工度が緩やかな段階で熱処理を行うのは、内部応力が高くない段階での内部応力緩和であるため前述の効果が小さい。また、加工度が高すぎる段階で熱処理を行うのは、密着力が落ちてその結果として、剥離が生じてしまう可能性があるため、遅きに失する場合がある。このような観点から加工度の上限と下限を前記のように定めた。 The reason for setting the heat treatment timing as described above is that the heat treatment is most effectively performed when the degree of processing is within the above range. In other words, the heat treatment is performed at a moderate degree of processing because the internal stress is relaxed at a stage where the internal stress is not high, and thus the above-described effect is small. In addition, the heat treatment performed at a stage where the degree of processing is too high may result in a late loss because adhesion may be reduced and peeling may occur as a result. From such a viewpoint, the upper limit and the lower limit of the working degree are determined as described above.
熱処理は、工程A、工程Dのいずれか一方または両方で行うことができる。上述の熱処理のタイミングに関し、rとdが同じ場合を含むのは、縮径加工を含む缶の製造工程において、工程Aで熱処理を行う場合が含まれることがあり、あるいは縮径加工を含まない缶の製造工程では、rとdが同じ径になるためである。熱処理は、内部応力緩和の必要性に応じて2以上の中間段階で行ってもよい。 The heat treatment can be performed in one or both of step A and step D. Regarding the timing of the heat treatment described above, the case where r and d are the same includes the case where the heat treatment is performed in step A in the manufacturing process of the can including the diameter reducing process or does not include the diameter reducing process. This is because r and d have the same diameter in the can manufacturing process. The heat treatment may be performed in two or more intermediate stages depending on the need for internal stress relaxation.
熱処理の方法については、特に限定されるものではなく、電気炉、ガスオーブン、赤外炉、インダクションヒーターなどで同様の効果が得られることが確認されている。また、加熱速度、加熱時間、冷却時間は内部応力の緩和によるプラス効果と配向結晶化によるマイナス効果の双方を考慮して適宜選択すればよいが、加熱速度は速いほど効率的であり、加熱時間の目安は15秒〜60秒程度であるが、この範囲に限定されるものでない。また、冷却時間が遅いと球晶の生成量が増大する為、品質的には好ましくない。従って、冷却時間は速いほど良い。 The heat treatment method is not particularly limited, and it has been confirmed that the same effect can be obtained with an electric furnace, a gas oven, an infrared furnace, an induction heater, or the like. The heating rate, heating time, and cooling time may be appropriately selected in consideration of both the positive effect due to relaxation of internal stress and the negative effect due to orientation crystallization. However, the higher the heating rate, the more efficient the heating time. Is approximately 15 to 60 seconds, but is not limited to this range. Further, if the cooling time is slow, the amount of spherulite produced increases, which is not preferable in terms of quality. Therefore, the faster the cooling time, the better.
以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
「ラミネート鋼板の作製」
下地金属板として厚さ0.20mmのT4CA、TFS(金属Cr層:120mg/m2、Cr酸化物層:金属Cr換算で10mg/m2)を用い、この原板に対して、フィルムラミネート法(フィルム熱圧着法)、あるいはダイレクトラミネート法(直接押し出し法)を用いて種々の樹脂層を形成させた。尚、フィルムラミネートについては、2軸延伸フィルムを用いたものと無延伸フィルムを用いたものの2通りを実施した。金属板の両面に各々厚さ25μmのフィルムをラミネートした。
"Production of laminated steel sheet"
T4CA and TFS (metal Cr layer: 120 mg / m 2 , Cr oxide layer: 10 mg / m 2 in terms of metal Cr) having a thickness of 0.20 mm were used as the base metal plate. Various resin layers were formed using a film thermocompression bonding method) or a direct laminating method (direct extrusion method). In addition, about the film lamination, two types, what used the biaxially stretched film and what used the unstretched film, were implemented. A film having a thickness of 25 μm was laminated on both surfaces of the metal plate.
前記で作製したラミネート鋼板のラミネートフィルムの面配向係数を以下のようにして算出した。 The plane orientation coefficient of the laminate film of the laminated steel sheet produced above was calculated as follows.
「面配向係数の測定」
アッベ屈折計を用い、光源はナトリウム/D線、中間液はヨウ化メチレン、温度は25℃の条件で屈折率を測定して、フィルム面の縦方向の屈折率Nx、フィルム面の横方向の屈折率Ny、フィルムの厚み方向の屈折率Nzを求め、下式から面配向係数Zsを算出した。
面配向係数(Ns)=(Nx+Ny)/2−Nz
"Measurement of plane orientation coefficient"
Using an Abbe refractometer, the refractive index was measured under the conditions that the light source was sodium / D line, the intermediate solution was methylene iodide, and the temperature was 25 ° C. The refractive index Ny and the refractive index Nz in the thickness direction of the film were determined, and the plane orientation coefficient Zs was calculated from the following formula.
Planar orientation coefficient (Ns) = (Nx + Ny) / 2−Nz
ラミネート鋼板の製造方法と作製したラミネート鋼板の内容を表1に示す。表1に記載の樹脂種は次のとおりである。
PET:ポリエチレンテレフタレート
PET−I:ポリエチレンテレフタレート−イソフタレート共重合体(イソフタル酸共重合比率12mol%)
PET−PBT(60):ポリエチレンテレフタレート−ブチレンテレフタレート共重合体(ブチレンテレフタレート共重合比率60mol%)
PET−DEG:ポリエチレンテレフタレート−ジエチレングリコール共重合体
PET−CHDM:ポリエチレンテレフタレート−シクロヘキサンジオール共重合体。
Table 1 shows the production method of the laminated steel sheet and the contents of the produced laminated steel sheet. The resin types listed in Table 1 are as follows.
PET: Polyethylene terephthalate PET-I: Polyethylene terephthalate-isophthalate copolymer (isophthalic acid copolymerization ratio 12 mol%)
PET-PBT (60): Polyethylene terephthalate-butylene terephthalate copolymer (butylene terephthalate copolymer ratio 60 mol%)
PET-DEG: Polyethylene terephthalate-diethylene glycol copolymer PET-CHDM: Polyethylene terephthalate-cyclohexanediol copolymer.
ラミネート法は次のとおりである。
フィルム熱圧着法1:2軸延伸法で作成したフィルムを、鋼板を樹脂の融点+10℃まで加熱した状態で、ニップロールにて熱圧着し、次いで7秒以内に水冷によって冷却した。
フィルム熱圧着法2:無延伸フィルムを、鋼板を樹脂の融点+10℃まで加熱した状態でニップロールにて熱圧着し、次いで7秒以内に水冷によって冷却した。
直接押し出し法:樹脂ペレットを押し出し機にて混練、溶融させ、Tダイより、走行中の鋼板上に被覆し、次いで樹脂被覆された鋼板を80℃の冷却ロールにてニップ冷却させ、更に、水冷によって冷却した。
The laminating method is as follows.
Film thermocompression bonding method 1: A film prepared by the biaxial stretching method was subjected to thermocompression bonding with a nip roll in a state where the steel sheet was heated to the melting point of the resin + 10 ° C., and then cooled by water cooling within 7 seconds.
Film thermocompression bonding method 2: An unstretched film was thermocompression bonded with a nip roll in a state where the steel sheet was heated to the melting point of the resin + 10 ° C., and then cooled by water cooling within 7 seconds.
Direct extrusion method: resin pellets are kneaded and melted with an extruder, coated on a running steel plate from a T-die, and then the resin-coated steel plate is nip-cooled with an 80 ° C. cooling roll, and further water-cooled Cooled by.
「缶体成形」
作製した供試鋼板を用いて、図1に示した製造工程に準じて、以下の手順で缶体(最終成形体)を作製した。中間成形体(工程C)及び最終成形体(工程D)の形状を表2に示す。工程Aの絞り加工は5段階で行い、工程Dの縮径加工は7段階で行った。熱処理は工程A〜工程Dの途中段階で行い、赤外線式加熱炉を用いて缶体を加熱し、熱処理終了後水冷した。熱処理のタイミング(熱処理実施時の缶体の加工度)及び熱処理条件を表3に示す。
"Can body molding"
Using the produced test steel plate, a can body (final formed body) was produced according to the following procedure in accordance with the production process shown in FIG. Table 2 shows the shapes of the intermediate molded body (process C) and the final molded body (process D). The drawing process of the process A was performed in 5 stages, and the diameter reduction process of the process D was performed in 7 stages. The heat treatment was performed in the middle of steps A to D, the can body was heated using an infrared heating furnace, and water-cooled after the heat treatment. Table 3 shows the timing of heat treatment (the degree of processing of the can during heat treatment) and the heat treatment conditions.
表2において、最終成形体(工程D)のh、r、d、ha、hc、Rは、各々最終成形体の開口端部までの高さ、基体部2の直径、ネック形状部3の直径、基体部2の高さ、ネック形状部3の高さ、最終成形体と重量が等価となる成形前の円状板ブランクの半径である(図1参照)。円状板ブランクの半径Rは、次のようにして求めた。成形前のブランクシートの重量及びトリム工程後の最終成形体の重量を測定し、この測定結果に基づき、最終成形体と重量が等価となる成形前ブランクシートの半径を求め、この半径を最終成形体と重量が等価となる成形前の円状板ブランクの半径Rとした。
In Table 2, h, r, d, ha, hc, and R of the final molded body (step D) are the height to the open end of the final molded body, the diameter of the
1)ブランキング(66〜94mmφ)
2)絞り加工及びしごき加工(工程A)
5段の絞り加工にて、缶体の半径r、高さhが、r/R:0.24〜0.34、h/(R−r):1.84〜3.09の範囲の缶体(中間成形体)を作製した。また、所望の缶体を作製するために、適宜しごき加工も併用した。
1) Blanking (66-94mmφ)
2) Drawing and ironing (process A)
Cans having a radius r and a height h of r / R: 0.24 to 0.34 and h / (R−r): 1.84 to 3.09 in five stages of drawing. A body (intermediate molded body) was produced. Moreover, in order to produce a desired can body, the ironing process was also used together suitably.
3)缶底部のドーム形状加工(工程B)
缶底部に、深さ6mmの半球状の張り出し加工を行った。
4)トリム加工(工程C)
缶上端部を2mmほどトリムした。
5)円筒上部の縮径加工(工程D)
円筒上部に縮経加工を施し、具体的には、内面テーパ形状のダイに開口端部を押し当てて縮径を行うダイネック方式にて実施し、表2に示した最終的な缶体形状の缶体を作製した。
3) Dome shape processing of can bottom (process B)
A hemispherical overhanging process having a depth of 6 mm was performed on the bottom of the can.
4) Trim processing (Process C)
The upper end of the can was trimmed by about 2 mm.
5) Diameter reduction of the upper part of the cylinder (Process D)
The upper part of the cylinder is subjected to warping processing, specifically, the die neck method in which the diameter of the opening is pressed against the inner tapered die to reduce the diameter, and the final can body shape shown in Table 2 is obtained. A can body was produced.
上記手順で作製した缶体のフィルム層の密着性、加工性、外観を以下のようにして評価した。評価結果を表3に併せて記載した。 The adhesion, workability, and appearance of the film layer of the can body produced by the above procedure were evaluated as follows. The evaluation results are also shown in Table 3.
「密着性試験」
缶体を周方向巾15mmになるように缶高さ方向に略長方形に剪断し、その缶高さ方向で底面から10mmの位置を、周方向に直線状に、鋼板のみを剪断した。結果、剪断位置を境に缶高さ方向底面側に10mm部分と残余の部分からなる試験片が作成された。10mmの部分に巾15mm、長さ60mmの鋼板を繋ぎ(溶接)、60mm鋼板部分を持って、残余部分のフィルムを破断位置から10mmほど剥離させる。フィルムを剥離した部分と60mm鋼板部分を掴みしろとして180°方向にピール試験を実施した。観測されたピール強度の最小値を密着性の指標とした。
「ピール強度」
5N/15mm未満:×
5N/15mm以上、7N/15mm未満:○
7N/15mm以上:◎
"Adhesion test"
The can body was sheared into a substantially rectangular shape in the can height direction so as to have a width of 15 mm in the circumferential direction, and only the steel sheet was sheared linearly in the circumferential direction at a
"Peel strength"
Less than 5N / 15mm: ×
5N / 15mm or more and less than 7N / 15mm: ○
7N / 15mm or more: ◎
「フィルム加工性評価」
成缶後の樹脂層外面側を目視及び光顕観察を行い、フィルムに破断があるかないかを確認した。外観が正常なものを○、破断や亀裂が確認されたものを×とした。
"Film processability evaluation"
The outer surface side of the resin layer after the can was visually and optically observed to confirm whether the film had any breakage. A sample with a normal appearance was marked with ◯, and a sample with a confirmed fracture or crack was marked with ×.
「評価結果」
缶体C1〜C15及びC21〜C33は、本発明の実施例で、フィルム加工性及び密着性は良好な値を示した。
"Evaluation results"
Can bodies C1 to C15 and C21 to C33 are examples of the present invention, and the film processability and adhesion showed good values.
缶体C16〜C20は、本発明の実施例であるが、第3発明または第4発明で規定する熱処理理が施されていないものである。フィルム加工性、密着性ともに合格ではあるが、評価は○に留まった。 The cans C16 to C20 are examples of the present invention, but are not subjected to the heat treatment specified in the third invention or the fourth invention. Although both film processability and adhesion were acceptable, the evaluation was only ○.
缶体C34〜C36は、イソフタル酸の共重合化比率が本発明範囲を外れる比較鋼板である為、密着性が×となった。 Since the cans C34 to C36 were comparative steel plates in which the copolymerization ratio of isophthalic acid was outside the scope of the present invention, the adhesion was x.
缶体C37は、面配向係数が本発明範囲を外れる比較鋼板であるため、加工性が×となった。 Since can body C37 is a comparative steel plate whose plane orientation coefficient is outside the range of the present invention, the workability is x.
本発明のラミネート鋼板は、ラミネート樹脂層の剥離と破断を防止できる高加工度の2ピース缶を製造するために利用することができる。本発明の2ピース缶の製造方法は、ラミネート樹脂層の剥離と破断を防止して、高加工度の2ピース缶を製造する方法として利用することができる。本発明法で製造された2ピースラミネート缶は、高加工度が要求されるエアゾール缶等の用途に利用することができる。 The laminated steel sheet of the present invention can be used to produce a two-piece can with a high workability that can prevent peeling and breaking of the laminated resin layer. The method for producing a two-piece can of the present invention can be used as a method for producing a two-piece can having a high degree of processing by preventing the laminate resin layer from peeling and breaking. The two-piece laminate can produced by the method of the present invention can be used for applications such as aerosol cans that require a high degree of processing.
1 ブランクシート
2 基体部
3 ドーム形状部
4 ネック形状部
5 テーパ形状部
DESCRIPTION OF SYMBOLS 1
Claims (5)
A two-piece laminate can manufactured by the method according to claim 2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005234553A JP4622736B2 (en) | 2005-08-12 | 2005-08-12 | Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans |
PCT/JP2006/316126 WO2007020953A1 (en) | 2005-08-12 | 2006-08-10 | Laminated steel plate for two piece can body, two piece can body formed of laminated steel plate, and process for producing the two piece can body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005234553A JP4622736B2 (en) | 2005-08-12 | 2005-08-12 | Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007045115A JP2007045115A (en) | 2007-02-22 |
JP4622736B2 true JP4622736B2 (en) | 2011-02-02 |
Family
ID=37757610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005234553A Active JP4622736B2 (en) | 2005-08-12 | 2005-08-12 | Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4622736B2 (en) |
WO (1) | WO2007020953A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021230210A1 (en) * | 2020-05-12 | 2021-11-18 | 東洋製罐グループホールディングス株式会社 | Drawn/ironed can and coated metal sheet for drawn/ironed cans |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935344B2 (en) * | 1978-04-25 | 1984-08-28 | 東レ株式会社 | Heat treatment method for coated metal containers |
JPS6122626B2 (en) * | 1981-04-02 | 1986-06-02 | Dow Chemical Co | |
JPH03150154A (en) * | 1989-11-07 | 1991-06-26 | Diafoil Co Ltd | Laminated formed object |
JPH07178485A (en) * | 1993-12-22 | 1995-07-18 | Toyo Seikan Kaisha Ltd | Two-piece can excellent in impact resistance |
JPH07106394B2 (en) * | 1989-05-17 | 1995-11-15 | 東洋製罐株式会社 | Squeeze ironing can manufacturing method |
JP2526725B2 (en) * | 1990-08-03 | 1996-08-21 | 東洋製罐株式会社 | Method for manufacturing coated thin can |
JP2004148324A (en) * | 2002-10-28 | 2004-05-27 | Toyo Seikan Kaisha Ltd | Method for manufacturing shear spun can made of resin coated metal |
-
2005
- 2005-08-12 JP JP2005234553A patent/JP4622736B2/en active Active
-
2006
- 2006-08-10 WO PCT/JP2006/316126 patent/WO2007020953A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935344B2 (en) * | 1978-04-25 | 1984-08-28 | 東レ株式会社 | Heat treatment method for coated metal containers |
JPS6122626B2 (en) * | 1981-04-02 | 1986-06-02 | Dow Chemical Co | |
JPH07106394B2 (en) * | 1989-05-17 | 1995-11-15 | 東洋製罐株式会社 | Squeeze ironing can manufacturing method |
JPH03150154A (en) * | 1989-11-07 | 1991-06-26 | Diafoil Co Ltd | Laminated formed object |
JP2526725B2 (en) * | 1990-08-03 | 1996-08-21 | 東洋製罐株式会社 | Method for manufacturing coated thin can |
JPH07178485A (en) * | 1993-12-22 | 1995-07-18 | Toyo Seikan Kaisha Ltd | Two-piece can excellent in impact resistance |
JP2004148324A (en) * | 2002-10-28 | 2004-05-27 | Toyo Seikan Kaisha Ltd | Method for manufacturing shear spun can made of resin coated metal |
Also Published As
Publication number | Publication date |
---|---|
JP2007045115A (en) | 2007-02-22 |
WO2007020953A1 (en) | 2007-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5082383B2 (en) | Laminated steel sheet for 2-piece can body, method for producing 2-piece can body, and 2-piece laminate can | |
JP4692147B2 (en) | Two-piece can manufacturing method and two-piece laminated can | |
JP4692146B2 (en) | Two-piece can manufacturing method and two-piece laminated can | |
JP4961696B2 (en) | Two-piece can manufacturing method and two-piece laminated can | |
JP5186772B2 (en) | Two-piece can manufacturing method and two-piece laminated can | |
JP4622737B2 (en) | Laminated steel sheet for 2-piece can and 2-piece laminated can | |
JP4622736B2 (en) | Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans | |
JP4894457B2 (en) | Laminated steel sheet for aerosol 2-piece can body, method for producing aerosol 2-piece can body, and aerosol 2-piece can |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4622736 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |