JPH0471167A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH0471167A
JPH0471167A JP2182313A JP18231390A JPH0471167A JP H0471167 A JPH0471167 A JP H0471167A JP 2182313 A JP2182313 A JP 2182313A JP 18231390 A JP18231390 A JP 18231390A JP H0471167 A JPH0471167 A JP H0471167A
Authority
JP
Japan
Prior art keywords
gas
cell
plate
solid electrolyte
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2182313A
Other languages
Japanese (ja)
Inventor
Koji Yasuo
耕司 安尾
Yukinori Akiyama
幸徳 秋山
Noboru Ishida
石田 登
Shuzo Murakami
修三 村上
Toshihiko Saito
俊彦 齋藤
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2182313A priority Critical patent/JPH0471167A/en
Publication of JPH0471167A publication Critical patent/JPH0471167A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To make gas seal easily and certainly by sealing a flat, plate cell and a gas separator plate at the peripheral faces with a non-conductive high viscosity molten body filling a sump formed at the cell periphery or the overall periphery of a laminate. CONSTITUTION:A pair of gas separator plates 5, 6 pinching a cell 1 are made of a heat resistant metal such as Ni-Cr alloy, wherein the upper gas separator plate 6 is a half plate having only at the undersurface a space 6' for supplying gas, for ex. anode gas, while the lower gas separator plate 5 has a cathode gas and anode supply gas spaces 5', 6' on respective sides. This lower gas separator plate 5 is provided in a single piece construction with a sup 7 surrounding the peripheries of the cell 1 and half plate 6 with a certain gap reserved. This sump 7 is filled with an admixture 8 of a non-conductive high viscosity molten body such as pylex glass to serve as a seal and ceramic fiber, for ex. consisting of ZrO2, retaining this molten body, and over them a frame-shaped porous ceramic plate 9 is arranged in floating condition.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は固体電解質燃料電池に関するものである。[Detailed description of the invention] (b) Industrial application field The present invention relates to solid electrolyte fuel cells.

(ロ)従来の技術 高温固体電解質型燃料電池は、I)ン酸型及び溶融炭酸
塩型燃料電池についで第三世代の燃料電池としてま目さ
れ各方面で開発が行われている。
(B) Prior Art High-temperature solid oxide fuel cells have been attracting attention as a third generation fuel cell following (I) acid type and molten carbonate type fuel cells, and are being developed in various fields.

この電池の構成材は全て固体であるから、前記従来型電
池での問題点である電解質のロスは完全に解消され、且
つ、作動温度が1000℃の高温であるため発電効率ら
高いという利点がある。
Since all the constituent materials of this battery are solid, the electrolyte loss, which is a problem with the conventional batteries, is completely eliminated, and since the operating temperature is as high as 1000°C, it has the advantage of high power generation efficiency. be.

しかし、高温で長期に亘り安定である構成材料の選定、
固体電解質への電極付着法及びガスシール法など数多く
の問題をかかえていることも事実である。
However, selecting constituent materials that are stable at high temperatures for long periods of time,
It is also true that there are many problems such as the electrode attachment method to the solid electrolyte and the gas sealing method.

特に平板状セルとガス分離板間のシール法において、従
来型電池の様なウェットシールという形式がとれず新た
なガスシール構成の開発が必要である。このゲスシール
法として、セルとガス分離板とのシール面にセラミック
接着剤を用いる方法も考えられるが、セラミック接着剤
で完全に接着すると、各構成材の熱膨張の差により温度
の昇・陣中に接着部に歪みが生じ、セル電解質板の割れ
を起こすと共に数回のサーマルサイクル中には接着性の
劣化によりガス漏れ発生の原因となる。またセルとガス
分離板のシール面をガラスでシールする方法は、長期運
転中にガラスが外部へ流れ出してシール性を損なう。同
時にこの方法では組立時と運転時では電池全体の高さに
大きな変化を伴い、不安定であるなどの問題がある。
In particular, in the sealing method between the flat cell and the gas separation plate, the wet seal method used in conventional batteries cannot be used, and a new gas seal configuration must be developed. As a gas seal method, it is possible to use a ceramic adhesive on the sealing surface between the cell and the gas separation plate, but if the ceramic adhesive is used to completely bond the cells, the difference in thermal expansion of each constituent material will cause the temperature to rise and the gas separation plate to seal. Distortion occurs in the bonded portion, which causes cracking of the cell electrolyte plate, and also causes gas leakage due to deterioration of adhesive properties during several thermal cycles. Furthermore, in the method of sealing the sealing surfaces of the cell and the gas separation plate with glass, the glass flows out to the outside during long-term operation, impairing the sealing performance. At the same time, this method has problems such as instability due to large changes in the height of the entire battery between assembly and operation.

(ハ)発明が解決しようとする課題 本発明は従来のシール法における問題点を解決し、シー
ル性を改善した固体電解質燃料電池を提供するものであ
る。
(c) Problems to be Solved by the Invention The present invention solves the problems in conventional sealing methods and provides a solid electrolyte fuel cell with improved sealing performance.

(ニ)課題を解決するための手段 本発明の第1の発明は、アノード・固体電解質・カソー
ドからなる平板状セルと、アノード・カソード各背面に
各ガス供給空間を構成するガス分離板とを交互に積重し
な固体電解質燃料電池において、各ガス分離板と一体に
、上方の隣接ガス分離板外周と間隔を存して溜部を形成
し、各溜部に非導電性高粘度融体及び該融体の保持部材
を満巳たことにある。
(d) Means for Solving the Problems The first invention of the present invention comprises a flat cell consisting of an anode, a solid electrolyte, and a cathode, and a gas separation plate forming each gas supply space on the back of each of the anode and cathode. In a solid electrolyte fuel cell that is alternately stacked, a reservoir is formed integrally with each gas separation plate at a distance from the outer periphery of the upper adjacent gas separation plate, and each reservoir is filled with a non-conductive high-viscosity melt. and that the holding member for the molten body is fully filled.

また、第2の発明は、アノード・固体電解質・カソード
からなる平板状セルと、アノード・カソード各背面に各
ガス供給空間を構成するガス分離板とを交互に積重しな
固体電解質燃料電池において、積重体全体を有底箱体内
に間隔を存してれ納し、間隔により形成された溜部に非
導電性高粘度融体及び該融体の保持部材を満したことに
ある。
Further, the second invention provides a solid electrolyte fuel cell in which a flat cell consisting of an anode, a solid electrolyte, and a cathode, and gas separation plates forming gas supply spaces on the backs of the anode and cathode are stacked alternately. The entire stack is housed in a bottomed box with a gap between them, and the reservoir formed by the gap is filled with a non-conductive high viscosity melt and a member for holding the melt.

尚、保持部材としては非導電性繊維体、例えばZr0=
、Al!O3、MgO,5ift、SiCなどの非導電
性セラミックの繊維が好適である。
Note that the holding member is made of non-conductive fibrous material, for example Zr0=
, Al! Non-conductive ceramic fibers such as O3, MgO, 5ift, SiC are preferred.

(ホ)作用 本発明によれば、平板状セルとガス分離板とは従来のよ
うに両者の接触面でシールするのではなく、セル外周若
しくは積重体全外周に形成された溜部を満たす非導電性
高粘度融体により周面でシールされるので、ガスシール
が容易且つ確実に行わノすると共に、融体の保持部材も
同時に満たされているため、電池スタックに何らかの振
動成るいは傾きが生じた場1でも融体の移動を抑制する
ことができ融体が電池構成材に侵入して電池特性を劣化
させるといった不都合はない。
(e) Function According to the present invention, the flat cell and the gas separation plate are not sealed at their contact surfaces as in the past, but are filled with a reservoir formed around the outer periphery of the cell or the entire outer periphery of the stack. Since the circumferential surface is sealed with a conductive high-viscosity melt, gas sealing is easily and reliably performed, and since the holding member for the melt is also filled at the same time, there is no possibility of any vibration or tilting of the battery stack. Even in case 1, the movement of the molten material can be suppressed, and there is no inconvenience such as the molten material entering the battery constituent materials and deteriorating the battery characteristics.

(へ)実施例 第1図は本発明の詳細な説明するための単セル断面図で
ある。
(F) Embodiment FIG. 1 is a sectional view of a single cell for explaining the present invention in detail.

