JP2703232B2 - Light emitting diode array and method of manufacturing the same - Google Patents

Light emitting diode array and method of manufacturing the same

Info

Publication number
JP2703232B2
JP2703232B2 JP21962387A JP21962387A JP2703232B2 JP 2703232 B2 JP2703232 B2 JP 2703232B2 JP 21962387 A JP21962387 A JP 21962387A JP 21962387 A JP21962387 A JP 21962387A JP 2703232 B2 JP2703232 B2 JP 2703232B2
Authority
JP
Japan
Prior art keywords
light emitting
substrate
scribe
needle
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21962387A
Other languages
Japanese (ja)
Other versions
JPS63239874A (en
Inventor
稲葉  昌治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPS63239874A publication Critical patent/JPS63239874A/en
Application granted granted Critical
Publication of JP2703232B2 publication Critical patent/JP2703232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 イ) 産業上の利用分野 本発明は1列に整列させて用いるに好適な光プリンタ
用の発光ダイオードアレイおよびその製造法に関する。 ロ) 従来の技術 近年光プリンタヘッドとして多数の整列された発光部
を有した発光ダイオードアレイが用いられるようになっ
てきたが、その中でも特開昭60−37575号公報や特開昭6
2−25071号公報に示されるように、光プリンタの主走査
方向の全長にわたって発光ダイオードアレイを1列に並
べた、いわゆる1ライン型光プリンタヘッドが主流とな
っている。このような光プリンタヘッドにおいては、ウ
エハの大きさや特性安定化の条件から、長さ5〜10mmの
発光ダイオードアレイを200〜400mmの長さに整列させて
いる。そしてその場合に問題となるのは第5図(b)に
示すように発光ダイオードアレイ(50)(50)の継目部
分(イ)においても発光部(52)(52)…の整列ピッチ
が所定値におさまるようにすることで、そのためウエハ
を分割する時には発光部(52)(52)…の近傍で行なわ
なければならない事である。 このような分割位置に制限を受けるウエハの分割は、
用いている化合物半導体基板の劈開方向にスクライブ
し、加圧等をするのであるが、スクライブ方向は劈開方
向に完全に一致するのは困難で、方向として概ね0.001
〜0.010度ずれ、直線性でもわずかなずれを生ずる。こ
の時基板結晶は全面が1つの劈開面で割れてその割れた
面が鏡面になるのではなく、スクライブラインに添って
割れる部分と劈開面とが混在し、概ねスクライブライン
に添うがその面は微小鏡面集合体のような状態を呈す
る。この様な割れ方をすると、割れた部分を中心に結晶
歪が発生しやすく、端縁から20乃至40μmのところまで
その影響が及ぶ事が少なくない。従ってこの部分に発光
部(52)があると第5図に示すように本来略凹字状の発
光分布(ロ)を示す発光輝度特性がアレイ端面側で輝度
低下したり光洩れの生じた発光分布(ハ)となったり、
目視でも黒いかげり(ニ)が観察できたり、あるいは急
速劣化を生じたりする。これらは印字品位を劣化させる
ので不都合である。 ハ) 発明が解決しようとする問題点 本発明は上述の点を改めるためになされたもので、発
光ダイオードアレイ端縁の近傍に位置する発光部の特性
劣化を生じない発光ダイオードおよびその製造法を提供
するものである。 ニ) 問題点を解決するための手段 本発明は少なくとも発光部近傍は自然劈開による鏡面
とするもので、それを得るためにスクライブラインを発
光部の近傍のみ設けないようにするものであり、特には
発光部の近傍に被膜や凹部を設けてスクライブ針の針針
をさせるものである。 ホ) 作用 これにより発光部の近くまでは分割が規制され、かつ
発光部のごく近傍では結晶劈開面に従って分割されるの
で、発光部間隔が狭くても分割位置やアレイ外形が変わ
ることなく所定の位置で分割でき、しかも発光部には結
晶歪が及ばないから特性劣化は生じない。 ヘ) 実施例 第1図は本発明実施例の発光ダイオードアレイの要部
斜視図で、GaAs上にGaAsPをエピタキシャル成長させた
化合物半導体の基板(1)の成長層の表面に、選択拡散
法により発光部(2)(2)…が1列に整列して設けら
れ、その発光部(2)(2)…に給電するための個別電
極(3)(3)が絶縁間(4)を介して設けられ、裏面
には共通電極(5)が略全面に設けられている。そして
発光部(2)(2)…の列に平行な側壁(6)はスクラ
イブ法又はダイシング法によって得られているので微小
鏡面集合体のような面若しくは粗面を呈しているが、発
光部(2)(2)…の整列方向の延長上に位置する側壁
(7)においてはスクライブ法による微小鏡面集合体の
ような面を呈しているものの、発光部(2)の近傍のみ
にはスクライブ針によるけがき線がなかった事による鏡
面状の自然劈開面(8)が得られている。 このような発光ダイオードアレイについて製造方法を
含めより具体的に説明する。 実施例 1. 第2図(a)に示すようにウエハ(分割前の化合物半
導体の基板)(20)として厚み280〜380μmであり、表
面から5〜10μmの深さに発光部(22)(22)…が選択
拡散してあるものを準備する。光プリンタヘッドの解像
度が9.45ドット/mmと16ドット/mmの例をとると、発光部
(22)(22)…の大きさはそれぞれ1辺65μm、40μm
の略正方形をなし、発光部(22)(22)…の間隔は40.5
μm、22.5μmである。但し、分割後、ヘッド基板上で
整列させなくてはならないので、スクライブ予定箇所の
み発光部(22)(22)の間隔を28μm前後、12μm前後
と狭くしておくとより好ましい。このようなウエハ(2
0)に個別電極(23)(23)…と共通電極(25)を設け
るが、発光部(22)(22)…を形成するために用いたマ
スクとしての絶縁膜(24)をそのまま個別電極(23)
(23)…の短絡防止用介在層として用いてもよい。個別
電極(23)(23)…は例えばアルミニウム膜で、第2図
(b)及び(c)に示すように個別電極(23)(23)…
形成時に蒸着法等により、スクライブされる位置(破線
(ホ))の発光部(22)(22)…の間に部分的に薄膜
(29)を同時形成してある。このアルミニウム膜からな
る薄膜(29)はスクライブ針で削られてもよいが、ウエ
ハ(20)表面に割れるに充分な深さのけがき溝をつけな
いようにする必要がある。アルミニウムは材質的に粘り
があるので、例えば0.5〜1.5μmの蒸着膜を設けておけ
ば、スクライブ後のローラー加圧で、その薄膜(29)の
下方部分(但しくはスクライブ方向に少しずれた下方部
分)は自然劈開して鏡面状を呈する。この時薄膜(29)
が剥離することがあるが、短絡事故等を生じない限り問
題はなく、剥離したとしても事故が生じない様に個別電
極(23)の1つと接続しておいてもよい。また上述した
絶縁膜(24)は例えば厚みが0.1〜1.0μmの中から選ば
れた均一な厚みの窒化硅素膜であり、スクライブ領域全
体にわたって設けてあれば、スクライブ針により極めて
簡単に切断、破壊されるので特に問題は生じない。しか
しスクライブ領域全体にわたって完全に除去しておいて
もよい。 実施例 2. 前述したと同様のウエハにおいて、スクライブ針を針
飛させる方法として無機絶縁膜を用いることもできる。
これは第3図に示すようにスクライブ領域に透孔(39
1)(391)…を有し、他の部分はスクライブされる位置
(破線(ヘ))の発光部(32)(32)…の間を含む全て
のウエハ面上に無機絶縁膜(39)を設けることで達成で
きる。この時にはスクライブ針によって無機絶縁膜(3
9)が剥離され発光部(32)(32)…間にもけがき線が
できない様、無機絶縁膜(39)はウエハ表面等と密着性
がよい材料や被膜形成法を選び、密着力が強くなるよう
に無機絶縁膜(39)は広い面積に設けるのがよい。例え
ばCVD法による酸化アルミニウム、PSG、窒化硅素等の0.
