JP2705790B2 - Optical waveguide and method for forming the same - Google Patents

Optical waveguide and method for forming the same

Info

Publication number
JP2705790B2
JP2705790B2 JP61302823A JP30282386A JP2705790B2 JP 2705790 B2 JP2705790 B2 JP 2705790B2 JP 61302823 A JP61302823 A JP 61302823A JP 30282386 A JP30282386 A JP 30282386A JP 2705790 B2 JP2705790 B2 JP 2705790B2
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
waveguide
refractive index
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61302823A
Other languages
Japanese (ja)
Other versions
JPS63157109A (en
Inventor
一平 佐脇
實 清野
直之 女鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61302823A priority Critical patent/JP2705790B2/en
Publication of JPS63157109A publication Critical patent/JPS63157109A/en
Application granted granted Critical
Publication of JP2705790B2 publication Critical patent/JP2705790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気光学結晶基板上に形成された小さな曲率
半径の導波路に関する。 光導波路としては、 透明石英をコア(芯)とし、これよりも低屈折率の
ガラスをクラッド(鞘)とする光ファイバケーブル(光
伝送繊維)、 屈折率の異なる透明なポリマー(高分子有機化合
物)をコアとクラッドに使用したプラスチック光ファイ
バケーブル、 電気光学結晶基板上に金属を拡散させて基板よりも
屈折率の高い線路を形成した光導波路、あるいは、 ガラス基板上に金属膜よりなるマスクパターンを形
成した後、溶融塩中に浸漬してイオン交換を行って得た
基板より高屈折率の光導波路、などがある。 ここで、光通信に使用する導波路としては主として
の光ファイバケーブルが用いられ、光スイッチ、偏光分
離素子、レンズなどの光学素子と組み合わせて使用され
ている。 然し、これらの導波路と光学素子とは個別に形成され
ているために相互の微細な位置合わせを必要とし、ミス
マッチングによる損失増加が避けられないだけでなく調
整のための工数増のため高価につく。 これを避けるために導波路と光学素子とを集積し、一
体化した光回路素子が提案されている。 その中でニオブ酸リチウム(LiNbO3)やタンタル酸リ
チウム(LiTaO3)のように電気光学効果の大きい結晶基
板を用いて作られる光回路素子は低駆動電圧のデバイス
が実現できるため有望である。中でもLiNbO3は特に熱拡
散により低損失の導波路が容易に形成できるため光回路
素子の基板として優れている。 〔従来の技術〕 LiNbO3を基板として用い、この上に複数の光学素子を
形成し、集積化することが行われている。 この場合、集積化して形成されるスイッチなどの光学
素子を相互に接続するための光導波路は接続長を短くす
るために光学素子まで湾曲してパターン形成する必要が
ある。 然し、熱拡散により形成される導波路は屈折率変化が
比較的小さいため低損失の伝送を行うには一定値以上の
曲率半径が必要であり、曲率半径が少ない場合には光は
導波路外に逸出するために損失が異常に増加すると云う
問題がある。 また、曲がり導波路の形成法として全反射を用いて行
う方法があるが、この場合にも反射面での散乱などによ
り損失が大きくなる。 これらのことから光を低損失で伝送するには光導波路
の曲率半径を30〜40mmに保つことが必要で、そのため集
積度の向上には限界があった。 〔発明が解決しようとする問題点〕 以上記したようにLiNbO3基板上に集積して形成してあ
る光学素子と結線する導波路は湾曲して形成することが
必要であるが、低損失で光を伝送するには曲率半径に制
限があり、そのために充分な集積化が行えないことが問
題である。 〔問題点を解決するための手段〕 上記の問題を解決するために、本発明によれば、LiNb
O3結晶基板上に異常光を伝播する湾曲した光導波路が形
成され、該光導波路は基板よりも高い屈折率を有し、前
記湾曲した光導波路の外周沿いにこれと略平行に酸化マ
グネシウムの拡散領域が形成されることを特徴とする光
導波路構造が提供される。 また、本発明に係る光導波路の形成方法によれば、Li
NbO3結晶基板上に、該基板よりも高い屈折率を有する湾
曲した異常光伝播用光導波路を形成するに際し、該異常
光伝播用湾曲光導波路の外周沿いにこれと略平行に酸化
マグネシウム(MgO)を拡散することを特徴とする。 〔作 用〕 本発明はLiNbO3基板上の光導波路の湾曲部の外周に
(異常光)の屈折率を低下せしめる酸化マグネシウムを
拡散して基板に屈折率勾配をもたせ、これにより湾曲部
の外周部では光導波路との屈折率差が大きくなり、その
ため光、特に異常光の導波路からの逸出を防ぐものであ
る。 即ち、導波路の湾曲部の外周沿いにMgOを拡散する
と、MgOの拡散により屈折率が減少するのは異常光モー
ドだけなので、MgOの影響を受ける異常光モードは、導
波路と外周部との屈折率差の実質的な増大により損失無
く通過するのに対し、MgOの影響を受けない常光モード
に対しては、導波路と外周部との屈折率差は実質的に変
化しないため、導波路外に逸出する。斯くして常光に対
するフィルターとして機能する。 〔実施例〕 第1図、第2図は本発明の一実施例を示すものでLiNb
O3基板3上に第1のチタン(Ti)金属パターン4を形成
して熱拡散を行い、光導波路5を形成する第1の拡散領
域を形成する。 次に、このようにして生じた光導波路5の湾曲部外周
に第2の酸化マグネシウム(MgO)パターン7を形成し
て熱拡散を行い、第2の拡散領域8を形成するものであ
る。 第3図は第1の拡散領域の形成を具体的に説明する断
面図(A)と熱拡散により生じた屈折率プロフィル
(B)であって、第1のTi金属パターン4を熱処理する
とTiイオンが破線に示すように拡散して第1の拡散領域
5(光導波路)ができ、同図(B)に示すような屈折率
プロフィルができあがる。 本発明は第4図に示すように、この導波路湾曲部の外
周側位置に第2のMgOパターン7を設け、これを熱拡散
させることにより第2の拡散領域8を形成するものであ
る。この結果導波路湾曲部の基板に外周側の屈折率が低
下する屈折率勾配が形成され、導波路内周部と外周部の
光路長の差が補償されるため湾曲部での光の逸出を防ぐ
ことができる。 第5図は本発明による光導波路の屈折率の濃度勾配を
示す図解図である。 第2拡散領域8は光導波路5の湾曲部の曲率と略同一
の曲率を有する弧状パターンであり、従って光導波路5
と略平行に延びる。第1、第2拡散領域のパターン4,7
は例えば電子ビーム蒸着法とリフトオフ法を用いて作る
ことができる。尚、MgはTiよりも拡散定数が大きいため
MgOパターンはTi(約1000℃)より低温(800〜900℃)
で拡散する。従って光導波路を拡散形成した後に第2の
拡散領域を拡散形成すれば光導波路の濃度分布への影響
はほとんどなく好都合である。但し、本発明を実施する
上では第1、第2の両拡散領域を同時に熱拡散しても、
あるいは上記とは逆に予じめ第2領域8を熱拡散形成し
た後に光導波路5を熱拡散形成してもよい。 またMgO拡散により屈折率の減少するのは異常光モー
ドのみで常光モードには一切影響を与えないため、スイ
ッチ特性の劣化につながる常光モードのフィルターとし
ての機能を有する。 なお、第1のTi金属パターン5と第2のMgO金属パタ
ーン8との間隔は、2μm、0(両者が接する場合)お
よび−2μm(2μmだけパターンが重複している場
合)の三種類をとり、実験をした結果、両パターンを接
して形成した場合に光損失は最も少ないことを確認した
(光導波路の曲率半径が5mmの場合で光損失は1.5〜2d
B)。 尚、熱拡散条件(温度、時間等)は光導波路5の内周
側を通る光の光路長L1と外周側を通る光の光路長L2とが
同一(L1=L2)になるように選定される。即ち、光導波
路5の外周長を11、外周側屈折率n1、内周長を12、内周
側屈折率をn2とすると光路長LはL=1×nで与えられ
るから、 11×n1=12×n2 を満足するようにn1,n2を選定すればよい。 〔発明の効果〕 以上記したように本発明の実施により従来必要であっ
て曲率半径30〜40mmをはるかに小さく(5mm以下)にす
ることが可能となり、光回路素子の集積度の向上が可能
となる。
Description: TECHNICAL FIELD The present invention relates to a waveguide having a small radius of curvature formed on an electro-optic crystal substrate. As optical waveguides, optical fiber cables (optical transmission fibers) with transparent quartz as the core and cladding (sheath) of glass with a lower refractive index than this, transparent polymers with different refractive indices (polymer organic compounds) ) For a plastic optical fiber cable using a core and a clad, an optical waveguide in which metal is diffused on an electro-optic crystal substrate to form a line with a higher refractive index than the substrate, or a mask pattern consisting of a metal film on a glass substrate After the formation, there is an optical waveguide having a higher refractive index than the substrate obtained by immersing in a molten salt and performing ion exchange. Here, an optical fiber cable is mainly used as a waveguide used for optical communication, and is used in combination with an optical element such as an optical switch, a polarization separation element, and a lens. However, since these waveguides and optical elements are formed separately, they need to be finely aligned with each other, which not only inevitably increases the loss due to mismatching but also increases the man-hours for adjustment and is expensive. Attached to In order to avoid this, an optical circuit element in which a waveguide and an optical element are integrated and integrated has been proposed. Among them, an optical circuit element formed using a crystal substrate having a large electro-optical effect, such as lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ), is promising because a device with a low driving voltage can be realized. Among them, LiNbO 3 is excellent as a substrate of an optical circuit element because a low-loss waveguide can be easily formed particularly by thermal diffusion. [Prior Art] LiNbO 3 is used as a substrate, on which a plurality of optical elements are formed and integrated. In this case, an optical waveguide for interconnecting optical elements such as switches formed in an integrated manner needs to be curved and patterned to the optical element in order to shorten the connection length. However, since the waveguide formed by thermal diffusion has a relatively small change in the refractive index, a radius of curvature of a certain value or more is required for low-loss transmission, and when the radius of curvature is small, light is out of the waveguide. However, there is a problem that the loss is abnormally increased due to the escape. In addition, as a method of forming a bent waveguide, there is a method using total reflection. However, in this case as well, loss is increased due to scattering on a reflection surface. From these facts, it is necessary to maintain the radius of curvature of the optical waveguide in the range of 30 to 40 mm in order to transmit light with low loss, and therefore, there is a limit in improving the degree of integration. [Problems to be Solved by the Invention] As described above, the waveguide connected to the optical element formed integrally on the LiNbO 3 substrate needs to be formed in a curved shape, but with low loss. There is a problem in that the radius of curvature is limited for transmitting light, so that sufficient integration cannot be performed. [Means for Solving the Problems] To solve the above problems, according to the present invention, LiNb
A curved optical waveguide for transmitting extraordinary light is formed on the O 3 crystal substrate, the optical waveguide has a higher refractive index than the substrate, and magnesium oxide is formed along the outer periphery of the curved optical waveguide substantially parallel thereto. An optical waveguide structure is provided, wherein a diffusion region is formed. Further, according to the method for forming an optical waveguide according to the present invention, Li
In forming a curved extraordinary light propagation optical waveguide having a higher refractive index than the substrate on a NbO 3 crystal substrate, magnesium oxide (MgO 3) is formed along the outer periphery of the extraordinary light propagation curved optical waveguide substantially parallel to the outer periphery. ) Is diffused. [Operation] The present invention diffuses magnesium oxide, which lowers the refractive index of (extraordinary light), around the curved portion of the optical waveguide on the LiNbO 3 substrate to give the substrate a refractive index gradient. In the portion, the difference in the refractive index from the optical waveguide becomes large, so that light, especially extraordinary light, is prevented from escaping from the waveguide. That is, if MgO is diffused along the outer periphery of the curved portion of the waveguide, the refractive index is reduced only by the extraordinary optical mode due to the diffusion of MgO. The waveguide passes through the waveguide without loss due to the substantial increase in the refractive index difference, whereas the refractive index difference between the waveguide and the outer peripheral portion does not substantially change for the ordinary mode that is not affected by MgO. Escape outside. Thus, it functions as a filter for ordinary light. [Embodiment] FIGS. 1 and 2 show an embodiment of the present invention, in which LiNb is used.