平板状セル(1)は、8%イツトリアで安定化したジル
コニヤの焼成体からなる電解質層(2)と、\1−Zr
O*サーメットからなるアノード極(3)と、LaCo
0 s、LaCrOsなどのペロブスカイト型酸化物か
らなるカソード極(4)とで構成され、これら各種(3
)(4)は、電極構成材粉末にバインダー・可塑剤・及
び溶媒を加えてスラリーとし、このスラリーを電解質層
(2)の各面に夫々0.2mm厚で塗布して後焼成した
The flat cell (1) has an electrolyte layer (2) consisting of a fired body of zirconia stabilized with 8% ittria, and
An anode pole (3) made of O* cermet and LaCo
0s, a cathode electrode (4) made of a perovskite type oxide such as LaCrOs, and a cathode electrode (4) made of a perovskite type oxide such as
) (4) was prepared by adding a binder, a plasticizer, and a solvent to the electrode component powder to form a slurry, and applying this slurry to each surface of the electrolyte layer (2) to a thickness of 0.2 mm, followed by post-baking.

このセル(1)を挟持する一対のガス分離板(5)(6
)は、ニッケルクロム合金(インコネル600.601
)などの耐熱性金属からなり、上方のガス分離板(6)
は下面にのみガス例えばアノードガス供給空間(6° 
)を有するハーフフレートであるが、下方のガス分離板
(5)は、両面にカソードガス及びアノードガスの各供
給空間(5°)(6’ )を夫々有する。[第1図では
アノードガス通路(6゛)は図示せずコ このガス分離板(5)には、セル(1)とハーフプレー
ト(6)の外周に間隔を存してとりがこむ溜部(7)が
一体に形成されている。この溜部(7)にはシール材と
なる例えばパイレツクスガラスのような非導電性高粘度
融体(1000℃で融体)と、この融体を保持する例え
ばZr0tセラミツクフアイバーとの混合物(8)が満
たされ、その上に枠状の非孔質セラミック板(9)が浮
遊状態で配置されている。
A pair of gas separation plates (5) (6) sandwiching this cell (1).
) is a nickel-chromium alloy (Inconel 600.601
), the upper gas separation plate (6)
For example, the anode gas supply space (6°
), the lower gas separation plate (5) has supply spaces (5°) (6') for cathode gas and anode gas on both sides, respectively. [The anode gas passage (6') is not shown in Figure 1, but the gas separation plate (5) has a reservoir spaced apart from the outer periphery of the cell (1) and the half plate (6). (7) are integrally formed. This reservoir (7) is filled with a mixture (8) of a non-conductive high viscosity melt (molten at 1000°C), such as Pyrex glass, which serves as a sealing material, and a Zr0t ceramic fiber, for example, which holds this melt. ) on which a frame-shaped non-porous ceramic plate (9) is placed in a floating state.

この枠状板(9)の役割は、外部からの不純物混入成る
いは融体の飛散を低減するものである。
The role of this frame-shaped plate (9) is to reduce contamination of impurities or scattering of melt from the outside.

第2図は4セル積重体に適用した実施例の縦断面図、第
3図は同上他実施例の縦断面図、第4図は第2図及び第
3図の一部透視した上面図、第5図は同じく第2図、第
3図の横断面図である。これらの図面において該当個所
は第1図と同一記号を付した。
FIG. 2 is a longitudinal sectional view of an embodiment applied to a 4-cell stack, FIG. 3 is a longitudinal sectional view of the same and other embodiments, and FIG. 4 is a partially transparent top view of FIGS. 2 and 3. FIG. 5 is a cross-sectional view of FIGS. 2 and 3 as well. In these drawings, the corresponding parts are given the same symbols as in Fig. 1.

第2図の実施例では最上部の片面のみにアノードガス供
給空間(6° )を有するガス分離板(6)を除き、全
てのガス分離板(5)と一体に、融体と保持部材との混
合物(8)の溜部(7)が形成されている。尚最下部の
ガス分離板(5)も片面にのみカソードガス供給空間(
5゛ )を有する。
In the embodiment shown in Fig. 2, the melt and the holding member are integrated with all the gas separation plates (5), except for the gas separation plate (6) which has an anode gas supply space (6°) on only one side of the top. A reservoir (7) for a mixture (8) is formed. The gas separation plate (5) at the bottom also has a cathode gas supply space (
5゛).

これに対して、第3図の他実施例では、4セル積重体全
体が、ガス分離板と同材質のニッケル・クロム合金等の
耐熱性金属からなる有底箱体(10)に間隔を存して収
納され、その間隔により構成された単一の溜部(7゜)
に非導電性高粘度融体と保持部材との混合物(8゜)が
満たされている。この箱体(10)の内底面にはカソー
ドガス空間(5°)を有してハーフプレートの役割を兼
ねている。
On the other hand, in the other embodiment shown in FIG. 3, the entire four-cell stack is placed in a bottomed box (10) made of a heat-resistant metal such as a nickel-chromium alloy, which is the same material as the gas separation plate. A single reservoir (7°) configured by the spacing
is filled with a mixture (8°) of a non-conductive high viscosity melt and a holding member. This box body (10) has a cathode gas space (5°) on the inner bottom surface and also serves as a half plate.

第2図及び第3図はいづれも内部マニホルドのカソード
ガス供給空間に沿って断面したものである。
2 and 3 are both cross-sectional views along the cathode gas supply space of the internal manifold.

又、各ガス分離板(5)(6)の下面には、マニホルド
内のガスとその対極ガスとを遮蔽するよう各一対の溝(
11)及び(12)を形成しシール部とする。
In addition, on the lower surface of each gas separation plate (5) and (6), a pair of grooves (
11) and (12) are formed to form a seal portion.

ta総組立際し、シール材として溜部(7)(7,)及
び溝部(11)(12)に、1rChフアイバーで保持
させたパイレックスラス板状のものを埋め込み昇温、軟
化させシールした。
When assembling the ta, Pyrex glass plates held by 1rCh fibers were embedded in the reservoirs (7, 7, ) and grooves (11, 12) as sealing materials, heated to soften them, and sealed.

Zr0tフアイバーで保持したパイレックスガラス体は
、ZrO,ファイバー(長さ550−200p、径5−
10!Im)とパイレックスガラス粉末を水を溶媒とし
てボールミルにて撹拌混合し、乾燥後、lot”l〜2
00Kg/cm’の圧力でプレス成形した。その後、空
気中1050’Cで10〜20時間焼成し、緻密化した
後、表面を研摩し使用した。
The Pyrex glass body held by ZrOt fibers (length 550-200p, diameter 5-
10! Im) and Pyrex glass powder were stirred and mixed in a ball mill using water as a solvent, and after drying, lot"l~2
Press molding was performed at a pressure of 0.00 kg/cm'. Thereafter, it was fired in air at 1050'C for 10 to 20 hours to make it dense, and the surface was polished before use.

第6図は本発明による4セルスタツク(有効面積100
cm”)の寿命を示す(実線)。尚、破線は比較のため
に、溜部及び溝に保持部材を用いずに非導電性高粘度融
体のみ満たした場合の寿命特性を示す。測定条件は、燃
料ガスとしてH!、酸化剤ガスとして空気を用い、電流
密度300m、A/cm’であり電圧は単セル当りの値
を示した。第6図より本発明燃料電池は1000時間の
運転においても耐熱衝撃にら優れ安定であることがわか
る。
FIG. 6 shows a 4-cell stack (effective area 100
cm") (solid line). For comparison, the broken line shows the life characteristics when the reservoir and groove are filled only with non-conductive high viscosity melt without using a holding member.Measurement conditions Using H! as the fuel gas and air as the oxidant gas, the current density was 300m, A/cm', and the voltage was the value per single cell.From Figure 6, the fuel cell of the present invention was operated for 1000 hours. It can also be seen that it has excellent thermal shock resistance and is stable.

尚、本実施例においては非導電性高粘度融体としてプラ
スを例にとりパイレックスの場合を例示したが、その他
にS+Ot−、AItOx−−IgO系等のアルカリ金
属を用いないもの成るいはガラス以外に1000℃(を
池作動温度)で粘度が10“−101ポイズの非導電性
融体であれば同様に用いることができる。
In this example, Pyrex was used as an example of a non-conductive high-viscosity melt, but other materials such as S+Ot-, AItOx--IgO, etc. that do not use alkali metals, or other materials other than glass may also be used. Any non-conductive melt having a viscosity of 10"-101 poise at 1000 DEG C. (the pond operating temperature) can be similarly used.

又、保持部材として用いるセラミックファイバーもZr
O+に限らず、AItos、〜Ig0.5102、Si
C等の非導電性部材も同様に用いることができる。
Furthermore, the ceramic fiber used as the holding member is also made of Zr.
Not limited to O+, AItos, ~Ig0.5102, Si
A non-conductive member such as C or the like can be used similarly.

(ト)発明の効果 上述の如く本発明によれば、平板状セルとガス分離板と
は従来のように両者の接触面でシールするのではなく、
セル外周若しくは積重体全外周に形成された溜部を満た
す非導電性高粘度融体により周面でシールされるので、
ガスシールが容易且つ確実に行われ、更に融体が電池構
成材の熱膨張の差を緩和し、耐熱衝撃性に優れたシール
が得られると共に、融体の保持部材ら同時に満たされて
いるため、電池スタンクに河らかの振動酸るいは傾きが
生じた場合でも融体の移動を抑制することができ融体が
電池fil成材に侵入して電池特性を劣化させるといっ
た不都合はなく、長期に亘り安定な電池運転が可能なる
ものであり、その工業的価値は極めて大である。
(G) Effects of the Invention As described above, according to the present invention, the flat cell and the gas separation plate are not sealed at their contact surfaces as in the past, but
The peripheral surface is sealed by a non-conductive high viscosity melt that fills the reservoir formed around the cell or the entire stack.
Gas sealing is performed easily and reliably, and the molten material alleviates the difference in thermal expansion of battery constituent materials, resulting in a seal with excellent thermal shock resistance.At the same time, the molten material is also filled with the holding member. Even if there is a slight vibration or tilt in the battery tank, the movement of the molten material can be suppressed, and there is no inconvenience such as the molten material entering the battery filtration material and deteriorating the battery characteristics, and it can be used for a long time. It enables stable battery operation over a long period of time, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明固体電解質燃料電池の単セル模式図、第
2図は4セル積重体に適用した一実施例の縦断面図、第
3図は同上他実施例の縦断面図、第4図は第2図及び第
3図の一部を透視した上面図、第5図は同じく第2図、
第3図の横断面図、第6図は本発明固体電解質燃料電池
の電池特性図を夫々示す。 (1)・・・・セル、(3)(6)・・・・ガス分離板
、(5゛ )・・・カソードガス供給空間、(6′ )
・・・アノードガス供給空間、(7)(7o)・・・溜
部、(8)(8゜)・・・・非導電性高粘度融体と保持
部材との混合物、(9)・・・非多孔質セラミック板、
(If)) 有底箱体、 溝。 第1図
FIG. 1 is a schematic diagram of a single cell of the solid electrolyte fuel cell of the present invention, FIG. 2 is a vertical cross-sectional view of an embodiment applied to a 4-cell stack, FIG. 3 is a vertical cross-sectional view of the same and other embodiments, and FIG. The figure is a partially transparent top view of Figures 2 and 3, Figure 5 is also Figure 2,
FIG. 3 is a cross-sectional view, and FIG. 6 is a cell characteristic diagram of the solid electrolyte fuel cell of the present invention. (1)...Cell, (3)(6)...Gas separation plate, (5゛)...Cathode gas supply space, (6')
... Anode gas supply space, (7) (7o) ... Reservoir, (8) (8°) ... Mixture of non-conductive high viscosity melt and holding member, (9) ...・Non-porous ceramic plate,
(If)) Bottomed box, groove. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)アノード・固体電解質・カソードからなる平板状
セルと、前記アノード・カソード各背面に各ガス供給空
間を構成するガス分離板とを交互に積重してなり、前記
各ガス分離板と一体に、上方の隣接ガス分離板外周と間
隔を存して溜部を形成し、前記各溜部に非導電性高粘度
融体及び該融体の保持部材を満したことを特徴とする固
体電解質燃料電池。
(1) A flat cell consisting of an anode, a solid electrolyte, and a cathode, and gas separation plates constituting gas supply spaces on the back surfaces of the anode and cathode are stacked alternately, and are integrated with each of the gas separation plates. A solid electrolyte, characterized in that a reservoir is formed at a distance from the outer periphery of an upper adjacent gas separation plate, and each reservoir is filled with a non-conductive high viscosity melt and a member for holding the melt. Fuel cell.
(2)アノード・固体電解質・カソードからなる平板状
セルと、前記アノード・カソード各背面に各ガス供給空
間を構成するガス分離板とを交互に積重してなり、前記
積重体全体を有底箱体内に間隔を存して収納し、前記間
隔により形成された溜部に非導電性高粘度融体及び該融
体の保持部材を満したことを特徴とする固体電解質燃料
電池。
(2) A flat cell consisting of an anode, a solid electrolyte, and a cathode, and a gas separation plate constituting each gas supply space on the back of each of the anodes and cathodes are stacked alternately, and the entire stack is closed-ended. 1. A solid electrolyte fuel cell, characterized in that the fuel cell is housed in a box with a gap therebetween, and a reservoir formed by the gap is filled with a non-conductive high-viscosity melt and a member for holding the melt.
(3)前記保持部材が、非導電性繊維体であることを特
徴とする請求項(1)或るいは(2)記載の固体電解質
燃料電池。
(3) The solid electrolyte fuel cell according to claim 1 or 2, wherein the holding member is a non-conductive fibrous body.
JP2182313A 1990-07-10 1990-07-10 Solid electrolyte fuel cell Pending JPH0471167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182313A JPH0471167A (en) 1990-07-10 1990-07-10 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182313A JPH0471167A (en) 1990-07-10 1990-07-10 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0471167A true JPH0471167A (en) 1992-03-05

Family

ID=16116122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182313A Pending JPH0471167A (en) 1990-07-10 1990-07-10 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0471167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185775A (en) * 2004-12-28 2006-07-13 Nippon Telegr & Teleph Corp <Ntt> Seal material for solid oxide fuel cell, and method of manufacturing seal material for solid oxide fuel cell
EP1927764A1 (en) * 2006-11-30 2008-06-04 Forschungszentrum Jülich Gmbh Assembly made of bodies connected with joining material
JP2009512150A (en) * 2005-10-11 2009-03-19 コミツサリア タ レネルジー アトミーク Sealed fuel cell stack
US7569298B2 (en) 2001-06-08 2009-08-04 Toyota Jidosha Kabushiki Kaisha Separator seal structure for a fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569298B2 (en) 2001-06-08 2009-08-04 Toyota Jidosha Kabushiki Kaisha Separator seal structure for a fuel cell
JP2006185775A (en) * 2004-12-28 2006-07-13 Nippon Telegr & Teleph Corp <Ntt> Seal material for solid oxide fuel cell, and method of manufacturing seal material for solid oxide fuel cell
JP2009512150A (en) * 2005-10-11 2009-03-19 コミツサリア タ レネルジー アトミーク Sealed fuel cell stack
EP1927764A1 (en) * 2006-11-30 2008-06-04 Forschungszentrum Jülich Gmbh Assembly made of bodies connected with joining material

Similar Documents

Publication Publication Date Title
JP3775436B2 (en) Solid electrolyte fuel cell
JP5231569B2 (en) Multilayer glass-ceramic seal for fuel cells
JP2011511415A (en) Seal structure for solid oxide fuel cell device
JP5451653B2 (en) Gas seal material
US10868323B2 (en) Solid oxide fuel cell
JPH0594836A (en) Glass-graphite bonding system for sodium-sulfur cell and battery formed of system such as described above
US8420278B2 (en) Solid oxide fuel cell having a glass composite seal
JPH0471167A (en) Solid electrolyte fuel cell
JP2771578B2 (en) Solid electrolyte fuel cell
KR101348967B1 (en) Unit cell of flat-tubular solid oxide fuel cell or solid oxide electrolyzer cell and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same
JP2999653B2 (en) Solid electrolyte fuel cell
JPH02276166A (en) Solid electrolyte fuel cell
JPH0794196A (en) Solid electrolyte fuel cell stack
JP2698162B2 (en) Solid electrolyte fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JP2948439B2 (en) Solid electrolyte fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH02242564A (en) Solid electrolyte fuel cell
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH0449750B2 (en)
US8968959B2 (en) Method for fabrication of electrochemical energy converter and the electrochemical energy converter
JPH04280074A (en) Solid electrolyte fuel cell
JPH0777133B2 (en) Molten carbonate fuel cell
JPS61292862A (en) Molten carbonate type fuel cell
JPH0782866B2 (en) Molten carbonate fuel cell