7〜5.0μmの無機絶縁膜(39)を用いることができる
が、これらの無機絶縁膜(39)を発光部(32)(32)…
の上にも設けると、側壁に前述した鏡面状の自然劈開面
を得るばかりか、光取出効率も向上させることができ好
ましい。 実施例 3. スクライブ針を針飛させる方法として凹部の形成もま
た有効であった。例えば光プリンタヘッドの解像度が12
ドット/mmの例では、第4図に示す発光部(42)(42)
…の大きさが1辺50μmの略正方形、その間隔(34.5μ
m)のうちスクライブ部の間隔を26.5μmとし、メサエ
ッチング法で巾20μm長さ80μm深さ約5μmの凹部
(49)を形成し、その凹部の略中央部をスクライブ針が
運針するようにスクライブした。それによって発光部の
近傍のみに鏡面状の自然劈開面(48)を得ることができ
た。 この方法ではスクライブ針として従来のダイヤモンド
ポインタの他、ダイシングソーをスクライブ的に用いる
こともでき、この場合上述の例で、切断部の発光部間隔
を70μmとし、巾60μm深さ20μmのメサエッチ法によ
る凹部を形成し刃厚50μmのダイシング刃で切断した。
この時自然劈開面はスクライブポインタの時ほど大きな
面積ではないが発光部に結晶歪は及ばなかった。 以上のいずれの例においても、金属の薄膜(29)、無
機絶縁膜(39)、メサエッチによる凹部(49)といった
針飛手段を設けた上で、その針飛手段の端縁の形状を工
夫したり、スクライブ針の運針速度を変化させたりして
針飛手段での針飛をより効果的に行い、部分的なスクラ
イブけがき線の欠落を得ることができる。 また、分割するに際してウエハの裏面側(共通電極の
設けてある側)からあらかじめ巾の広いスクライブ方向
に添った溝を設けておき、その溝の上方である元板表面
で前述したスクライブをし、加圧すると、実質的にウエ
ハを薄くしてから分割することになる。これにより発光
部の分割歪による特性劣化については実験をした全ロッ
ト中に皆無で、しかも等ピッチ配列の妨げとなるバリ
(突出部)が発生しなかったという顕著な効果が得られ
た。この時の裏面からの溝の深さは、残ったウエハの厚
みが100〜180μm程度になるようにしておけば、作業中
に不所望にウエハが割れてしまうことはない。 ト) 発明の効果 以上の如くにより発光部の近傍は自然劈開面なので発
光部に結晶歪等の悪影響は及ばず、その製法においては
スクライブラインの切れ目は針飛手段の設けてあるとこ
ろのみなので素子の分割に際し発光部間隔が狭くても位
置ずれを生ずることなく、しかも実質的に薄いウエハに
おいては等ピッチ配列の妨げとなるようなバリの発生も
防げる。これにより、発光部は大巾な輝度低下のない輝
度分布を示し、また略中央部と略同等の寿命を端部の発
光部も含めて得ることができ、さらにこのような発光ダ
イオードアレイを長尺に連接配列させても発光部間隔が
略一定に保てるので、印字品位の劣化も防ぐことができ
た。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode array for an optical printer suitable for use in a line, and a method for manufacturing the same. B) Prior art In recent years, light emitting diode arrays having a large number of aligned light emitting portions have been used as optical printer heads. Among them, Japanese Patent Application Laid-Open Nos.
As shown in JP-A-2-25071, a so-called one-line type optical printer head in which light emitting diode arrays are arranged in a line over the entire length of the optical printer in the main scanning direction has become mainstream. In such an optical printer head, a light emitting diode array having a length of 5 to 10 mm is arranged in a length of 200 to 400 mm in consideration of the size of the wafer and conditions for stabilizing characteristics. The problem in this case is that the alignment pitch of the light-emitting portions (52) (52) is also predetermined at the joint (a) of the light-emitting diode arrays (50) and (50) as shown in FIG. By setting the value within the range, when the wafer is divided, it must be performed in the vicinity of the light emitting units (52) (52). Division of a wafer which is restricted in such a division position is as follows.
Scribing is performed in the cleavage direction of the compound semiconductor substrate used, and pressure is applied. However, it is difficult for the scribing direction to completely match the cleavage direction, and the direction is generally 0.001.
0.010 degree deviation, slight deviation even in linearity. At this time, the entire surface of the substrate crystal is broken at one cleavage plane, and the split surface does not become a mirror surface, but a portion that is split along the scribe line and a cleavage surface are mixed, and the surface generally follows the scribe line, but the surface is It exhibits a state like a micro mirror surface aggregate. When such cracking is performed, crystal strain is likely to occur at the center of the cracked portion, and the influence often extends to 20 to 40 μm from the edge. Therefore, if the light emitting portion (52) is provided in this portion, the light emission luminance characteristic which originally shows a light emission distribution (b) having a substantially concave shape as shown in FIG. Distribution (c),
Black shading (d) can be observed visually, or rapid deterioration occurs. These are disadvantageous because they degrade the print quality. C) Problems to be Solved by the Invention The present invention has been made in order to improve the above-mentioned point, and an LED and a method of manufacturing the same which do not cause deterioration in characteristics of a light emitting portion located near an edge of a light emitting diode array. To provide. D) Means for Solving the Problems In the present invention, at least the vicinity of the light emitting portion is a mirror surface formed by natural cleavage, and in order to obtain the same, a scribe line is not provided only near the light emitting portion. Is to provide a coating or a concave portion in the vicinity of the light emitting portion to make a scribe needle. (E) Action As a result, the division is restricted to the vicinity of the light-emitting portion, and the division is performed according to the crystal cleavage plane in the very vicinity of the light-emitting portion. Since the light-emitting portion can be divided at the position and no crystal distortion is applied to the light-emitting portion, no characteristic deterioration occurs. F) Embodiment FIG. 1 is a perspective view of a main part of a light emitting diode array according to an embodiment of the present invention. Light is emitted by selective diffusion on the surface of a growth layer of a compound semiconductor substrate (1) in which GaAsP is epitaxially grown on GaAs. Are arranged in a line, and the individual electrodes (3) (3) for supplying power to the light-emitting units (2) (2) are provided through an insulating space (4). The common electrode (5) is provided on substantially the entire back surface. The side wall (6) parallel to the row of the light-emitting portions (2) (2)... Is obtained by a scribe method or a dicing method, and thus has a surface or a rough surface like a fine mirror surface assembly. (2) Although the side wall (7) located on the extension in the alignment direction of (2) has a surface like a micro-mirror surface assembly by the scribe method, the scribe is provided only in the vicinity of the light emitting portion (2). A mirror-like natural cleavage plane (8) is obtained due to the absence of the scribe line by the needle. Such a light emitting diode array will be described more specifically including a manufacturing method. Example 1. As shown in FIG. 2 (a), a wafer (substrate of a compound semiconductor before being divided) (20) has a thickness of 280 to 380 μm and a depth of 5 to 10 μm from the surface. 22) Prepare the ones with selective diffusion. Assuming that the resolution of the optical printer head is 9.45 dots / mm and 16 dots / mm, the sizes of the light emitting parts (22) (22) are 65 μm and 40 μm on one side, respectively.
Are approximately square, and the distance between the light emitting parts (22) and (22) is 40.5
μm and 22.5 μm. However, after division, it is necessary to align them on the head substrate. Therefore, it is more preferable that the interval between the light emitting portions (22) and (22) is narrowed to about 28 μm and about 12 μm only at the portion to be scribed. Such a wafer (2
0) are provided with the individual electrodes (23) (23) and the common electrode (25), but the insulating film (24) as a mask used to form the light-emitting portions (22) (22). (twenty three)
(23) It may be used as an intervening layer for short circuit prevention. The individual electrodes (23) (23) are, for example, aluminum films, and as shown in FIGS. 2 (b) and (c), the individual electrodes (23) (23).
At the time of formation, a thin film (29) is partially formed simultaneously between the light emitting portions (22) (22)... Although the thin film (29) made of the aluminum film may be scraped with a scribe needle, it is necessary to prevent a scribe groove having a depth sufficient to break the surface of the wafer (20). Aluminum is sticky due to its material. For example, if a deposited film of 0.5 to 1.5 μm is provided, the lower part of the thin film (29) (but slightly shifted in the scribe direction) by roller pressure after scribing The lower part) is naturally cleaved to have a mirror surface. At this time thin film (29)
However, there is no problem as long as a short circuit accident or the like does not occur, and it may be connected to one of the individual electrodes (23) so that an accident does not occur even if the separation occurs. The above-mentioned insulating film (24) is a silicon nitride film having a uniform thickness selected from, for example, 0.1 to 1.0 μm, and if provided over the entire scribe region, it can be cut and broken very easily by a scribe needle. No particular problem arises. However, it may be completely removed over the entire scribe area. Embodiment 2 In the same wafer as described above, an inorganic insulating film can be used as a method of flying a scribe needle.
As shown in FIG.
1) (391)... And the other portion is an inorganic insulating film (39) on all wafer surfaces including between the light emitting portions (32) (32). Can be achieved. At this time, the inorganic insulating film (3
9) The inorganic insulating film (39) should be made of a material with good adhesion to the wafer surface, etc., or a film forming method so that the light-emitting portions (32) and (32) ... could not be scribed between the light-emitting portions (32) and (32). The inorganic insulating film (39) is preferably provided over a large area so as to be strong. For example, aluminum oxide, PSG, silicon nitride, etc.
An inorganic insulating film (39) having a thickness of 7 to 5.0 μm can be used, and these inorganic insulating films (39) are used as the light emitting portions (32) (32) ...
Is preferable because not only the mirror-like natural cleavage plane described above can be obtained on the side wall but also the light extraction efficiency can be improved. Example 3 The formation of a concave portion was also effective as a method of flying a scribe needle. For example, if the resolution of the optical printer head is 12
In the example of dot / mm, the light emitting units (42) and (42) shown in FIG.
… Are approximately 50 μm on a side, approximately square, with a spacing of 34.5 μm
m), the interval between the scribe portions is 26.5 μm, and a recess (49) having a width of 20 μm, a length of 80 μm, and a depth of about 5 μm is formed by a mesa etching method, and the scribe needle moves in a substantially central portion of the recess. did. As a result, a mirror-like natural cleavage plane (48) could be obtained only in the vicinity of the light emitting portion. In this method, in addition to a conventional diamond pointer as a scribe needle, a dicing saw can also be used as a scribe. In this case, in the above-described example, the distance between the light emitting portions of the cut portion is 70 μm, the width is 60 μm, and the depth is 20 μm. A concave portion was formed and cut with a dicing blade having a blade thickness of 50 μm.
At this time, the natural cleavage plane was not as large as that of the scribe pointer, but no crystal strain was applied to the light emitting part. In any of the above examples, the needle flying means such as the metal thin film (29), the inorganic insulating film (39), and the concave part (49) formed by the mesa etching are provided, and the shape of the edge of the needle flying means is devised. In addition, it is possible to more effectively perform the needle skipping by the needle jumping means by changing the needle moving speed of the scribe needle, and to obtain a partial lack of the scribe scribe line. Also, when dividing, a groove is provided in advance along the wide scribe direction from the back side of the wafer (the side on which the common electrode is provided), and the above-described scribe is performed on the surface of the original plate above the groove. When pressure is applied, the wafer is substantially thinned and then divided. As a result, a remarkable effect was obtained in that there was no deterioration in characteristics due to the splitting distortion of the light emitting portion in all the lots tested, and no burrs (protrusions) that hindered the equal pitch arrangement were generated. At this time, if the depth of the groove from the back surface is set so that the thickness of the remaining wafer is about 100 to 180 μm, the wafer is not undesirably broken during the operation. G) Effect of the Invention As described above, since the vicinity of the light emitting portion is a naturally cleaved surface, there is no adverse effect such as crystal distortion on the light emitting portion. In the manufacturing method, the break of the scribe line is only at the place where the needle flying means is provided. Even when the distance between the light-emitting portions is small, no positional deviation occurs, and the occurrence of burrs that hinders a uniform pitch arrangement can be prevented in a substantially thin wafer. As a result, the light emitting portion shows a luminance distribution without a large decrease in luminance, and a life approximately equal to that of the central portion can be obtained including the light emitting portions at the end portions. Even when the light emitting portions are arranged in a continuous manner, the interval between the light emitting portions can be kept substantially constant, so that the deterioration of the print quality can be prevented.

【図面の簡単な説明】 第1図は本発明実施例の発光ダイオードアレイの斜視
図、第2図(a)(b)(c)はその製法を説明するた
めの要部工程図、第3図は他の実施例を説明するための
化合物半導体ウエハの要部平面図、第4図はさらに他の
実施例の発光ダイオードアレイの斜視図、第5図は従来
の発光ダイオードアレイの発光部輝度特性(a)と発光
ダイオードアレイの説明図(b)である。 (2)(2)…(22)(22)…(32)(32)…(42)
(42)……発光部、(3)(3)…(23)(23)…(3
3)(33)…(43)(43)……個別電極、(7)(47)
……側壁、(8)(48)……自然劈開面、(29)……薄
膜、(39)……無機絶縁膜、(49)……凹部。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a light emitting diode array according to an embodiment of the present invention, FIGS. 2 (a), (b) and (c) are main part process diagrams for explaining a manufacturing method thereof, and FIG. FIG. 4 is a plan view of a principal part of a compound semiconductor wafer for explaining another embodiment, FIG. 4 is a perspective view of a light emitting diode array of still another embodiment, and FIG. FIG. 3A is a diagram illustrating a characteristic (a) and FIG. (2) (2) ... (22) (22) ... (32) (32) ... (42)
(42) ... Light-emitting unit, (3) (3) ... (23) (23) ... (3
3) (33) ... (43) (43) ... Individual electrodes, (7) (47)
...... side wall, (8) (48) ... natural cleavage plane, (29) ... thin film, (39) ... inorganic insulating film, (49) ... recess.

Claims (1)

(57)【特許請求の範囲】 1.表面に整列して設けられた複数の発光部と、該発光
部の整列方向の延長上に位置する側壁の発光部近傍にの
み鏡面状の自然劈開面を具備した事を特徴とする光プリ
ンタ用の発光ダイオードアレイ。 2.化合物半導体の基板の表面に複数の発光部を整列し
て設ける工程と、所定の発光部の間の前記基板の表面に
スクライブ針が基板表面に接しない様な針飛手段を設け
る工程と、前記基板の劈開方向に一致しかつ前記針飛手
段上を通るようにスクライブをし、基板を分割する工程
とを具備した事を特徴とする光プリンタ用の発光ダイオ
ードアレイの製造法。 3.前記針飛手段は基板の表面に設けられた金属薄膜、
基板の表面に設けられスクライブ用透孔を有する無機絶
縁膜、若しくは基板の表面にメサエッチング法で設けら
れた凹部のいずれかである事を特徴とする前記特許請求
の範囲第2項記載の光プリンタ用の発光ダイオードアレ
イの製造法。
(57) [Claims] A plurality of light emitting portions provided in alignment with the surface, and a mirror-like natural cleavage plane only in the vicinity of the light emitting portion on the side wall located on the extension of the light emitting portion in the alignment direction, for an optical printer. Light emitting diode array. 2. A step of providing a plurality of light emitting portions aligned on the surface of the compound semiconductor substrate, and a step of providing a needle flying means such that a scribe needle does not contact the substrate surface on the surface of the substrate between predetermined light emitting portions; Scribing so as to match the cleavage direction of the substrate and passing over the needle flying means, and dividing the substrate. 3. The needle flying means is a metal thin film provided on the surface of the substrate,
3. The light according to claim 2, wherein the light is either an inorganic insulating film provided on the surface of the substrate and having a scribe hole, or a concave portion provided on the surface of the substrate by a mesa etching method. Manufacturing method of light emitting diode array for printer.
JP21962387A 1986-11-13 1987-09-02 Light emitting diode array and method of manufacturing the same Expired - Lifetime JP2703232B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-270744 1986-11-13
JP27074486 1986-11-13

Publications (2)

Publication Number Publication Date
JPS63239874A JPS63239874A (en) 1988-10-05
JP2703232B2 true JP2703232B2 (en) 1998-01-26

Family

ID=17490370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21962387A Expired - Lifetime JP2703232B2 (en) 1986-11-13 1987-09-02 Light emitting diode array and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2703232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271637U (en) * 1988-11-17 1990-05-31
JPH05304318A (en) * 1992-02-06 1993-11-16 Rohm Co Ltd Led array board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331355B2 (en) * 1972-12-18 1978-09-01
JPS5274292A (en) * 1975-12-17 1977-06-22 Hitachi Ltd Semiconductor laser element
JPS58170083A (en) * 1982-03-31 1983-10-06 Fujitsu Ltd Manufacture of semiconductor light emitting device
JPS5946082A (en) * 1982-09-09 1984-03-15 Nippon Telegr & Teleph Corp <Ntt> Photo semiconductor device and manufacture thereof
JPS6070780A (en) * 1983-09-27 1985-04-22 Toshiba Corp Monolithic light-emitting element array
JPS6052068A (en) * 1984-07-27 1985-03-23 Sanyo Electric Co Ltd Light-emittiing diode

Also Published As

Publication number Publication date
JPS63239874A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JP3232152B2 (en) Light emitting diode array
JP2806576B2 (en) Method of manufacturing large array semiconductor device
US20090262771A1 (en) Semiconductor laser device and method of manufacturing the same
JPH0611071B2 (en) Method for dividing compound semiconductor substrate
JP3421523B2 (en) Wafer splitting method
JP2703232B2 (en) Light emitting diode array and method of manufacturing the same
US20040208209A1 (en) Fabrication method of semiconductor laser device
JP2006222359A (en) Manufacturing method of light emitting diode array
JPH06204336A (en) Dividing method of semiconductor substrate
JPH09102473A (en) Manufacture of semiconductor device
JPH0983081A (en) Fabrication of semiconductor laser element
JPH0233948A (en) Manufacture of optical semiconductor device
US5866439A (en) Method of fabricating an end face light emitting type light-emitting diode and a light-emitting diode array device
JP3171740B2 (en) Semiconductor light emitting device
JPH10163522A (en) Manufacture of led array
JP3856639B2 (en) Manufacturing method of semiconductor light emitting device
JPH0550153B2 (en)
JPH05136459A (en) Semiconductor light emitting device
JP2002231994A (en) Led array, manufacturing method therefor and led head
JPH04354384A (en) Light emitting diode array
JPH0685320A (en) Manufacture of light emitting diode array chip
JP2536834Y2 (en) Semiconductor chip
JP3505913B2 (en) Method for manufacturing semiconductor light emitting device
JP2008028144A (en) Manufacturing method for gallium nitride semiconductor light-emitting device
JP2527580B2 (en) Light emitting diode array for optical printer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term