A first titanium (Ti) metal pattern 4 is formed on the O 3 substrate 3 and thermally diffused to form a first diffusion region for forming an optical waveguide 5. Next, a second magnesium oxide (MgO) pattern 7 is formed on the outer periphery of the curved portion of the optical waveguide 5 generated as described above, and thermal diffusion is performed to form a second diffusion region 8. FIG. 3 is a sectional view (A) specifically illustrating the formation of the first diffusion region and a refractive index profile (B) generated by thermal diffusion. Are diffused as shown by a broken line to form a first diffusion region 5 (optical waveguide), and a refractive index profile as shown in FIG. In the present invention, as shown in FIG. 4, a second MgO pattern 7 is provided at an outer peripheral position of the waveguide curved portion, and the second MgO pattern 7 is thermally diffused to form a second diffusion region 8. As a result, a refractive index gradient in which the refractive index on the outer peripheral side is reduced is formed on the substrate of the waveguide curved portion, and the difference in the optical path length between the inner peripheral portion and the outer peripheral portion of the waveguide is compensated, so that light escapes at the curved portion. Can be prevented. FIG. 5 is an illustrative view showing a concentration gradient of a refractive index of the optical waveguide according to the present invention. The second diffusion region 8 is an arc-shaped pattern having substantially the same curvature as the curvature of the curved portion of the optical waveguide 5.
And extend substantially in parallel. Patterns 4 and 7 of first and second diffusion regions
Can be made using, for example, an electron beam evaporation method and a lift-off method. Since Mg has a larger diffusion constant than Ti
MgO pattern is lower temperature (800-900 ° C) than Ti (about 1000 ° C)
Spread with. Therefore, if the second diffusion region is formed by diffusion after forming the optical waveguide by diffusion, the concentration distribution of the optical waveguide is hardly affected, which is advantageous. However, in practicing the present invention, even if both the first and second diffusion regions are thermally diffused simultaneously,
Alternatively, the optical waveguide 5 may be formed by thermal diffusion after forming the second region 8 by thermal diffusion in advance. Also, the refractive index is reduced only by the extraordinary light mode due to MgO diffusion and does not affect the ordinary light mode at all, so that it has a function as a filter of the ordinary light mode which leads to deterioration of switch characteristics. The distance between the first Ti metal pattern 5 and the second MgO metal pattern 8 is three types: 2 μm, 0 (when both are in contact), and −2 μm (when the patterns overlap by 2 μm). As a result of experiments, it was confirmed that the optical loss was the lowest when both patterns were formed in contact (the optical loss was 1.5 to 2 d when the radius of curvature of the optical waveguide was 5 mm).
B). The heat diffusion conditions (temperature, time, etc.) has an optical path length L 2 of the light passing through the optical path length L 1 and the outer periphery side of the light passing through the inner peripheral side of the optical waveguide 5 becomes the same (L 1 = L 2) Is selected as follows. That is, the outer peripheral length 1 1 of the optical waveguide 5, the outer peripheral side refractive index n 1, an inner peripheral length 1 2, the optical path length L when the inner peripheral side refraction index and n 2 because is given by L = 1 × n, N 1 and n 2 may be selected so as to satisfy 1 1 × n 1 = 1 2 × n 2 . [Effects of the Invention] As described above, by implementing the present invention, it is possible to make the radius of curvature 30 to 40 mm, which is conventionally required, much smaller (5 mm or less), and it is possible to improve the degree of integration of optical circuit elements. Becomes

【図面の簡単な説明】 第1図は本発明の実施例を説明する平面図、 第2図は第1図のII−II線断面図で熱拡散方法を工程順
に示す図、 第3図は第1の拡散領域の形成を説明する断面図(A)
と屈折率プロフィル(B)、 第4図は第2の拡散領域の形成を説明する断面図(A)
と屈折率プロフィル(B)、 第5図は屈折率の濃度勾配を示す図、 である。 図において、 4は第1のTi金属パターン、 5は光導波路、 7は第2のMgOパターン、 8は第2の拡散領域。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view for explaining an embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. Sectional view for explaining formation of first diffusion region (A)
FIG. 4 is a sectional view (A) illustrating the formation of a second diffusion region.
FIG. 5 is a graph showing a concentration gradient of the refractive index. In the figure, 4 is a first Ti metal pattern, 5 is an optical waveguide, 7 is a second MgO pattern, and 8 is a second diffusion region.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 女鹿田 直之 川崎市中原区上小田中1015番地 富士通 株式会社内 (56)参考文献 特開 昭63−147111(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Naoyuki Megada               Fujitsu, 1015 Ueodanaka, Nakahara-ku, Kawasaki-shi               Inside the corporation                (56) References JP-A-63-147111 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.LiNbO3電気光学結晶基板上に異常光を伝播する湾曲
した光導波路が形成され、該光導波路は基板よりも高い
屈折率を有し、前記湾曲した光導波路の外周沿いにこれ
と略平行に酸化マグネシウムの拡散領域が形成されるこ
とを特徴とする光導波路構造。 2.LiNbO3電気光学結晶基板上に、該基板よりも高い屈
折率を有する湾曲した異常光伝播用光導波路を形成する
に際し、該異常光伝播用湾曲光導波路の外周沿いにこれ
と略平行に酸化マグネシウムを拡散することを特徴とす
る光導波路の形成方法。
(57) [Claims] A curved optical waveguide for transmitting extraordinary light is formed on the LiNbO 3 electro-optic crystal substrate, and the optical waveguide has a higher refractive index than the substrate, and is oxidized along the outer periphery of the curved optical waveguide substantially parallel thereto. An optical waveguide structure wherein a magnesium diffusion region is formed. 2. When forming a curved extraordinary light propagation optical waveguide having a higher refractive index than the substrate on a LiNbO 3 electro-optic crystal substrate, magnesium oxide is formed along the outer periphery of the extraordinary light propagation curved optical waveguide substantially parallel thereto. A method for forming an optical waveguide, comprising:
JP61302823A 1986-12-20 1986-12-20 Optical waveguide and method for forming the same Expired - Lifetime JP2705790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302823A JP2705790B2 (en) 1986-12-20 1986-12-20 Optical waveguide and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302823A JP2705790B2 (en) 1986-12-20 1986-12-20 Optical waveguide and method for forming the same

Publications (2)

Publication Number Publication Date
JPS63157109A JPS63157109A (en) 1988-06-30
JP2705790B2 true JP2705790B2 (en) 1998-01-28

Family

ID=17913522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302823A Expired - Lifetime JP2705790B2 (en) 1986-12-20 1986-12-20 Optical waveguide and method for forming the same

Country Status (1)

Country Link
JP (1) JP2705790B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102403A (en) * 1987-10-15 1989-04-20 Nec Corp Bent optical waveguide
JP2008026374A (en) 2006-07-18 2008-02-07 Fujitsu Ltd Optical waveguide, optical device, and method for manufacturing optical waveguide
JP5123528B2 (en) * 2007-01-11 2013-01-23 富士通オプティカルコンポーネンツ株式会社 Optical waveguide, optical device, and optical waveguide manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941167B2 (en) * 1975-08-09 1984-10-05 日本電信電話株式会社 light modulator
JPS5263352A (en) * 1975-11-20 1977-05-25 Sumitomo Electric Ind Ltd Preparation for light conductive wave route by solid film
JPS63147111A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Optical waveguide circuit

Also Published As

Publication number Publication date
JPS63157109A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
US4547262A (en) Method for forming thin film passive light waveguide circuit
JPH0688915A (en) Planar lightguide and manufacture thereof
JP4682081B2 (en) Optical device
EP0642052A1 (en) Polymeric thermo-optical waveguide device
US4983006A (en) Polarization-independent optical waveguide switch
US5661830A (en) Waveguide-type optical control device
JP2705790B2 (en) Optical waveguide and method for forming the same
US5291576A (en) Single mode optical waveguide
JPH06186451A (en) Optical waveguide device
US5687265A (en) Optical control device and method for making the same
CA2130605A1 (en) Polymeric thermo-optic device
JPS6396626A (en) Waveguide type light control element
JPH06100694B2 (en) Method of forming optical waveguide
US6384958B1 (en) Free-space thermo-optical devices
KR100429225B1 (en) Thermo-Optical Switch
JP2788762B2 (en) Optical circuit
JP3735685B2 (en) Integrated optical waveguide device
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JPH07168042A (en) Light control device and its manufacture
KR100374345B1 (en) Method for manufacturing buried optical waveguide
JP2855676B2 (en) Optical waveguide
CA2256216C (en) Optical control device and method for making the same
JPH07270634A (en) Manufacture of optical waveguide and optical waveguide substrate
JP2812320B2 (en) Integrated optical circuit and manufacturing method thereof
JPH0886990A (en) Waveguide type optical controlling element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term