JP2698162B2 - Solid electrolyte fuel cell - Google Patents
Solid electrolyte fuel cellInfo
- Publication number
- JP2698162B2 JP2698162B2 JP1100751A JP10075189A JP2698162B2 JP 2698162 B2 JP2698162 B2 JP 2698162B2 JP 1100751 A JP1100751 A JP 1100751A JP 10075189 A JP10075189 A JP 10075189A JP 2698162 B2 JP2698162 B2 JP 2698162B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- gas separation
- cell
- reservoir
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は固体電解質燃料電池に関するものである。The present invention relates to a solid oxide fuel cell.
(ロ)従来の技術 高温固体電解質型燃料電池は、リン酸型及び溶融炭酸
塩型燃料電池についで第三世代の燃料電池として注目さ
れ各方面で開発が行はれてれいる。(B) Conventional technology The high-temperature solid oxide fuel cell has attracted attention as a third-generation fuel cell after the phosphoric acid type and molten carbonate type fuel cells and is being developed in various fields.
この電池の構成材はすべて固体であるから、前記従来
型電池での問題点である電解質のロスは完全に解消さ
れ、かつ、作動温度が1000℃の高温ゆえ発電効率も高い
という利点がある。しかし高温での長期に亘り安定な構
成材料の選定、固体電解質への電極付着法及びガスシー
ル法など数多くの問題をかゝえていることも事実であ
る。特に平板状セルとガス分離板間のシール法におい
て、従来型電池の様なウェットシールという形式がとれ
ず新たなガスシール構成の開発が必要である。Since the components of the battery are all solid, there is an advantage that the problem of the conventional battery, that is, the loss of electrolyte is completely eliminated, and that the operating temperature is as high as 1000 ° C., so that the power generation efficiency is high. However, it is also true that there are many problems such as selection of a constituent material that is stable for a long time at a high temperature, a method of attaching an electrode to a solid electrolyte, and a gas sealing method. In particular, in the sealing method between the flat cell and the gas separation plate, it is not possible to take the form of a wet seal like a conventional battery, and it is necessary to develop a new gas seal configuration.
すでに本出願人は平板状セルとガス分離板とのシール
法として、各ガス分離板と一体に形成された溜部、もし
くは積重体全体を収納する有底箱体により形成された溜
部に、非導電性高粘度融体を満すことにより、各セル外
周側面もしくは積重体外周側面でシールを行う構成につ
いて提案した。(特願平1−36711)しかし非導電性高
粘度融体として溶融ガラスが用いられるため、ガラス中
に通常含まれているナトリウムやカリウム等のアルカリ
イオンにより、長期使用中溶融ガラスと接する耐熱性金
属が腐食すると共にガラス中に溶出した金属イオンの析
出によりやがて短絡を起すという問題があった。The applicant has already applied, as a sealing method between the flat cell and the gas separation plate, to a storage portion formed integrally with each gas separation plate, or a storage portion formed by a bottomed box that stores the entire stack. A configuration is proposed in which sealing is performed on the outer peripheral side of each cell or the outer peripheral side of the stack by filling a non-conductive high-viscosity melt. (Japanese Patent Application No. 1-367711) However, since molten glass is used as a non-conductive high-viscosity melt, the heat resistance that comes into contact with the molten glass during long-term use due to alkali ions such as sodium and potassium usually contained in the glass. There is a problem that the metal corrodes and the metal ions eluted in the glass precipitate and eventually cause a short circuit.
(ハ)発明が解決しようとする課題 本発明は前記シール構成において、溶融ガラスによる
腐食を防止し、電池特性の低下を抑制するものである。(C) Problems to be Solved by the Invention The present invention, in the above-mentioned seal structure, prevents corrosion by molten glass and suppresses deterioration of battery characteristics.
(ニ)課題を解決するための手段 本発明は平板状セルとガス分離板とを交互に積重し、
前記各ガス分離板の外周部には当該ガス分離板と一体
に、上方の隣接平板状セル及び隣接ガス分離板の外周側
面との間に溜部を形成すべく上方にせり出した屈曲部を
備え、前記溜部にシール材として非導電性高粘度ガラス
融体を、前記隣接平板状セルの外周側面を越え前記隣接
ガス分離板の外周側面にまで達して満してなる固体電解
質燃料電池であって、前記溜部内面における前記非導電
性高粘度ガラス融体と接する面にセラミック被覆層を形
設したものである。(D) Means for Solving the Problems The present invention comprises alternately stacking flat cells and gas separation plates,
An outer peripheral portion of each of the gas separation plates is provided with a bent portion protruding upward so as to form a reservoir between the upper adjacent flat plate cell and the outer peripheral side surface of the adjacent gas separation plate integrally with the gas separation plate. A solid electrolyte fuel cell in which the reservoir is filled with a non-conductive high-viscosity glass melt as a sealing material, reaching the outer peripheral side surface of the adjacent plate separator and reaching the outer peripheral side surface of the adjacent gas separation plate. A ceramic coating layer is formed on the inner surface of the reservoir in contact with the non-conductive high-viscosity glass melt.
(ホ)作用 この発明では平板状セルとガス分離板とは各セル外周
側面もしくは積重体外周側面に形成された溜部を満す溶
融ガラスにより周面でシールされてガスシールが容易か
つ確実となると共に、特に溶融ガラスと接する溜部内面
が予めセラミックスで被覆されているため、耐熱性金属
の腐食や金属イオンの溶出による短絡を防止することが
できる。(E) Function In the present invention, the flat cell and the gas separation plate are sealed on the peripheral surface by molten glass that fills a reservoir formed on the outer peripheral surface of each cell or the outer peripheral surface of the stack, so that gas sealing can be performed easily and reliably. In addition, since the inner surface of the reservoir in contact with the molten glass is coated in advance with ceramics, it is possible to prevent short-circuiting due to corrosion of heat-resistant metal and elution of metal ions.
(ヘ)実施例 第1図は本発明固体電解質燃料電池の単セル縦断面
図、第2図は同上の要部拡大断面図である。(F) Example FIG. 1 is a longitudinal sectional view of a single cell of the solid oxide fuel cell of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the same.
平板状セル(1)は、8%イットリアで安定化したジ
ルコニアの焼成体からなる電解質層(2)と、Ni−ZrO2
サーメットからなるアノード極(3)と、LaCoO3・LaCr
O3などのペロブスカイト型酸化物からなるカソード極
(4)とで構成され、これら各極(3)(4)は、電極
構成材粉末にバインダー・可塑剤・及び溶媒を加えてス
ラリーとし、このスラリーを電解質層(2)の各面に夫
々0.2mm厚で塗布して後焼成した。The flat cell (1) includes an electrolyte layer (2) made of a fired body of zirconia stabilized with 8% yttria, and Ni-ZrO 2.
Anode electrode (3) made of cermet and LaCoO 3 LaCr
And a cathode electrode (4) made of a perovskite oxide such as O 3. Each of these electrodes (3) and (4) is formed by adding a binder, a plasticizer, and a solvent to an electrode constituent powder to form a slurry. The slurry was applied to each side of the electrolyte layer (2) at a thickness of 0.2 mm and fired.
このセル(1)を挟持する一対のガラス通路板(5)
(6)は、ニッケルクロム合金(インコネル600、601)
などの耐熱性金属からなり、カソードガス及びアノード
ガスの各供給空間(5′)(6′)を夫々有する。A pair of glass passage plates (5) sandwiching the cell (1)
(6) is nickel-chromium alloy (Inconel 600, 601)
And has supply spaces (5 ') and (6') for the cathode gas and the anode gas, respectively.
下方のガラス通路板(6)の外周部には、セル(1)
と上方のガス通路板(5)の外周側面との間に溜部
(7)を形成すべく上方にせり出した屈曲部が一体に形
成されている。この溜部(7)にシール材となるパイレ
ックスガラス(主成分SiO2)のような非導電性高粘度ガ
ラスの融体(8)が、前記セル(1)の外周側面を越え
上方のガス通路板(5)の外周側面にまで達して満たさ
れるが、本発明においては前記溜部(7)内面における
前記非導電性高粘度ガラス融体(8)と接する面、即ち
溜部(7)を構成する上方のガス通路板(5)及びセル
(1)の外周側面、下方のガス通路板(6)の外周部の
上面及び屈曲部の内側側面にセラミック被覆層(9)が
形設される。A cell (1) is provided on the outer periphery of the lower glass passage plate (6).
A bent portion protruding upward to form a reservoir (7) is integrally formed between the upper surface and the outer peripheral side surface of the upper gas passage plate (5). In this reservoir (7), a melt (8) of a non-conductive high-viscosity glass such as Pyrex glass (main component SiO 2 ) serving as a sealing material is provided above a gas passage above the outer peripheral side surface of the cell (1). The outer surface of the plate (5) is filled and filled. In the present invention, the surface of the inner surface of the reservoir (7) in contact with the non-conductive high-viscosity glass melt (8), that is, the reservoir (7) is removed. A ceramic coating layer (9) is formed on the outer peripheral side of the upper gas passage plate (5) and the cell (1), the upper surface of the outer peripheral portion of the lower gas passage plate (6) and the inner side surface of the bent portion. .
セラミックス材としてAl2O3・MgO・BeO等の酸化物、B
N・AlN等の窒化物などを用い、その被覆法としてイオン
プレーテイング・蒸着法・CVDや減圧下でのプラズマ溶
射法などを用い、密着性良好で緻密な耐食層を形成す
る。被覆層(9)の厚みはセル端面で約50μ、その他の
部分で約100μとした。このセラミックス被覆層(9)
により溶融ガラス(8)が電池構成材に直接接触するの
を阻止する。Al 2 O 3 · MgO · BeO oxides such as ceramic material, B
A dense corrosion resistant layer with good adhesion is formed by using ion plating, vapor deposition, CVD, or plasma spraying under reduced pressure as the coating method using nitride such as N / AlN. The thickness of the coating layer (9) was about 50 μm at the cell end face, and about 100 μm at other parts. This ceramic coating layer (9)
This prevents the molten glass (8) from directly contacting the battery components.
溶融ガラス(8)上には枠状の非孔質セラミック板
(10)を浮遊状態で配置し、ずれによるガス分離板同志
の接触防止と融体(8)の飛散防止をはかる。A frame-shaped non-porous ceramic plate (10) is placed on the molten glass (8) in a floating state to prevent contact between the gas separation plates due to misalignment and scattering of the melt (8).
第3図は4セル積重体に適用した実施例の縦断面図、
第4図は同上他実施例の縦断面図、第5図は第3図・第
4図の横断面図である。これら図において該当個所は第
1図と同一記号を付した。FIG. 3 is a longitudinal sectional view of an embodiment applied to a 4-cell stack,
FIG. 4 is a longitudinal sectional view of the other embodiment, and FIG. 5 is a transverse sectional view of FIGS. 3 and 4. In these figures, the corresponding parts are given the same symbols as in FIG.
第3図及び第4図の実施例は最上部及び最下部の各ガ
ス通路板(5)(6)[いづれも片面のみにガス通路を
有するハーフプレート]間に3つのガス分離板(60)
[両面にガス通路を有する]を介在させ、第3図の場合
これらガス分離板(60)にも一体に溜部(7)を形成し
た。3 and 4 show three gas separating plates (60) between the uppermost and lowermost gas passage plates (5) and (6) [half plates each having a gas passage only on one side].
In the case of FIG. 3, a reservoir (7) was formed integrally with these gas separation plates (60) as shown in FIG.
これに対し第4図の実施例では4セル積重体全体が、
ガス分離板(60)及び上下ガス通路板(5)(6)と同
材質のニッケル・クロム合金などの耐熱性金属からなる
有底箱体(11)に間隔を存して収納され、その間隔によ
り溶融ガラス(8)を満たす単一の溜部(7)を形成し
た。見方をかえれば、有底箱体(11)は最下端のガス通
路板(6)より一体に積重体上端まで延長する壁部を形
成したものと見做される。In contrast, in the embodiment of FIG. 4, the entire four-cell stack is
The gas separation plate (60) and the upper and lower gas passage plates (5), (6) are housed at intervals in a bottomed box body (11) made of a heat-resistant metal such as nickel-chromium alloy of the same material. As a result, a single reservoir (7) filling the molten glass (8) was formed. In other words, it can be considered that the bottomed box (11) forms a wall extending from the lowermost gas passage plate (6) to the upper end of the stack integrally.
これら第3図及び第4図はいづれも内部マニホルドの
カソードガス供給路(6′)に沿って断面したものであ
り、又上部ガス通路板(5)及び各ガス分離板(60)の
下面には、マニホルド内のガスと対極ガスとを遮断する
よう各一対の溝(12)及び(13)を形成し、これら溝に
溶融ガラス(8)′が流入してシール部を構成する。こ
の場合も溝(12)及び(13)の内面に予め前記の如くセ
ラミックス被覆層(9)′が形成されている。(第5図
及び第3図・第4図参照) 尚第5図で実線はカソードガスの流れを、点線はアノ
ードガスの流れを夫々示す。3 and 4 are both sectional views taken along the cathode gas supply passage (6 ') of the internal manifold, and are provided on the lower surface of the upper gas passage plate (5) and the respective gas separation plates (60). A pair of grooves (12) and (13) are formed to block the gas in the manifold and the counter electrode gas, and the molten glass (8) 'flows into these grooves to form a seal portion. Also in this case, the ceramic coating layer (9) 'is previously formed on the inner surfaces of the grooves (12) and (13) as described above. (See FIGS. 5, 3 and 4.) In FIG. 5, the solid line shows the flow of the cathode gas, and the dotted line shows the flow of the anode gas.
第6図は単セルを所定条件で1000℃まで昇温し、燃料
としてH2ガス、酸化剤としてO2ガスを用い500mA/cm2に
て運転させた場合の放電特性を示し、実線は本発明によ
る電池、点線は比較のため溶融ガラスに接する面にセラ
ミックス被覆層を設けない場合の電池である。この特性
図から初期特性には差が見られないが、比較電池では50
0時間経過後急激な特性低下が見られるに対し、本発明
電池では特性低下は少なく長期に亘り安定であった。FIG. 6 shows the discharge characteristics when the temperature of the single cell was raised to 1000 ° C. under predetermined conditions, and operation was performed at 500 mA / cm 2 using H 2 gas as the fuel and O 2 gas as the oxidizing agent. The battery according to the invention, the dotted line is a battery in which no ceramic coating layer is provided on the surface in contact with the molten glass for comparison. Although there is no difference in the initial characteristics from this characteristic diagram, the comparison battery
After a lapse of 0 hours, a sharp decrease in the characteristics was observed, whereas in the battery of the present invention, the characteristics did not decrease much and were stable over a long period of time.
又1000時間経過後運転を中止して電池を分解したとこ
ろ、運転開始前に無色透明であった溶融ガラスは比較電
池では黒褐色に変色していたのに対し、本発明電池では
余り変色は見られなかった。この理由を明らかにするた
め分解後のガラス中の金属イオンをEPMAにより定性分析
した結果比較電池では多量のNi及びCrの存在が確認され
たが、本発明電池では極微量しか存在しなかった。When the operation was stopped after the elapse of 1000 hours and the battery was disassembled, the molten glass that was colorless and transparent before the operation started was discolored to black-brown in the comparative battery, but the discoloration was not so much observed in the battery of the present invention. Did not. To clarify the reason, the metal ions in the glass after decomposition were qualitatively analyzed by EPMA. As a result, a large amount of Ni and Cr was confirmed in the comparative battery, but only a trace amount was present in the battery of the present invention.
(ト)発明の効果 上述の如く本発明によれば平板状セルとガス分離板と
は各セル外周側面もしくは積重体全外周側面に形成され
た溜部を満す高粘度溶融ガラスにより周面でシールされ
るので、この溶融ガラスが電池構成材の熱膨張の差を緩
和してサーマルサイクルによるひずみをおさえ、ガスシ
ールが確実かつ容易に行はれる。(G) Effect of the Invention As described above, according to the present invention, the flat cell and the gas separation plate are formed by high-viscosity molten glass that fills the reservoir formed on the outer peripheral surface of each cell or the entire outer peripheral surface of the stack. Since the glass is sealed, the molten glass reduces the difference in thermal expansion of the battery components, suppresses distortion due to thermal cycling, and ensures gas sealing reliably and easily.
特に溶融ガラスと接する溜部内面には、予めセラミッ
クス被覆層が形成されているので、電池構成材である耐
熱性金属の腐食や金属イオンの溶出による短絡を防止
し、長期間に亘り特性を安定化することができる。In particular, a ceramic coating layer is formed in advance on the inner surface of the reservoir in contact with the molten glass, preventing short-circuiting due to corrosion of the heat-resistant metal constituting the battery and elution of metal ions, and stable characteristics over a long period of time. Can be
第1図は本発明固体電解質燃料電池の単セル縦断面図、
第2図は同上の要部拡大断面図、第3図は同上電池の実
施例を示す縦断面図、第4図は他実施例を示す縦断面
図、第5図は第3図・第4図の横断面図、第6図は本発
明電池と対照電池との放電特性比較図である。 1:セル、5、6:ガス通路板(ハーフプレート)、60:ガ
ス分離板、7:溜部、8:高粘度溶融ガラス、9:セラミック
ス被覆層、11:有底箱体。FIG. 1 is a longitudinal sectional view of a single cell of the solid oxide fuel cell of the present invention,
FIG. 2 is an enlarged sectional view of a main part of the battery, FIG. 3 is a longitudinal sectional view showing an embodiment of the battery, FIG. 4 is a longitudinal sectional view showing another embodiment, and FIG. 5 is FIGS. FIG. 6 is a cross-sectional view of the drawing, and FIG. 6 is a comparison diagram of the discharge characteristics of the battery of the present invention and the control battery. 1: cell, 5, 6: gas passage plate (half plate), 60: gas separation plate, 7: reservoir, 8: high-viscosity molten glass, 9: ceramic coating layer, 11: bottomed box.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭63−133457(JP,A) 実開 昭63−55367(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-63-133457 (JP, A) 63-55367 (JP, U)
Claims (3)
平板状セルと、前記アノード・カソード各背面に各ガス
供給空間を構成するガス分離板とを交互に積重し、前記
各ガス分離板の外周部には当該ガス分離板と一体に、上
方の隣接平板状セル及び隣接ガス分離板の外周側面との
間に溜部を形成すべく上方にせり出した屈曲部を備え、
前記溜部にシール材として非導電性高粘度ガラス融体
を、前記隣接平板状セルの外周側面を越え前記隣接ガス
分離板の外周側面にまで達して満してなる固体電解質燃
料電池であって、前記溜部内面における前記非導電性高
粘度ガラス融体と接する面にセラミック被覆層を形設し
たことを特徴とする固体電解質燃料電池。1. A flat cell comprising an anode, a solid electrolyte, and a cathode, and gas separation plates constituting respective gas supply spaces alternately stacked on the back surface of each of the anode and cathode, and an outer periphery of each of the gas separation plates. The portion is integrally provided with the gas separation plate, and has a bent portion protruding upward to form a reservoir between the upper adjacent flat plate cell and the outer peripheral side surface of the adjacent gas separation plate,
A solid electrolyte fuel cell which is filled with a non-conductive high-viscosity glass melt as a sealing material in the reservoir, reaching the outer peripheral side of the adjacent gas separation plate beyond the outer peripheral side of the adjacent plate cell. A solid electrolyte fuel cell, wherein a ceramic coating layer is formed on a surface of the inner surface of the reservoir that contacts the non-conductive high-viscosity glass melt.
平板状セルと、前記アノード・カソード各背面に各ガス
供給空間を構成するガス分離板とを交互に積重し、前記
積重体全体を有底箱体内に間隔を存して収納し、前記間
隔により形成された溜部にシール材として非導電性高粘
度ガラス融体を満すに際し、前記融体と接する部分に予
めセラミックス被覆層を形設してなることを特徴とする
固体電解質燃料電池。2. A flat cell comprising an anode, a solid electrolyte, and a cathode, and a gas separation plate constituting each gas supply space alternately stacked on the back surface of each of the anode and the cathode, and the entire stack is bottomed. When the non-conductive high-viscosity glass melt is filled as a sealing material in the reservoir formed by the space and stored in the box with a space therebetween, a ceramic coating layer is previously formed on a portion in contact with the melt. A solid electrolyte fuel cell, comprising:
夫々連通するよう、前記積重体を貫通する各一対の内部
マニホルドを備えることを特徴とする請求項1もしくは
2記載の固体電解質燃料電池。3. The solid electrolyte fuel cell according to claim 1, further comprising a pair of internal manifolds penetrating the stack so as to communicate with the anode and cathode gas supply spaces, respectively.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1100751A JP2698162B2 (en) | 1989-04-20 | 1989-04-20 | Solid electrolyte fuel cell |
US07/477,402 US4997726A (en) | 1989-02-15 | 1990-02-09 | Solid oxide electrolyte fuel cell |
DE4004271A DE4004271A1 (en) | 1989-02-15 | 1990-02-13 | FUEL CELL WITH SOLID OXIDE ELECTROLYTE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1100751A JP2698162B2 (en) | 1989-04-20 | 1989-04-20 | Solid electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02278664A JPH02278664A (en) | 1990-11-14 |
JP2698162B2 true JP2698162B2 (en) | 1998-01-19 |
Family
ID=14282228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1100751A Expired - Fee Related JP2698162B2 (en) | 1989-02-15 | 1989-04-20 | Solid electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2698162B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5292599A (en) * | 1991-09-27 | 1994-03-08 | Ngk Insulators, Ltd. | Cell units for solid oxide fuel cells and power generators using such cell units |
JP3340272B2 (en) * | 1995-01-12 | 2002-11-05 | 日立造船株式会社 | Solid oxide fuel cell |
JP4000790B2 (en) | 2001-06-08 | 2007-10-31 | トヨタ自動車株式会社 | Fuel cell having seal structure |
JP2007103223A (en) * | 2005-10-06 | 2007-04-19 | Toyota Motor Corp | Fuel cell and its manufacturing method |
TWI829698B (en) | 2018-05-31 | 2024-01-21 | 美商博隆能源股份有限公司 | Cross-flow interconnect and fuel cell system including same |
-
1989
- 1989-04-20 JP JP1100751A patent/JP2698162B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02278664A (en) | 1990-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4997726A (en) | Solid oxide electrolyte fuel cell | |
US4950562A (en) | Solid electrolyte type fuel cells | |
EP1677377B1 (en) | Ceramic coatings for insulating modular fuel cell cassettes in a solid-oxide fuel cell stack | |
JPH06290798A (en) | Solid-state electrolytic type fuel cell | |
JP2004522285A (en) | Gas separator plate for fuel cell | |
JP3064746B2 (en) | Flat solid electrolyte fuel cell | |
JP5061408B2 (en) | STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL | |
JP2698162B2 (en) | Solid electrolyte fuel cell | |
US7625658B2 (en) | Interconnector for high-temperature fuel cell unit | |
JP2771578B2 (en) | Solid electrolyte fuel cell | |
DK1665431T3 (en) | Interconnector for a high temperature fuel cell unit | |
JP2999653B2 (en) | Solid electrolyte fuel cell | |
JP3102806B2 (en) | Hollow solid electrolyte fuel cell | |
JPH02242564A (en) | Solid electrolyte fuel cell | |
JP2621863B2 (en) | Molten carbonate fuel cell | |
JP2948439B2 (en) | Solid electrolyte fuel cell | |
JPH0613088A (en) | Solid electrolytic fuel cell | |
JPH056774A (en) | Solid electrolyte type fuel cell | |
JP3219632B2 (en) | Flat solid electrolyte fuel cell | |
JPH0471167A (en) | Solid electrolyte fuel cell | |
JPH0789491B2 (en) | Molten carbonate fuel cell | |
JPH06260192A (en) | Fuel cell | |
JPH036624B2 (en) | ||
JPH09147889A (en) | Solid electrolyte fuel cell and its manufacture | |
JP2755611B2 (en) | Molten carbonate fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |