JPS63147111A - Optical waveguide circuit - Google Patents

Optical waveguide circuit

Info

Publication number
JPS63147111A
JPS63147111A JP61294564A JP29456486A JPS63147111A JP S63147111 A JPS63147111 A JP S63147111A JP 61294564 A JP61294564 A JP 61294564A JP 29456486 A JP29456486 A JP 29456486A JP S63147111 A JPS63147111 A JP S63147111A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
waveguide
refractive index
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61294564A
Other languages
Japanese (ja)
Inventor
Natsutsu Aran
アラン・ナッツ
Hiroshi Mori
宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Nippon Sheet Glass Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61294564A priority Critical patent/JPS63147111A/en
Publication of JPS63147111A publication Critical patent/JPS63147111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance the optical insulating characteristic of an above-mentioned waveguide and to increase the density and integration scale of circuits by determining the thickness direction of a substrate at the X-axis or Y-axis direction of a crystal and decreasing the refractive index in the required parts adjacent to the optical waveguide in the substrate region outside the above-mantioned waveguide by hydrogen atom substitution. CONSTITUTION:The substrate 1 consists of an LiNbO3 crystal and is so formed that the X-axis or Y-axis direction of the crystal is made to coincide with the thickness direction. Ti is diffused from the region of a prescribed circuit pattern to form the optical waveguide 2 having the high refractive index within the substrate. The lower refractive index regions 3A, 3B are provided to a belt shape of a specified width adjacently to the outer peripheral side of both curved paths 2B, 2C over the length from nearly the beginning point of the curve up to the end point. The regions 3A, 3B are formed by substituting Li in the LiNbO3 crystal with H over the regions of the specified depth and width. A transmission loss is thereby greatly decreased and the radius of curvature can be decreased simultaneously in the case of including the curved parts in the waveguide and, therefore, the density ad integration scale of the circuit are increased and the size of the element is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はニオブ酸リチウム結晶を用いた光導波回路の改
良に関し、特に伝送損失を低減する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in optical waveguide circuits using lithium niobate crystals, and particularly to techniques for reducing transmission loss.

〔従来の技術〕[Conventional technology]

従来、ニオブ酸リチウム(LiNbO3)の結晶から成
る基板に、特定の回路パターンで基板内にチタン(Ti
)を拡散させて高屈折率の光導波路を件杵古専形成した
光導波回路が知られている。
Conventionally, titanium (Ti) was added to a substrate made of lithium niobate (LiNbO3) crystal in a specific circuit pattern.
) is known to form an optical waveguide with a high refractive index.

上記の光導波回路において、回路中に分岐部あるいは合
流部を設ける場合、これら部分と入出射端との間の導波
路を曲線路にして、導波路の入出射端での光軸が基板側
縁に垂直になるように方向転換させ、光ファイバとの接
続効率を高める構造が一般に採られる。
In the above-mentioned optical waveguide circuit, when a branch part or a merging part is provided in the circuit, the waveguide between these parts and the input/output end is made into a curved path so that the optical axis at the input/output end of the waveguide is on the substrate side. A structure is generally adopted in which the direction is changed to be perpendicular to the edge to increase the connection efficiency with the optical fiber.

上記のように回路中に曲線路が含まれている場合、この
曲線路の曲率半径が小さくなるほど波光損失は大きくな
る。
When a circuit includes a curved path as described above, the smaller the radius of curvature of this curved path, the greater the wave light loss becomes.

一方、オプトエレクトロニクス分野での装置の小型化、
高密度集積化の要請に伴ない、光導波回路の高密度集積
化が強く望まれており、回路長さを可及的に小さくする
ためには、光導波路の曲線路部分の曲率半径をできるだ
け小さくすることが必要となる。
On the other hand, miniaturization of equipment in the field of optoelectronics,
With the demand for high-density integration, there is a strong desire for high-density integration of optical waveguide circuits.In order to reduce the circuit length as much as possible, the radius of curvature of the curved path portion of the optical waveguide must be reduced as much as possible. It is necessary to make it smaller.

また高密度集積化を達成するため、回路中で複数の光導
波路を並設する場合は、これら導波路の間隔をできる限
り狭めることが望ましいが、あまり間隔を狭めると隣接
する導波路間での伝搬光の相互干渉(クロストーク)を
生じるという問題がある。
Furthermore, in order to achieve high-density integration, when multiple optical waveguides are installed in parallel in a circuit, it is desirable to narrow the spacing between these waveguides as much as possible, but if the spacing is made too narrow, it will cause problems between adjacent waveguides. There is a problem in that mutual interference (crosstalk) of propagating light occurs.

上記のような箇所での波光損失を小さく抑える基本的な
手段としては、導波路と導波路を囲む領域との屈折率差
を大きくする方法がある。そしてLiN1)03結晶基
板を用いた光導波回路では、上記屈折率差を大きくする
ため下記のような方法が提案されている。すなわち曲線
路部分については、T1拡散処理を二段階に分けて行な
い、第4段処理時に第6図に示すように第2段処理での
拡散源T1の堆m層2Qを、曲線路外周側を連続底辺と
する鋸歯形状にし、これにより導波路内に内周側よりも
外周側の方が高い屈折量勾配を設ける方法が提案されて
いる。また、例えばマツハツエンダ−型干渉計の如く、
導波路同仕が非常に近接している回路では、これら導波
路間の基板部分をイオンエツチングにより一定深さで削
り取り、導波路側面間に空気層を介在させることで前述
した屈折率差の増大を図り、導波路の光学的絶縁性を高
める方法が提案されている。
As a basic means of suppressing wave light loss at the above locations, there is a method of increasing the difference in refractive index between the waveguide and the region surrounding the waveguide. In an optical waveguide circuit using a LiN1)03 crystal substrate, the following method has been proposed to increase the above-mentioned refractive index difference. In other words, for the curved road portion, the T1 diffusion treatment is performed in two stages, and during the fourth stage treatment, as shown in Fig. 6, the deposition layer 2Q of the diffusion source T1 in the second stage treatment is transferred to the outer circumferential side of the curved road. A method has been proposed in which a waveguide is formed into a sawtooth shape with a continuous base, thereby creating a refraction amount gradient higher on the outer circumferential side than on the inner circumferential side in the waveguide. Also, for example, like the Matsuhatsu Ender type interferometer,
In circuits in which waveguides of the same type are very close to each other, the substrate portion between these waveguides is removed to a certain depth by ion etching, and an air layer is interposed between the sides of the waveguides, thereby increasing the refractive index difference mentioned above. Methods have been proposed to improve the optical insulation of waveguides.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに上述した従来方法のうち、前者の方法は二段階
にわたる高温での拡散処理を必要とし、しかも第1段の
拡散処理では鋸歯状のような蓚めて複雑なパターンで拡
散源T1の堆積層を形成しなければならない。
However, among the conventional methods mentioned above, the former method requires a two-step diffusion treatment at high temperature, and in the first stage diffusion treatment, the deposited layer of the diffusion source T1 is formed in a sawtooth-like and complicated pattern. must be formed.

しかも上記技術はS字型カーブの導波路の、それもオフ
セットfiの小さい回路部分で実施されているにすぎず
、直角的り路のようにより厳しい条件の要求される回路
には適用できない。
Furthermore, the above technique is only implemented in a circuit portion of an S-shaped curved waveguide with a small offset fi, and cannot be applied to a circuit requiring stricter conditions such as a right-angled target path.

また後者のイオンエツチングによって光導波路の光学的
絶縁性を高める方法では、複雑なマスキング手段を必要
とし、またエツチングは本質的に基板材を破壊するもの
であるから、エツチング領域に接する導波路側面には微
視的な凹凸が生成され、このため伝搬光の散乱損失を生
じるという問題がある。
In addition, the latter method of increasing the optical insulation of the optical waveguide by ion etching requires complicated masking means, and since etching essentially destroys the substrate material, the side surface of the waveguide in contact with the etched area is There is a problem in that microscopic unevenness is generated, which causes scattering loss of propagating light.

また多くの場合、エツチングを正確に微小な特定領域に
限定できるエツチング用スロット部材ヲ一と極めて微小
であり、このような回路では導波路に悪影響を与えずに
基板部分のみをエツチング除去することはほとんど不可
能といえる。
Furthermore, in many cases, the etching slot member that can precisely limit etching to a specific, minute area is extremely small, and in such circuits, it is impossible to remove only the substrate portion by etching without adversely affecting the waveguide. It's almost impossible.

本発明の主な目的は光導波回路における導波路の光学的
絶縁性を高めることにあり、特に回路の高密度集積化を
図る場合にネックとなる曲線路部分で、波光損失を増大
させることなく曲率半径をより小さくでき、また導波路
近接部分ではクロストークを増大させることなくより間
隔を狭めることのできる回路構造を提供することである
The main purpose of the present invention is to improve the optical insulation properties of waveguides in optical waveguide circuits, without increasing optical loss, especially in curved path sections, which are a bottleneck when attempting to achieve high-density integration of circuits. It is an object of the present invention to provide a circuit structure in which the radius of curvature can be made smaller and the spacing can be further narrowed in the vicinity of the waveguide without increasing crosstalk.

〔問題点を解決するための手段〕[Means for solving problems]

ニオブ酸リチウム(LiNbO3)結晶の基板にチタン
(Ti)拡散で光導波路を形成した光導波回路において
、基板の厚み方向を結晶のX軸又はY軸方向とし、且つ
光導波路外の基板領域のうち、少なくとも光導波路に隣
接する要部を水素原子置換で低屈折にだ。
In an optical waveguide circuit in which an optical waveguide is formed on a lithium niobate (LiNbO3) crystal substrate by titanium (Ti) diffusion, the thickness direction of the substrate is the X-axis or Y-axis direction of the crystal, and the substrate area outside the optical waveguide is At least the main parts adjacent to the optical waveguide are replaced with hydrogen atoms to achieve low refraction.

上記の水素原子置換で低屈折率化する要部の代表例とし
ては、導波路が曲線路を含む場合、この曲線路の外周側
に隣接する一定幅の帯状領域、また複数の導波路が近接
配置されている場合における導波路間の中間領域等が挙
げられる。
Typical examples of the main parts whose refractive index is lowered by hydrogen atom substitution are, when the waveguide includes a curved path, a band-shaped region of a constant width adjacent to the outer circumference of the curved path, and a band-shaped region with a constant width where multiple waveguides are in close proximity. Examples include an intermediate region between waveguides when the waveguides are arranged.

またLiNbO3結晶のLlとHとの置換は、基板面を
要部に開口を設けたアルミニウム膜等の被灰でマスキン
グした後、この基板面にカルボン酸等の水素基を有する
化合物溶液を接触させ、15oO〜300″C程度に加
熱することによって簡単に行なえる。
In addition, the replacement of Ll and H in the LiNbO3 crystal is achieved by masking the substrate surface with an ashes such as an aluminum film with openings in the main parts, and then contacting the substrate surface with a solution of a compound having hydrogen groups such as carboxylic acid. This can be easily done by heating to about 15oO to 300''C.

〔作 用〕[For production]

LiNbO3基板結晶のX@又はY軸方向に水素原子置
換した領域は、元の結晶(て比べてo、ott前後の大
きな屈折率低下を生じ、このためががる水素置換低屈折
率領域な光導波路の曲線路の外周側あるいは隣接導波路
間に設けることにより、光導波路の光学的絶縁性が高ま
り、曲線路の曲率半径を従来に比べてより小さくするこ
とができるとともに光導波路の並設間隔をより縮小でき
る。
The region in which hydrogen atoms are substituted in the X@ or Y-axis direction of the LiNbO3 substrate crystal has a large refractive index decrease of around o, ott compared to the original crystal, and this results in a hydrogen-substituted low refractive index region that is a light guide. By providing the waveguide on the outer periphery of the curved path or between adjacent waveguides, the optical insulation of the optical waveguide is improved, the radius of curvature of the curved path can be made smaller than before, and the spacing between parallel optical waveguides can be reduced. can be further reduced.

またLiNbO3結晶における水素原子置換は結晶軸に
沿って一方向に進行し周辺への拡散がほとんど生じない
ため置換領域の断面はほぼ四辺形となり、したがって所
望の基板上領域に対して高精度の側辺輪郭で設けること
ができる。
In addition, hydrogen atom substitution in the LiNbO3 crystal proceeds in one direction along the crystal axis and hardly diffuses to the periphery, so the cross section of the substitution region is approximately quadrilateral. It can be provided with a side contour.

上記により光導波回路の高密度集積化が容易になる。The above facilitates high-density integration of optical waveguide circuits.

〔実 施 例〕〔Example〕

以下本発明を図面に示した実施例に基づき詳細に説明す
る。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図は本発明の一実施例を示す要部平面図であり、基
板/はLiNbO3結晶から成り、結晶のX軸又はY軸
方向を厚み方向と一致させて成形されている。そして基
板/の面の所定回路パターンの領域からTiを拡散させ
ることにより、基板の他部分よりも高屈折率の光導波路
コが基板内に形成されている。
FIG. 1 is a plan view of essential parts showing an embodiment of the present invention, in which the substrate is made of LiNbO3 crystal and is molded so that the X-axis or Y-axis direction of the crystal coincides with the thickness direction. By diffusing Ti from a predetermined circuit pattern area on the surface of the substrate, an optical waveguide having a higher refractive index than other parts of the substrate is formed in the substrate.

光導波路2は、直線路部分2A、これに絖く第一の曲線
路部分2B、2Bとは曲率中心が反対側に位置する第二
の曲線路部分2G、及びこれに続く第二の直線路部分2
Dが設けてあり、これにより両面線路21.2D間に所
定の偏位量を与えている。
The optical waveguide 2 includes a straight path portion 2A, a first curved path portion 2B, a second curved path portion 2G whose center of curvature is located on the opposite side of 2B, and a second straight path following this. part 2
D is provided, thereby giving a predetermined amount of deviation between the double-sided lines 21.2D.

そして両回線路2B、2Gの外周側に隣接して、一定幅
の帯状に低屈折率化領域3に、3Bがほぼ曲線の始点か
ら終点までの長さにわたり設けである。
Adjacent to the outer periphery of both circuit lines 2B and 2G, a low refractive index region 3 is provided in the form of a band with a constant width, extending approximately from the start point to the end point of the curve.

第1図のU−U線に沿う部分断面および屈折率分布を第
2図に示す。図のように両低屈折率化領域3A、3Bは
、深さ方向には光導波路コの底部よりも下方まで形成し
である。低屈折率領域3A。
FIG. 2 shows a partial cross section and refractive index distribution taken along line U-U in FIG. 1. As shown in the figure, both the low refractive index regions 3A and 3B are formed to extend below the bottom of the optical waveguide in the depth direction. Low refractive index region 3A.

3BはLiNbO3結晶中のLlを一定深さおよび幅の
領域にわたりHに置換することで形成されており、例え
ば下記の方法で実施できる。
3B is formed by replacing Ll in the LiNbO3 crystal with H over a region of a certain depth and width, and can be performed, for example, by the following method.

すなわち、基板lの回路形成面をアルミニウム膜等の被
膜で被覆し、周知のフォトリソグラフィー技術を用いて
所望の領域に開口を形成し、この開口を通して水素基を
有する化合物、例えば安息香酸を接触させ、/jO″C
ないしj4ZダCの温度で数分ないし数時間加熱処理す
る。
That is, the circuit formation surface of the substrate 1 is coated with a film such as an aluminum film, an opening is formed in a desired region using a well-known photolithography technique, and a compound having a hydrogen group, such as benzoic acid, is brought into contact with the surface through the opening. ,/jO″C
Heat treatment is carried out at a temperature of 1 to 4Z for several minutes to several hours.

上記の水素置換で屈折率は約o、oy、前後(AjJn
m波長光)低下する。
With the above hydrogen substitution, the refractive index is around o, oy (AjJn
m wavelength light) decreases.

ところで光導波路の曲り部における損失は一般にA =
 018Xp (−C2R)の式で表わすことができる
。ここでRは曲り部の曲率半径、C1及びC2は伝播光
に対する側方の閉じ込め効果に依存する定数でRに対し
て独立であ°る。
By the way, the loss at the bend of an optical waveguide is generally A =
It can be represented by the formula: 018Xp (-C2R). Here, R is the radius of curvature of the bend, and C1 and C2 are constants that depend on the lateral confinement effect on the propagating light and are independent of R.

また直線路から曲線路へ至る遷移区間では、A1 = 
Q / 2 R” の式で表わされる。
In addition, in the transition section from a straight road to a curved road, A1 =
It is expressed by the formula Q/2R''.

ここでRは曲線路の曲率半径、qは導波路の閉じ込め効
果に依存する定数である。これを第S図に基づいて説明
すると、曲り導波路2/内を伝播する光のパワー分布2
2が入射端から出射端まで一定に保持されるためには、
導波路断面内の各点における接線方向速度が導波路曲率
中心からの距離の関数でなければならない。しかしなが
ら実際には内周側から外周側まで同一であるため、特定
の曲率半径RCの部分における伝播定数が自由空間伝播
光のそれと一致し、これに起因して伝播光の一部が導波
路外へ放出されて損失となる。
Here, R is the radius of curvature of the curved path, and q is a constant depending on the confinement effect of the waveguide. To explain this based on Figure S, the power distribution 2 of light propagating inside the curved waveguide 2/
In order for 2 to be kept constant from the input end to the output end,
The tangential velocity at each point within the waveguide cross section must be a function of distance from the waveguide center of curvature. However, in reality, the propagation constant is the same from the inner circumference to the outer circumference, so the propagation constant at a certain radius of curvature RC matches that of the free space propagating light, which causes some of the propagating light to exit the waveguide. It is released into the air and becomes a loss.

しかるに前述した実施例のように、曲り導波路の外周に
誇接して、水素置換により基板結゛鵠本来の屈折率より
も屈折率をさらに低下させた領域JA、3Bを設けてお
けば上記の導波路外への波光損失が低減し、それだけ曲
線路の曲率半径をより小さくすることが可能になる。
However, as in the embodiment described above, if regions JA and 3B are provided adjacent to the outer periphery of the curved waveguide and whose refractive index is further lowered than the original refractive index of the substrate by hydrogen substitution, the above-mentioned problem can be achieved. The loss of wave light to the outside of the waveguide is reduced, and the radius of curvature of the curved path can be made smaller accordingly.

例えば、本発明に係る低屈折率化領域を設けない従来の
LiNbO3基板T1拡散導波路の場合、900曲り路
での許容限界曲率半径は約/cmであるのに対し、本発
明によれば曲率半径/ mmの曲り路も可能であり、曲
率半径l1mm程度でも従来よりも曲り路伝送損失を大
きく低減させることができる。
For example, in the case of a conventional LiNbO3 substrate T1 diffusion waveguide without the low refractive index region according to the present invention, the allowable limit radius of curvature for a 900-curve path is approximately /cm, whereas according to the present invention, the curvature radius A curved path with a radius of 1 mm is also possible, and even with a radius of curvature of about l1 mm, the transmission loss in a curved path can be significantly reduced compared to the conventional method.

第3図及び第q図に本発明の他の実施例を示す。Other embodiments of the present invention are shown in FIGS. 3 and q.

本例は例えばマツハツエンダ−干渉計回路の如く、並設
された光導波路//、/コ間の間隔が極めて小さい場合
、これら導波路//、/、2間の伝播光のクロストーク
を防止するため、両導波路間の基板部分を前述実施例と
同様に一定深さにわたり水素置換することにより、低屈
折率化領域13を設けた伊Iである。
This example prevents crosstalk of propagating light between these waveguides //, /, when the spacing between the parallel optical waveguides //, / is extremely small, such as in the Matsuhatsu Ender interferometer circuit. Therefore, the low refractive index region 13 is provided by replacing the substrate portion between both waveguides with hydrogen to a certain depth as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、LiNbO3基板のTi拡散導波路に
おいて曲線路部分を含む場合に、該部分での伝送損失を
大きく低減させることができ、同時に曲線路の曲率半径
を小さくできるので回路の高密度集積化及び素子の縮小
化を図ることができる。
According to the present invention, when a Ti diffusion waveguide on a LiNbO3 substrate includes a curved path portion, the transmission loss in the portion can be greatly reduced, and at the same time, the radius of curvature of the curved path can be reduced, resulting in high circuit density. Integration and miniaturization of elements can be achieved.

またLiNbO3結晶の水素置換処理は、前述した従来
の二段階T1拡散処理あるいはイオンエツチング処理に
比べて高価な特殊設備を必要とせず、安価に且つ簡単に
実施でき、また低温度で迅速に処理できるという利点が
ある。
Furthermore, the hydrogen replacement treatment of LiNbO3 crystals does not require expensive special equipment compared to the conventional two-step T1 diffusion treatment or ion etching treatment described above, and can be carried out at low cost and easily, and can be processed rapidly at low temperatures. There is an advantage.

また必要に応じて置換処理後に加熱処理することにより
屈折率勾配を滑らかな曲線分布とすることもできる。
Further, if necessary, the refractive index gradient can be made into a smooth curve distribution by heat treatment after the substitution treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第」図は第1
図中の■−■線に沿う部分断面図、第3図は本発明の他
の実施例を示す平面図、第ダ図は第3図の要部横断面図
、第S図は従来の導波路の曲線路部分で伝送損失が発生
する状態を示す平面図、第6図は従来方法の一例を示す
斜視図である。 l・・・・・・LiNbO3基板 コ、/ハ/ 、:=
−Ti拡散導波路 2B 、 jc・・・・・・曲線路
31.3B、/J・・・・・・低屈折率化領域特許出願
人 日本板硝子株式会社 第1図 第2図 第3図
Fig. 1 is a plan view showing one embodiment of the present invention;
FIG. 3 is a plan view showing another embodiment of the present invention, FIG. D is a cross-sectional view of the main part of FIG. 3, and FIG. FIG. 6 is a plan view showing a state in which transmission loss occurs in a curved portion of a wave path, and a perspective view showing an example of a conventional method. l...LiNbO3 substrate ko, /ha/ , :=
-Ti diffusion waveguide 2B, jc... Curved path 31.3B, /J... Low refractive index region Patent applicant Nippon Sheet Glass Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)ニオブ酸リチウム(LiNbO_3)結晶の基板
にチタン(Ti)拡散で光導波路を形成した光導波回路
において、 基板の厚み方向を結晶のX軸又はY軸方向とし、且つ光
導波路外の基板領域のうち、少なくとも光導波路に隣接
する要部を水素原子置換で低屈折率化したことを特徴と
する光導波回路。
(1) In an optical waveguide circuit in which an optical waveguide is formed on a lithium niobate (LiNbO_3) crystal substrate by titanium (Ti) diffusion, the thickness direction of the substrate is the X-axis or Y-axis direction of the crystal, and the substrate is outside the optical waveguide. An optical waveguide circuit characterized in that at least a main part adjacent to an optical waveguide of the region has a low refractive index by hydrogen atom substitution.
(2)特許請求の範囲第1項において、前記要部は、光
導波路途中に設けた曲線路部分の外周側に隣接する帯状
領域である光導波回路。
(2) The optical waveguide circuit according to claim 1, wherein the main portion is a band-shaped region adjacent to the outer circumferential side of a curved path portion provided in the middle of the optical waveguide.
(3)特許請求の範囲第1項において、 前記要部は、近接配置された複数本の光導波路間の中間
部域である光導波回路。
(3) The optical waveguide circuit according to claim 1, wherein the main part is an intermediate region between a plurality of optical waveguides arranged closely.
JP61294564A 1986-12-10 1986-12-10 Optical waveguide circuit Pending JPS63147111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294564A JPS63147111A (en) 1986-12-10 1986-12-10 Optical waveguide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294564A JPS63147111A (en) 1986-12-10 1986-12-10 Optical waveguide circuit

Publications (1)

Publication Number Publication Date
JPS63147111A true JPS63147111A (en) 1988-06-20

Family

ID=17809419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294564A Pending JPS63147111A (en) 1986-12-10 1986-12-10 Optical waveguide circuit

Country Status (1)

Country Link
JP (1) JPS63147111A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157109A (en) * 1986-12-20 1988-06-30 Fujitsu Ltd Forming method for optical waveguide
JPH01321408A (en) * 1988-06-24 1989-12-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor waveguide
JP2007094440A (en) * 2007-01-11 2007-04-12 Fujitsu Ltd Optical waveguide, optical device, and method for manufacturing the optical waveguide
JP2008096484A (en) * 2006-10-06 2008-04-24 Sony Corp Optical semiconductor apparatus
JP2019117236A (en) * 2017-12-26 2019-07-18 日本電信電話株式会社 Optical circuit capable of suppressing loss due to light radiated from bend waveguide and light source with monitoring function using said optical circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157109A (en) * 1986-12-20 1988-06-30 Fujitsu Ltd Forming method for optical waveguide
JPH01321408A (en) * 1988-06-24 1989-12-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor waveguide
JP2873303B2 (en) * 1988-06-24 1999-03-24 日本電信電話株式会社 Semiconductor optical waveguide
JP2008096484A (en) * 2006-10-06 2008-04-24 Sony Corp Optical semiconductor apparatus
US7526170B2 (en) 2006-10-06 2009-04-28 Sony Corporation Optical semiconductor device
JP2007094440A (en) * 2007-01-11 2007-04-12 Fujitsu Ltd Optical waveguide, optical device, and method for manufacturing the optical waveguide
JP2019117236A (en) * 2017-12-26 2019-07-18 日本電信電話株式会社 Optical circuit capable of suppressing loss due to light radiated from bend waveguide and light source with monitoring function using said optical circuit

Similar Documents

Publication Publication Date Title
US4753505A (en) Optical thermooptic switch device
US4630885A (en) Multichannel optical wave guide resonator
EP0467579A2 (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
KR100248055B1 (en) Hybrid wave guide &amp; its fabrication method
KR870002460A (en) Blocking polarizers and methods
US7760974B2 (en) Silicon arrayed waveguide grating device for reducing effective refractive index variation of optical waveguide according to temperature
JPH04172308A (en) Y-branched light circuit
JPH05196826A (en) Optical coupler and manufacture thereof
JPH083581B2 (en) Electro-optical mode converter
JPS63147111A (en) Optical waveguide circuit
JP2589367B2 (en) Optical branching / combining circuit
JP3970350B2 (en) Optical branching device
JPH04131806A (en) Optical directional coupler
JPS63147112A (en) Optical waveguide circuit
JPH0197907A (en) Production of optical waveguide circuit
JP2705790B2 (en) Optical waveguide and method for forming the same
EP0178815B1 (en) Improvements relating to optical waveguides
JP2000231026A (en) Optical waveguide type optical demultiplexing multiplexing circuit
JPS6343105A (en) Single mode optical waveguide
EP0585468B1 (en) Waveguide type optical part
JPH06308338A (en) Waveguide type optical parts
GB2191304A (en) Integrated optical channel waveguide
KR100374345B1 (en) Method for manufacturing buried optical waveguide
JPH07270634A (en) Manufacture of optical waveguide and optical waveguide substrate
JPS6377009A (en) Y-branch waveguide