JPH0789491B2 - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH0789491B2
JPH0789491B2 JP61279947A JP27994786A JPH0789491B2 JP H0789491 B2 JPH0789491 B2 JP H0789491B2 JP 61279947 A JP61279947 A JP 61279947A JP 27994786 A JP27994786 A JP 27994786A JP H0789491 B2 JPH0789491 B2 JP H0789491B2
Authority
JP
Japan
Prior art keywords
electrolyte layer
fuel cell
molten carbonate
groove
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61279947A
Other languages
Japanese (ja)
Other versions
JPS63133457A (en
Inventor
曜一 瀬田
謙二 村田
秀行 大図
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61279947A priority Critical patent/JPH0789491B2/en
Publication of JPS63133457A publication Critical patent/JPS63133457A/en
Publication of JPH0789491B2 publication Critical patent/JPH0789491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、溶融炭酸塩燃料電池に係り、特に、複数の単
位電池を積層した積層体におけるガスシール構造を改良
した燃料電池に関する。
The present invention relates to a molten carbonate fuel cell, and more particularly to a fuel having an improved gas seal structure in a laminated body in which a plurality of unit cells are laminated. Regarding batteries.

(従来の技術) 近年、高能率のエネルギー変換装置として溶融炭酸塩燃
料電池の開発が進められている。溶融炭酸塩燃料電池
は、アルカリ炭酸塩からなる電解質を高温下で溶融状態
にし、電極反応を起こさせるもので、他の燃料電池、た
とえばリン酸燃料電池に比べ、高価な貴金属触媒を必要
とせずに発電熱効率が高い等の大きな特徴を有してい
る。
(Prior Art) In recent years, a molten carbonate fuel cell has been developed as a highly efficient energy conversion device. A molten carbonate fuel cell is one in which an electrolyte composed of an alkali carbonate is melted at a high temperature to cause an electrode reaction, and does not require an expensive precious metal catalyst as compared to other fuel cells such as a phosphoric acid fuel cell. It has major features such as high heat generation efficiency.

ところで、溶融炭酸塩燃料電池の単位電池の出力は微弱
である。したがって、高出力の発電プラントを構成する
には、複数の単位電池を直列に積層して積層体を構成
し、各単位電池の加算出力を得る必要がある。
By the way, the output of the unit cell of the molten carbonate fuel cell is weak. Therefore, in order to configure a high-output power plant, it is necessary to stack a plurality of unit batteries in series to form a stacked body and obtain the added output of each unit battery.

第3図は従来より提案されている溶融炭酸塩燃料電池の
主要部を示すものである。すなわち、炭酸リチウム、炭
酸カリウム等の炭酸塩の電解質と、リチウムアルミネー
ト等のセラミック系保持材とを平板状に一体化してなる
電解質層1の両面に、上記電解質層1の縦横寸法に比較
して一方の寸法だけが狭く形成されたニッケル合金系の
ガス拡散電極2a,2bを互いに直交するように当てがって
単位電池3を構成し、この単位電池3を複数個、相互間
に導電性の双極性隔離板4を介在させて積層した積層体
Xに構成されている。
FIG. 3 shows the main part of a conventionally proposed molten carbonate fuel cell. That is, the longitudinal and lateral dimensions of the electrolyte layer 1 are compared on both sides of an electrolyte layer 1 formed by integrating a carbonate electrolyte such as lithium carbonate and potassium carbonate and a ceramic-based holding material such as lithium aluminate in a flat plate shape. The nickel alloy gas diffusion electrodes 2a and 2b formed so that only one dimension is narrow are applied so as to be orthogonal to each other to form a unit battery 3, and a plurality of the unit batteries 3 are electrically conductive to each other. The laminated body X is formed by laminating the bipolar separator 4 of FIG.

各双極性隔離板4は、電解質層1の縦横寸法と等しい縦
横寸法に形成されたステンレス鋼製の隔離板本体5と、
この隔離板本体5の一方の面の平行する両辺部にそれぞ
れ溶接またはろう付けされ、それぞれの間に上記一方の
面を底壁内面として図中太矢印Pで示すように燃料ガス
を通流させる溝状の通路Aを構成するステンレス鋼製の
側壁部材6a,6bと、隔離板本体5の他方の面で、かつ上
記側壁部材6a,6bに対して直交する両辺部にそれぞれ溶
接またはろう付けされ、それぞれの間に上記他方の面を
底壁内面として図中太矢印Qで示すように酸化剤ガスを
通流させる通路Bを構成するステンレス鋼製の側壁部材
7a,7bと、通路A,B内に装着されガス流を実質的に複数に
分流させるステンレス鋼製の波板8とで構成されてい
る。そして、側壁部材6a,6b,7a,7bの内側縁部にはガス
拡散電極2a,2bの両側部を係止するための係止用段部9
がそれぞれ形成されている。すなわち、ガス拡散電極2
a,2bは、第4図に示すように、係止用段部9の、いわゆ
る深さとほぼ等しい厚みに形成され、またその両側部が
係止用段部に係止されて通路A,Bの開口部を閉塞し得る
幅に形成されている。なお、第4図中10は、側壁部材の
電解質層1に接触する部分が電解質によって腐蝕される
のを防止するために上記側壁部材の表面に設けられたア
ルミナ,ジルコニア等のセラミックス防食層を示してい
る。
Each bipolar separator 4 has a separator body 5 made of stainless steel, which has vertical and horizontal dimensions equal to those of the electrolyte layer 1, and
The separator plate body 5 is welded or brazed to both parallel sides of one surface of the separator plate 5, and the fuel gas is allowed to flow between them as shown by a thick arrow P in the figure with the one surface as an inner surface of the bottom wall. The stainless steel side wall members 6a and 6b forming the groove-shaped passage A are welded or brazed to the other surface of the separator plate body 5 and to both sides orthogonal to the side wall members 6a and 6b. , A side wall member made of stainless steel that forms a passage B through which the oxidant gas flows, with the other surface being the inner surface of the bottom wall between them.
7a, 7b and a corrugated plate 8 made of stainless steel, which is installed in the passages A, B and divides the gas flow into a plurality of gas flows. Then, locking step portions 9 for locking both side portions of the gas diffusion electrodes 2a, 2b are provided on the inner edge portions of the side wall members 6a, 6b, 7a, 7b.
Are formed respectively. That is, the gas diffusion electrode 2
As shown in FIG. 4, a and 2b are formed to have a thickness substantially equal to the so-called depth of the locking step portion 9, and both sides thereof are locked to the locking step portion so that the passages A and B are formed. Is formed to have a width capable of closing the opening of the. Reference numeral 10 in FIG. 4 denotes a ceramic anticorrosion layer such as alumina or zirconia provided on the surface of the side wall member in order to prevent the portion of the side wall member in contact with the electrolyte layer 1 from being corroded by the electrolyte. ing.

主要部が上記のように構成される溶融炭酸塩燃料電池に
あって、通路A,Bを通流するガスが外部へ漏れるのを防
止するために、側壁部材6a,6b,7a,7bとこれに接触する
電解質層1の端部との間をガスシールする必要がある
が、このシール手段としては、通常、積層体Xを構成し
た後、電池作動温度(Li2 CO3/K2 CO3 2元素電解質の
場合には一般に650℃)まで昇温させ、この昇温によっ
て溶融した電解質でシールする方式が採用されている。
すなわち、電解質は昇温途上の488℃の共融温度で溶融
し、この溶融物が電解質層1の端部と各側壁部材6a,6b,
7a,7bとの間に存在する隙間に侵入し、これによってガ
スシールが行われる。
In the molten carbonate fuel cell whose main part is configured as described above, in order to prevent the gas flowing through the passages A and B from leaking to the outside, the side wall members 6a, 6b, 7a, 7b and It is necessary to make a gas seal between the end of the electrolyte layer 1 that contacts the battery, and this seal means is usually used after the laminate X is formed and then at the battery operating temperature (Li 2 CO 3 / K 2 CO 3 In the case of a two-element electrolyte, a method is generally employed in which the temperature is raised to 650 ° C. and the molten electrolyte is sealed by this temperature rise.
That is, the electrolyte is melted at a eutectic temperature of 488 ° C. during the temperature rise, and this melted material melts the end portion of the electrolyte layer 1 and the side wall members 6a, 6b,
It penetrates into the gap existing between 7a and 7b, and thereby gas sealing is performed.

しかしながら、上記のように構成され、上記のようなガ
スシール方式を採用した従来の溶融炭酸塩燃料電池にあ
っては、電解質層1の端部の平坦な面と、これに接触す
る側壁部材6a,6b,7a,7bの平坦な面との間で溶融した電
解質でガスシールする(ウェットシール)ようにしてい
るので、2つの平坦な面間に存在する隙間に電解質が侵
入し難く、この結果、シールが不十分になり易い問題が
あった。このようにシールが不十分になると、積層体側
面部で水生成反応が生じ供給ガスの有効利用が損われる
ことになる。また、上述したシール構造であると、運転
時間の長期化に伴う電解質の逸散等によってシール性能
が時間とともに低下する問題もあった。さらに、上述し
たウェットシール方式であると、電解質が側壁部材のア
ノード側またはカソード側の何れかを濡らしているの
で、降温時に側壁部材と電解質との間の熱膨張率差によ
って電解質層1にひび割れが生じ易く、このため耐熱サ
イクルが不十分であった。また、上述したシール構造で
あると、不具合のセルだけを交換することができない問
題もあった。
However, in the conventional molten carbonate fuel cell configured as described above and employing the gas sealing method as described above, the flat surface of the end portion of the electrolyte layer 1 and the side wall member 6a contacting the flat surface are formed. Since the gas is sealed (wet seal) with the molten electrolyte between the flat surfaces of 6a, 6b, 7a and 7b, it is difficult for the electrolyte to enter the gap between the two flat surfaces. However, there is a problem that the seal tends to be insufficient. If the sealing is insufficient in this way, a water generation reaction occurs on the side surface of the laminate, and the effective use of the supply gas is impaired. Further, the above-mentioned sealing structure has a problem that the sealing performance is deteriorated with time due to the escape of the electrolyte or the like accompanying the extension of the operating time. Further, in the above-described wet seal method, the electrolyte wets either the anode side or the cathode side of the side wall member, and therefore the electrolyte layer 1 is cracked due to the difference in the coefficient of thermal expansion between the side wall member and the electrolyte when the temperature is lowered. Was likely to occur, and therefore the heat resistance cycle was insufficient. Further, the above-mentioned sealing structure has a problem that only the defective cell cannot be replaced.

そこで、このような不具合を解消するために、側壁部材
6a,6b,7a,7bの幅を広くし、電解質層1との接触面積を
広くすることが考えられる。しかし、このようにする
と、電解質層1の有効反応面積が減少し、空間利用率が
低下することになる。
Therefore, in order to eliminate such a problem, the side wall member
It is conceivable to widen the width of 6a, 6b, 7a, 7b and widen the contact area with the electrolyte layer 1. However, in this case, the effective reaction area of the electrolyte layer 1 is reduced and the space utilization rate is reduced.

(発明が解決しようとする問題点) 上述の如く、従来の溶融炭酸塩燃料電池の構造では、本
質的に良好なガスシール性能を期待することができない
問題があった。
(Problems to be Solved by the Invention) As described above, the structure of the conventional molten carbonate fuel cell has a problem that essentially good gas sealing performance cannot be expected.

そこで本発明は、電解質層の有効反応面積の拡大化を図
った状態で、なおかつ確実で安定なガスシールを行える
とともに熱サイクル時にサール部に位置する電解質層に
割れが生じるのを防止でき、しかもシール部での電解質
層と双極性隔離板との融着を防止して不具合のセルのみ
を抜き取り交換可能な融炭酸塩燃料電池を提供すること
を目的としている。
Therefore, the present invention, in a state where the effective reaction area of the electrolyte layer is intended to be enlarged, and yet can perform a reliable and stable gas seal and prevent the occurrence of cracks in the electrolyte layer located in the sarl portion during thermal cycling, and An object of the present invention is to provide a fused carbonate fuel cell in which fusion between the electrolyte layer and the bipolar separator at the seal portion is prevented and only defective cells can be extracted and replaced.

[発明の構成] (問題点を解決するための手段) 本発明に係る溶融炭酸塩燃料電池では、双極性隔離板に
設けられた溝状のガス通路の側壁で電解質層の端部に直
接接触する面に一条以上の溝を設けるとともに、上記溝
内に、軟化温度が前記電解質層を構成する電解質の共融
温度よりも低い主成分としてのホウ酸系ガラスと保持材
としてのリチウム含有酸化物と粘度調整用溶媒との混練
物からなるシール材を装着している。
[Structure of the Invention] (Means for Solving the Problems) In the molten carbonate fuel cell according to the present invention, the side wall of the groove-shaped gas passage provided in the bipolar separator directly contacts the end of the electrolyte layer. While providing one or more grooves on the surface, in the groove, the softening temperature is lower than the eutectic temperature of the electrolyte constituting the electrolyte layer boric acid-based glass as a main component and a lithium-containing oxide as a holding material A sealing material composed of a kneaded product of a solvent and a solvent for adjusting viscosity is attached.

(作用) 上記のように装着されたシール材は、加熱されると主成
分であるホウ酸系ガラスが溶融して電解質層に密着する
ばかりか圧力の加わっていない溝内を溝の内面に充分な
じみながら溝の幅方向へ広がり、結局、良好なシール機
能を発揮する。したがって、側壁部材の幅を広げること
なく良好なシール性能を発揮させることが可能となる。
またホウ酸系ガラスは、電解質との相溶性が低いため、
長期間使用しても相互での溶解による移動がなく、シー
ル性能を安定に維持できる。したがって、電解質層の有
効反応面積を充分大きくした状態で、なおかつ良好で、
安定性の高いシール性能を発揮する。さらに、ホウ酸系
ガラスと電解質とは、相互溶解性が低いため、電池降温
時に電解質とシール材との間で融着が生じない。したが
って、不具合の生じたセルを他の部材に変形や亀裂を起
こさせることなく容易に抜き出すことが可能となる。
(Operation) When the sealing material mounted as described above is heated, not only does the boric acid-based glass, which is the main component, melt and adhere to the electrolyte layer, but also the inside of the groove is sufficiently pressure-free inside the groove. It spreads in the width direction of the groove while accommodating, and eventually exhibits a good sealing function. Therefore, good sealing performance can be achieved without increasing the width of the side wall member.
In addition, since boric acid glass has low compatibility with the electrolyte,
Even when used for a long period of time, there is no migration due to mutual dissolution and the sealing performance can be maintained stably. Therefore, in a state in which the effective reaction area of the electrolyte layer is sufficiently large, and still good,
Delivers highly stable sealing performance. Furthermore, since the boric acid-based glass and the electrolyte have low mutual solubility, fusion does not occur between the electrolyte and the sealing material when the temperature of the battery is lowered. Therefore, the defective cell can be easily extracted without causing deformation or crack in other members.

また、ホウ酸系ガラスの軟化点が電解質より低いため、
降温時に電解質層と側壁部材との熱膨張率差によって発
生し易い電解質層端部へのクラック発生を抑制でき、こ
れによって耐熱サイクルの向上化も実現できる。
Also, since the softening point of boric acid glass is lower than that of the electrolyte,
It is possible to suppress the occurrence of cracks at the ends of the electrolyte layer, which are likely to occur due to the difference in coefficient of thermal expansion between the electrolyte layer and the side wall member when the temperature is lowered, and thus it is possible to improve the heat resistance cycle.

(実施例) 以下、本発明の一実施例を説明する。(Example) Hereinafter, one example of the present invention will be described.

第1図は本発明に係る溶融炭酸塩燃料電池の主要部に組
み込まれる双極性隔離板14を示すもので、第3図に同一
部分は同一符号で示してある。したがって、重複する部
分の説明は省略する。
FIG. 1 shows a bipolar separator 14 incorporated in the main part of the molten carbonate fuel cell according to the present invention, and the same parts are designated by the same reference numerals in FIG. Therefore, the description of the overlapping portions will be omitted.

この実施例における双極性隔離板14は、溝状のガス通路
A,Bを形成するために隔離板本体5にろう付けされた側
壁部6a,6b,7a,7bの電解質層1の端部に直接接触する面
に、たとえば幅5mm、深さ1.5mmの溝15をそれぞれ形成し
たものとなっている。そして、第2図に示すように、各
電解質層1間に上記双極性隔離板14を介在させて積層す
るに際し、各溝15内にホウ酸系ガラスを主成分としたシ
ール材16を介在させている。
The bipolar separator 14 in this embodiment is a groove-shaped gas passage.
Grooves having a width of 5 mm and a depth of 1.5 mm, for example, are formed on the surfaces of the side wall portions 6a, 6b, 7a, 7b which are brazed to the separator body 5 to form A and B, which are in direct contact with the ends of the electrolyte layer 1. 15 are formed respectively. Then, as shown in FIG. 2, when the bipolar separators 14 are interposed between the electrolyte layers 1 and stacked, a sealing material 16 containing boric acid glass as a main component is interposed in each groove 15. ing.

シール材16としては、たとえばB2O3−P2O5ガラス(軟化
点420℃)粉末に保持材としてのアルミン酸リチウム粉
末(ガラス9部に対して1部)および粘度調整用溶媒と
してのシリコーンオイル(ガラス,アルミナ混合粉10部
に対して4部)を添加してなる混合物を混練し、引き続
いてロール成形してひも状に切断加工してなるものが用
いられている。そして、第2図に示すようにシール材16
を装着した状態で積層体を形成し、この積層体を締付け
バー等で締付けた後、外部加熱によって電池運転温度
(650℃)まで加熱し、この加熱によりシール材16の主
成分であるホウ酸系ガラスを軟化点近傍(420℃)で溶
融させている。この結果、シール材16は最終的には電解
質層1に密着し、かつ溝15の内面に充分になじんだもの
となっている。そして、この積層体の4つの側面に通常
の方法で反応ガス供給用マニホールドを取付け、最終的
に燃料電池が構成されている。
Examples of the sealing material 16 include B 2 O 3 —P 2 O 5 glass (softening point 420 ° C.) powder, lithium aluminate powder (1 part relative to 9 parts of glass) as a holding material, and a viscosity adjusting solvent. A mixture obtained by kneading a mixture obtained by adding silicone oil (4 parts to 10 parts of glass / alumina mixed powder), followed by roll forming and cutting into a string shape is used. Then, as shown in FIG.
After forming a laminated body with the attached, and tightening the laminated body with a tightening bar, etc., it is heated to the battery operating temperature (650 ° C) by external heating, and boric acid, which is the main component of the sealing material 16, is heated by this heating. The system glass is melted near the softening point (420 ° C). As a result, the sealing material 16 finally comes into close contact with the electrolyte layer 1 and is sufficiently conformed to the inner surface of the groove 15. Then, a reaction gas supply manifold is attached to the four side surfaces of this laminated body by a usual method to finally form a fuel cell.

上記のように構成された燃料電池について、シール部の
シール性をみるために、マニホールドを介して各通路A
に水素ガスを、各通路Bに窒素ガスをそれぞれ流すとと
もに各通路Bを通った窒素ガス中の水素ガス含有量を触
媒燃焼式水素計で測定することによって通路Aのシール
性を確認した。また、逆に通路Bに水素ガスを、各通路
Aに窒素ガスをそれぞれ流し、各通路Aに通った窒素ガ
ス中の水素ガス含有量を同様に測定して通路Bのシール
性を確認した。また、参考例として各部寸法および段数
が等しく設定され、溝15およびシール材16を使わずにシ
ールしたものについても同様に測定を行なってみた。そ
の結果、電池発電初期において表1に示すデータが得ら
れた。
Regarding the fuel cell configured as described above, in order to check the sealing property of the seal portion, each passage A is arranged through the manifold.
The sealing property of the passage A was confirmed by flowing hydrogen gas into the passage A and nitrogen gas into the passage B, respectively, and measuring the hydrogen gas content in the nitrogen gas passing through the passage B with a catalytic combustion hydrogen meter. On the contrary, hydrogen gas was passed through the passage B and nitrogen gas was passed through the passages A, respectively, and the hydrogen gas content in the nitrogen gas passing through the passages A was measured in the same manner to confirm the sealing property of the passage B. In addition, as a reference example, the same measurement was carried out for a product in which the dimensions and the number of steps were set to be the same, and which was sealed without using the groove 15 and the sealing material 16. As a result, the data shown in Table 1 was obtained at the initial stage of battery power generation.

この表1から判かるように、本発明の構造を採用すれ
ば、ガスシール性能を大幅に向上させることができる。
As can be seen from Table 1, if the structure of the present invention is adopted, the gas sealing performance can be greatly improved.

また実施例の電池では、発電開始後(650℃に到達
後)、約1000時間を経てもシール性能の低下はみられな
かったが、参考例では通路AおよびBのいずれも水素含
有量が3〜5倍に増加し、シール性能の低下がみられ
た。また、本実施例の積層電池を1時間当り50℃の速度
で室温まで降温させた。このとき、マニホールド側面か
ら見える部分の電解質層に形成されたクラック数を確認
したところ、上述したシール材を使用しない場合に比べ
て1/4に減少していた。また、上部エンドプレートから
第3セルまでを抜取り、第3セルの電極、電解質層を新
規なものとし、また第1、第2セルをシールを除いてそ
のまま使用して再度昇温して発電試験を行なったところ
第1,第2セルのV−i特性の低下は第4セルより下部の
セルのV−i特性の低下の1.05倍に止まった。
In addition, in the batteries of Examples, the sealing performance was not deteriorated even after about 1000 hours after the start of power generation (after reaching 650 ° C.), but in the reference example, both passages A and B had a hydrogen content of 3 .About.5 times, and the sealing performance was deteriorated. In addition, the laminated battery of this example was cooled to room temperature at a rate of 50 ° C. per hour. At this time, when the number of cracks formed in the electrolyte layer in the portion visible from the side surface of the manifold was confirmed, it was reduced to 1/4 as compared with the case where the above-mentioned sealing material was not used. In addition, the upper end plate to the third cell are removed, the electrode and electrolyte layer of the third cell are new, and the first and second cells are used as they are without the seal and the temperature is raised again to test the power generation. As a result, the deterioration of the V-i characteristics of the first and second cells was 1.05 times that of the cells below the fourth cell.

なお、本発明は、上述した実施例に限定されるものでは
ない。すなわち、溝15内に装着するシール材16として
は、運転温度以下で軟化するようなシール材組成を有す
るもの(たとえばB2O3−ZnO系ガラス)であれば良好な
シール性能を発揮させることができる。また、上述した
実施例では溝15を一条設けているが、側壁部材の幅に応
じて複数条形成してシール性能を一段と向上させてもよ
い。また、保持材としては、LiAlO2に限らず、ジルコン
酸リチウム、チタン酸リチウムでもよい。また、降温
後、積層電池を分解し、一部のセルを抜き出して交換す
る際、少なくともアノード,カソードの何れかの電極と
集電兼ガス供給チャンネル形成用の波板との固着によっ
て、抜き出しセル以外のセルの破損を防止するために、
波板の表面に少量のBN粉末を塗布してもよい。さらに、
波板にスリット状の孔を多少設けるようにしてもよい。
また、波板および側壁部材の耐蝕性を向上させるため
に、これらのカソード側に位置する表面にNiFe2O4を形
成するようにしてもよい。
The present invention is not limited to the above embodiment. That is, if the sealing material 16 mounted in the groove 15 has a sealing material composition that softens below the operating temperature (for example, B 2 O 3 —ZnO-based glass), good sealing performance should be exhibited. You can Further, although the groove 15 is provided in one line in the above-described embodiment, a plurality of lines may be formed according to the width of the side wall member to further improve the sealing performance. Further, the holding material is not limited to LiAlO 2 , and may be lithium zirconate or lithium titanate. When the laminated battery is disassembled after the temperature is lowered and a part of the cells is taken out and replaced, at least either the anode or the cathode and the corrugated plate for forming the current collecting and gas supply channel are fixed to each other, so that the extraction cell is removed. To prevent damage to cells other than
A small amount of BN powder may be applied to the surface of the corrugated plate. further,
The corrugated plate may be provided with some slit-shaped holes.
Further, in order to improve the corrosion resistance of the corrugated plate and the side wall member, NiFe 2 O 4 may be formed on the surface located on the cathode side thereof.

[発明の効果] 以上述べたように、本発明によれば、双極性隔離板の側
壁部で電解質層の端部に直接接触する部分に一条以上の
溝を設け、この溝に前記組成からなるシール材を装着す
るようにしているので、熱サイクルに対して強い確実な
シールを実現できるばかりか、不具合なセルの交換の容
易化にも寄与できる溶融炭酸塩燃料電池を提供できる。
[Effects of the Invention] As described above, according to the present invention, one or more grooves are provided in the side wall portion of the bipolar separator, which is in direct contact with the end portion of the electrolyte layer. Since the sealing material is attached, it is possible to provide a molten carbonate fuel cell that not only realizes a strong and reliable seal against heat cycles but also contributes to easy replacement of defective cells.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る溶融炭酸塩燃料電池の
主要部に組み込まれる双極性隔離板の斜視図、第2図は
同隔離板の組み込まれた主要部の局所的側面図、第3図
は従来の溶融炭酸塩燃料電池における主要部の分解斜視
図、第4図は同主要部の局所的側面図である。 1……電解質層、2a、2b……ガス拡散極、3……単位電
池、5……隔離板本体、6a、6b、7a,7b……側壁部付、1
4……双極性隔離板、15……溝、16……シール材、A,B…
…溝状に形成されたガス通路。
FIG. 1 is a perspective view of a bipolar separator installed in a main part of a molten carbonate fuel cell according to an embodiment of the present invention, and FIG. 2 is a local side view of the main part in which the separator is installed. FIG. 3 is an exploded perspective view of a main part of a conventional molten carbonate fuel cell, and FIG. 4 is a local side view of the main part. 1 ... Electrolyte layer, 2a, 2b ... Gas diffusion electrode, 3 ... Unit battery, 5 ... Separator body, 6a, 6b, 7a, 7b ... With side wall, 1
4 ... Bipolar separator, 15 ... Groove, 16 ... Sealing material, A, B ...
… A groove-shaped gas passage.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平板状に形成された溶融炭酸塩電解質層の
両面に上記電解質層の縦横寸法に比較して何れか一方の
寸法だけが狭く形成された一対のガス拡散電極を当てが
ってなる複数の単位電池を、各単位電池相互間に、縦横
寸法が上記電解質層の縦横寸法と等しく形成され、かつ
両面にそれぞれ、その開口部が上記ガス拡散電極の嵌入
によって閉塞される溝状に形成された燃料ガス通路およ
び酸化剤ガス通路を有する双極性隔離板を介在させて積
層し、上記双極性隔離板の上記溝状のガス通路を形成す
る側壁と、これに直接接触する上記電解質層の端部との
間でガスシールするようにした溶融炭酸塩燃料電池にお
いて、前記双極性隔離板の前記溝状のガス通路を形成す
る側壁で前記電解質層の端部に直接接触する部分に一条
以上の溝を設けるとともに上記溝内に、軟化温度が前記
電解質層を構成する電解質の共融温度よりも低い主成分
としてのホウ酸系ガラスと保持材としてのリチウム含有
酸化物と粘度調整用溶媒との混練物とからなるシール材
を装着してなることを特徴とする溶融炭酸塩燃料電池。
1. A pair of gas diffusion electrodes, in which either one of the dimensions is narrower than the vertical and horizontal dimensions of the electrolyte layer, is applied to both surfaces of a flat molten carbonate electrolyte layer. A plurality of unit cells, each of which has a vertical and horizontal dimension equal to the vertical and horizontal dimensions of the electrolyte layer, and has a groove shape in which openings are closed on both sides by fitting of the gas diffusion electrode. A bipolar separator having a formed fuel gas passage and an oxidant gas passage is laminated with the bipolar separator interposed therebetween, and a sidewall forming the groove-shaped gas passage of the bipolar separator and the electrolyte layer in direct contact with the sidewall. In a molten carbonate fuel cell configured to make a gas seal with the end of the bipolar separator, one line is formed in a portion of the bipolar separator that directly contacts the end of the electrolyte layer on the side wall forming the groove-shaped gas passage. Providing the above groove Both in the groove, the softening temperature is a kneaded product of a boric acid-based glass as a main component lower than the eutectic temperature of the electrolyte constituting the electrolyte layer and a lithium-containing oxide as a holding material and a viscosity adjusting solvent. A molten carbonate fuel cell, characterized in that a molten carbonate fuel cell is mounted.
【請求項2】前記シール材に含まれるリチウム含有酸化
物は、LiAlO2であることを特徴とする特許請求の範囲第
1項記載の溶融炭酸塩燃料電池。
2. The molten carbonate fuel cell according to claim 1, wherein the lithium-containing oxide contained in the sealing material is LiAlO 2 .
JP61279947A 1986-11-25 1986-11-25 Molten carbonate fuel cell Expired - Fee Related JPH0789491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279947A JPH0789491B2 (en) 1986-11-25 1986-11-25 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279947A JPH0789491B2 (en) 1986-11-25 1986-11-25 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS63133457A JPS63133457A (en) 1988-06-06
JPH0789491B2 true JPH0789491B2 (en) 1995-09-27

Family

ID=17618138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279947A Expired - Fee Related JPH0789491B2 (en) 1986-11-25 1986-11-25 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0789491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771578B2 (en) * 1989-02-15 1998-07-02 三洋電機株式会社 Solid electrolyte fuel cell
JPH02242564A (en) * 1989-03-15 1990-09-26 Sanyo Electric Co Ltd Solid electrolyte fuel cell
EP0921583A1 (en) * 1997-12-05 1999-06-09 Siemens Aktiengesellschaft Sealing of high temperature fuel cells and high temperature fuel cell stacks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777133B2 (en) * 1985-11-30 1995-08-16 株式会社東芝 Molten carbonate fuel cell

Also Published As

Publication number Publication date
JPS63133457A (en) 1988-06-06

Similar Documents

Publication Publication Date Title
EP1569292B1 (en) Fuel cell assembly
EP1677377B1 (en) Ceramic coatings for insulating modular fuel cell cassettes in a solid-oxide fuel cell stack
BRPI0610685A2 (en) sofc batteries
JP6169429B2 (en) Fuel cell with separator and fuel cell stack
JPH0789491B2 (en) Molten carbonate fuel cell
JPH0793146B2 (en) Molten carbonate fuel cell stack
US20040265666A1 (en) Solid oxide fuel cell frames and method of manufacture
JP2936001B2 (en) High temperature fuel cell and method of manufacturing the same
JP2621863B2 (en) Molten carbonate fuel cell
JPH0158832B2 (en)
KR101254965B1 (en) A Seperator For Fuel Cell
JPH02121265A (en) Molten carbonate type fuel cell laminate body
JPH0151027B2 (en)
JP2771578B2 (en) Solid electrolyte fuel cell
JPH0358153B2 (en)
JPH07245115A (en) Solid electrolyte fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH0777133B2 (en) Molten carbonate fuel cell
RU212913U1 (en) Block of solid oxide fuel cells of planar geometry with a central-axial gluing section
KR101602272B1 (en) Cell package and fuel cell assembly having the same
JP7210509B2 (en) Electrochemical reaction cell stack
JP3340272B2 (en) Solid oxide fuel cell
JPH0815094B2 (en) Molten carbonate fuel cell
JPH0412468A (en) High-temperature fuel cell
EP1766708B1 (en) Solid oxide fuel cell frames and method of manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees