JP2697572B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device

Info

Publication number
JP2697572B2
JP2697572B2 JP23468493A JP23468493A JP2697572B2 JP 2697572 B2 JP2697572 B2 JP 2697572B2 JP 23468493 A JP23468493 A JP 23468493A JP 23468493 A JP23468493 A JP 23468493A JP 2697572 B2 JP2697572 B2 JP 2697572B2
Authority
JP
Japan
Prior art keywords
electrode
gallium nitride
based compound
compound semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23468493A
Other languages
Japanese (ja)
Other versions
JPH0794782A (en
Inventor
孝夫 山田
雅之 妹尾
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP23468493A priority Critical patent/JP2697572B2/en
Priority to EP04012118A priority patent/EP1450415A3/en
Priority to DE69425186T priority patent/DE69425186T3/en
Priority to TW90209918U priority patent/TW491406U/en
Priority to EP99114356A priority patent/EP0952617B1/en
Priority to DE69433926T priority patent/DE69433926T2/en
Priority to EP94106587A priority patent/EP0622858B2/en
Priority to TW083103775A priority patent/TW403945B/en
Priority to KR1019940009055A priority patent/KR100286699B1/en
Priority to CNB03145867XA priority patent/CN1240142C/en
Priority to CNB031458696A priority patent/CN1240143C/en
Priority to CNB03145870XA priority patent/CN1262024C/en
Priority to CN94106935A priority patent/CN1046375C/en
Priority to CNB031458688A priority patent/CN1253948C/en
Priority to US08/234,001 priority patent/US5563422A/en
Publication of JPH0794782A publication Critical patent/JPH0794782A/en
Priority to US08/670,242 priority patent/US5767581A/en
Priority to US08/665,759 priority patent/US5652434A/en
Priority to US08/995,167 priority patent/US5877558A/en
Application granted granted Critical
Publication of JP2697572B2 publication Critical patent/JP2697572B2/en
Priority to KR1019980022092A priority patent/KR100225612B1/en
Priority to CNB981183115A priority patent/CN1262021C/en
Priority to US09/209,826 priority patent/US6093965A/en
Priority to KR1019990032148A priority patent/KR100551364B1/en
Priority to US09/448,479 priority patent/US6204512B1/en
Priority to US09/750,912 priority patent/US6507041B2/en
Priority to US10/292,583 priority patent/US6610995B2/en
Priority to KR1020030035961A priority patent/KR100551365B1/en
Priority to US10/609,410 priority patent/US6998690B2/en
Priority to US11/198,465 priority patent/US7205220B2/en
Priority to US11/714,890 priority patent/US7375383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、発光ダイオード、レー
ザーダイオード等に使用される窒化ガリウム系化合物半
導体(InXAlYGa1-X-YN、0≦X≦1、0≦Y≦
1)が積層されてなる窒化ガリウム系化合物半導体発光
素子に係り、特に、最表面にp型窒化ガリウム系化合物
半導体層を有し、そのp型窒化ガリウム系化合物半導体
層側を発光観測面とする発光素子の電極の構造に関す
る。
The present invention relates to a gallium nitride compound semiconductor (InXAlYGa1-X-YN, 0≤X≤1, 0≤Y≤) used for a light emitting diode, a laser diode or the like.
The present invention relates to a gallium nitride-based compound semiconductor light-emitting device in which 1) is laminated, and in particular, has a p-type gallium nitride-based compound semiconductor layer on the outermost surface, and uses the p-type gallium nitride-based compound semiconductor layer side as a light emission observation surface. The present invention relates to a structure of an electrode of a light emitting element.

【0002】[0002]

【従来の技術】従来の窒化ガリウム系化合物半導体発光
素子は、基板上に、n型の窒化ガリウム系化合物半導体
層と、p型ドーパントがドープされた高抵抗なi型の窒
化ガリウム系化合物半導体層とが積層されたいわゆるM
IS構造のものが知られているが、最近になって高抵抗
なi型をp型とする技術(特開平2−257679号公
報、特開平3−218325号公報、特開平5−183
189号公報等)が発表され、p−n接合型の発光素子
が実現可能となってきた。
2. Description of the Related Art A conventional gallium nitride-based compound semiconductor light emitting device comprises an n-type gallium nitride-based compound semiconductor layer and a high-resistance i-type gallium nitride-based compound semiconductor layer doped with a p-type dopant on a substrate. So-called M
Although those having an IS structure are known, recently, a technique of converting a high-resistance i-type into a p-type (JP-A-2-257679, JP-A-3-218325, and JP-A-5-183)
No. 189) has been announced, and a pn junction type light emitting device has become feasible.

【0003】現在のところ、p−n接合型の窒化ガリウ
ム系化合物半導体発光素子は、そのp型窒化ガリウム系
化合物半導体(以下、p層という。)の製造方法が限ら
れているため、通常p層が最上層(即ち、積層終了時の
層)とされる。また、発光素子の基板には透光性、絶縁
性を有するサファイアが使用されるため、発光素子の発
光観測面側は基板側とされることが多い。しかし、基板
側を発光観測面側とするp−n接合型の発光素子は、同
一面側に形成されたp層およびn層の電極をリードフレ
ームに接続する際、1チップを2つのリードフレームに
跨って載置しなければならないので、1チップサイズが
大きくなるという欠点がある。つまり、n層の電極がp
層と接触すると電気的にショートしてしまうため、チッ
プ上の正、負それぞれの電極と2つのリードフレーム幅
との間隔を大きくする必要性から、自然とチップサイズ
が大きくなる。従って1枚あたりのウエハーから取れる
チップ数が少なくなり、高コストになるという欠点があ
る。
At present, pn junction type gallium nitride-based compound semiconductor light emitting devices are generally limited to p-type gallium nitride-based compound semiconductors (hereinafter referred to as p-layers) because of their limited manufacturing methods. The layer is the uppermost layer (that is, the layer at the end of lamination). Further, since sapphire having a light-transmitting property and an insulating property is used for the substrate of the light-emitting element, the light-emitting observation surface side of the light-emitting element is often the substrate side. However, the pn junction type light emitting element having the substrate side as the light emission observation surface side, when connecting the electrodes of the p layer and the n layer formed on the same surface side to the lead frame, one chip is connected to two lead frames. Therefore, there is a disadvantage that the size of one chip increases. That is, the electrode of the n-layer is p
When a contact is made with the layer, an electrical short circuit occurs, and the chip size naturally increases due to the necessity of increasing the distance between each of the positive and negative electrodes on the chip and the width of the two lead frames. Therefore, there is a disadvantage that the number of chips that can be obtained from one wafer is reduced, and the cost is increased.

【0004】一方、窒化ガリウム系化合物半導体層側を
発光観測面とする発光素子は、1チップを1つのリード
フレーム上に載置できるためチップサイズを小さくでき
る。しかも、発光観測面側から正、負両方の電極を取り
出すことができるので、生産技術上有利であるという利
点がある反面、発光観測面側の電極により発光が阻害さ
れることにより、基板側を発光観測面とする発光素子に
比して外部量子効率が悪いという欠点がある。
On the other hand, in a light emitting device having a gallium nitride-based compound semiconductor layer side as a light emission observation surface, one chip can be mounted on one lead frame, so that the chip size can be reduced. In addition, since both positive and negative electrodes can be taken out from the emission observation surface side, there is an advantage that it is advantageous from the viewpoint of production technology. There is a disadvantage that the external quantum efficiency is lower than that of the light emitting element used as the light emission observation surface.

【0005】[0005]

【発明が解決しようとする課題】我々は、外部量子効率
が高く、しかも生産技術にも優れている発光素子を提供
するため、先に、p層側を発光観測面とする発光素子の
p層に形成する電極を透光性の全面電極とする技術を提
案した。
SUMMARY OF THE INVENTION In order to provide a light emitting device having a high external quantum efficiency and excellent production technology, first, the p layer of a light emitting device having a light emitting observation surface on the p layer side. A technique was proposed in which the electrode formed on the substrate was a light-transmitting whole surface electrode.

【0006】前記技術により、従来の窒化ガリウム系化
合物半導体発光素子の問題は改善されてきた。しかしな
がら、p層に形成した全面電極の上に、さらにボンディ
ング用の電極(ボンディングパッド)を形成した場合、
ワイヤーボンディング時に、ワイヤーに引っ張られ、そ
のボンディング用の電極と透明な全面電極とが剥がれや
すくなるか、または全面電極がp層から剥がれやすくな
るという問題が生じてきた。
According to the above technology, the problem of the conventional gallium nitride-based compound semiconductor light emitting device has been improved. However, when an electrode for bonding (bonding pad) is further formed on the entire surface electrode formed on the p layer,
At the time of wire bonding, there is a problem that the wire is pulled by the wire and the bonding electrode and the transparent full-surface electrode are easily peeled off, or the whole-surface electrode is easily peeled off from the p-layer.

【0007】従って、本発明はこのような事情を鑑みて
成されたものであり、その目的とするところは、p層を
発光観測面側とする窒化ガリウム系化合物半導体発光素
子の外部量子効率を向上させると共に、主としてワイヤ
ーボンディング時にp層の電極、およびボンディング用
の電極の剥がれをなくして信頼性に優れた発光素子を提
供するにある。
Accordingly, the present invention has been made in view of such circumstances, and it is an object of the present invention to reduce the external quantum efficiency of a gallium nitride-based compound semiconductor light emitting device having a p-layer as a light emission observation surface side. Another object of the present invention is to provide a light emitting element having excellent reliability by eliminating peeling of a p-layer electrode and a bonding electrode mainly during wire bonding.

【0008】[0008]

【課題を解決するための手段】本発明の窒化ガリウム系
化合物半導体発光素子は、図1、図2、および図3に示
すように、絶縁性基板(1)の上に少なくともn型窒化
ガリウム系化合物半導体層(2)と、p型窒化ガリウム
系化合物半導体層(3)とが順に積層されており、その
p型窒化ガリウム系化合物半導体層(3)側を発光観測
面とする窒化ガリウム系化合物半導体発光素子におい
て、前記p型窒化ガリウム系化合物半導体層(3)表面
のほぼ全面に、透光性の第一の電極(11)が形成され
ていると共に、前記第一の電極(11)には、その第一
の電極(11)の一部を貫通した窓部(13)が形成さ
れており、さらに前記窓部(13)には、第一の電極
(11)と電気的に接続されたボンディング用の第二の
電極(12)が形成されており、さらにまた前記第二の
電極(12)は第一の電極(11)よりも強くp型窒化
ガリウム系化合物半導体層(3)に接着されていること
を特徴とする。つまり、p層にオーミック用の電極とボ
ンディング用の電極とを別々に形成し、ボンディング用
電極の単位面積あたりの付着力を、オーミック用電極の
単位面積あたりの付着力よりも大きくすることにより上
記問題を解決するに至ったものである。なお本願におい
て、透光性とは窒化ガリウム系化合物半導体の発光を透
過するという意味であり、必ずしも無色透明を意味する
ものではない。
As shown in FIGS. 1, 2 and 3, a gallium nitride based compound semiconductor light emitting device according to the present invention comprises at least an n-type gallium nitride based semiconductor light emitting device on an insulating substrate (1). A compound semiconductor layer (2) and a p-type gallium nitride-based compound semiconductor layer (3) are sequentially stacked, and a gallium nitride-based compound having the p-type gallium nitride-based compound semiconductor layer (3) side as a light emission observation surface In the semiconductor light emitting device, a light-transmitting first electrode (11) is formed on substantially the entire surface of the p-type gallium nitride-based compound semiconductor layer (3), and the first electrode (11) is formed on the first electrode (11). Has a window (13) penetrating a part of the first electrode (11), and the window (13) is further electrically connected to the first electrode (11). A second electrode (12) for bonding is formed. And which, furthermore the second electrode (12) is characterized in that it is bonded to the first electrode (11) p-type gallium nitride-based compound semiconductor layer stronger than (3). That is, the ohmic electrode and the bonding electrode are separately formed on the p layer, and the adhesive force per unit area of the bonding electrode is made larger than the adhesive force per unit area of the ohmic electrode. It is the solution to the problem. In the present application, translucency means that light emitted by a gallium nitride-based compound semiconductor is transmitted, and does not necessarily mean colorless and transparent.

【0009】[0009]

【作用】本発明の発光素子は、p型層に形成する第一の
電極を透光性の薄膜の電極としているため、p型層を発
光観測面とする発光素子においては、従来のように不透
光性の電極で発光が妨げられることがないので、外部量
子効率が向上する。また、第一の電極を薄膜としたこと
による弊害、つまり、第一の電極と第二の電極の剥がれ
やすさ、第一の電極とp層との剥がれやすさは、第一の
電極に設けられた窓部に形成した第二の電極が第一の電
極よりもp層と強く接着していることにより防止でき
る。
In the light emitting device of the present invention, the first electrode formed on the p-type layer is a light-transmitting thin-film electrode. Since light emission is not hindered by the opaque electrode, external quantum efficiency is improved. In addition, the harmful effects of using the first electrode as a thin film, that is, the easiness of peeling of the first electrode and the second electrode and the easiness of peeling of the first electrode and the p-layer are provided on the first electrode. This can be prevented by the fact that the second electrode formed in the window portion is more strongly bonded to the p-layer than the first electrode.

【0010】[0010]

【実施例】以下、本発明に係る発光素子を図1、および
図2に基づいて説明する。図1は本願の一実施例に係る
発光素子をp層側、つまり発光観測面側からみた平面図
であり、図2は図1の平面図を一点鎖線の方向で切断し
た際の模式断面図である。この素子はサファイア基板1
の上にn型層2とp型層3とを順に積層したホモ構造の
発光素子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a light emitting device according to the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a light emitting device according to an embodiment of the present application as viewed from a p-layer side, that is, a light emission observation surface side. FIG. 2 is a schematic cross-sectional view of the plan view of FIG. It is. This element is a sapphire substrate 1
Is a light emitting device having a homo structure in which an n-type layer 2 and a p-type layer 3 are sequentially stacked on the light emitting element.

【0011】p層3の上に形成した第一の電極11は透
光性としているため、p−n接合界面の発光を発光面側
に有効に取り出すことができる。しかもp層3のほぼ全
面に形成してあるために、電界が均一に広がりp−n接
合面のほぼ全面に亙って均一な発光が得られる。電極1
1を透光性にするためにはAu、Pt、Al、Sn、C
r、Ti、Ni等の電極材料を非常に薄く形成すること
により実現可能である。具体的には、蒸着、スパッタ等
の技術により電極が透光性になるような膜厚で直接薄膜
を形成するか、または薄膜を形成した後、アニーリング
を行い電極を透光性にすることができる。電極11の膜
厚は0.001μm〜1μmの厚さで形成することが好
ましい。0.001μmよりも薄いと接触抵抗が大きく
なり好ましくない。逆に1μmよりも厚いと電極が透光
性になりにくく実用的ではない。電極がほぼ透明でほと
んど発光を妨げることがなく、また接触抵抗も低い特に
実用的な範囲としては、0.005μm〜0.2μmの
範囲が好ましい。
Since the first electrode 11 formed on the p-layer 3 is translucent, light emitted from the pn junction interface can be effectively extracted to the light-emitting surface side. In addition, since it is formed on almost the entire surface of the p layer 3, the electric field spreads uniformly, and uniform light emission can be obtained over almost the entire pn junction surface. Electrode 1
Au, Pt, Al, Sn, C
This can be realized by forming the electrode materials such as r, Ti, and Ni very thin. Specifically, it is possible to form a thin film directly by a technique such as vapor deposition or sputtering so that the electrode is translucent, or to form a thin film and then anneal to make the electrode translucent. it can. The electrode 11 is preferably formed with a thickness of 0.001 μm to 1 μm. If the thickness is less than 0.001 μm, the contact resistance increases, which is not preferable. On the other hand, if the thickness is more than 1 μm, the electrode is unlikely to be light-transmitting and is not practical. The electrode is almost transparent, hardly hinders light emission, and has a low contact resistance, and a particularly practical range is preferably 0.005 μm to 0.2 μm.

【0012】また、第一の電極11とp型窒化ガリウム
系化合物半導体との良好なオーミック接触が得られる特
に好ましい金属としてはNiおよびAuを使用する。こ
れらの金属を第一の電極11の材料として、透光性に形
成することにより、p層とオーミック接触を得て発光素
子のVf(順方向電圧)を低下させ、発光効率を向上さ
せることができる。図4は、p型GaN層にNiとAu
とを順にそれぞれ0.1μmの膜厚で蒸着した後、アニ
ーリングして電極を合金化し、その電流電圧特性を測定
した図である。この図に示すようにNiとAuよりなる
第一の電極11はp層3と良好なオーミック接触が得ら
れていることがわかる。
Ni and Au are particularly preferably used as metals that can provide good ohmic contact between the first electrode 11 and the p-type gallium nitride compound semiconductor. When these metals are used as the material of the first electrode 11 and formed to be translucent, ohmic contact with the p-layer can be obtained, Vf (forward voltage) of the light-emitting element can be reduced, and luminous efficiency can be improved. it can. FIG. 4 shows Ni and Au on the p-type GaN layer.
FIG. 4 is a diagram showing that the electrodes were alloyed by vapor-depositing them in order with a film thickness of 0.1 μm and then annealed to measure the current-voltage characteristics. As shown in this figure, the first electrode 11 made of Ni and Au has a good ohmic contact with the p layer 3.

【0013】次に本発明の発光素子は、第一の電極11
の一部にボンディング用の第二の電極12を形成するた
めの窓部13を形成している。窓部13は、同一平面上
からみて、n層の電極4と最も距離の遠い位置、つまり
対角線上に設けることが好ましい。なぜなら前記位置と
することにより、電流がp層全体に広がり、p層全体を
均一に発光させることができるからである。また、窓部
13は第一の電極11を貫通してp層3を露出させ、ボ
ンディング用電極、つまり第二の電極12がp層3と接
するようにする必要がある。窓部13を形成するには、
第一の電極11を形成した後、マスクをしてエッチング
してもよいし、また最初からp層3の表面に所定の形状
のマスクを形成して、その上から第一の電極11を形成
した後、マスクを剥離しても形成することができる。
Next, the light emitting device of the present invention comprises a first electrode 11
A window 13 for forming the second electrode 12 for bonding is formed in a part of the substrate. The window 13 is preferably provided at a position farthest from the n-layer electrode 4 when viewed from the same plane, that is, at a diagonal line. This is because, by setting the position, the current spreads over the entire p layer, and the entire p layer can emit light uniformly. The window 13 needs to penetrate the first electrode 11 to expose the p layer 3 so that the bonding electrode, that is, the second electrode 12 is in contact with the p layer 3. To form the window 13,
After forming the first electrode 11, a mask may be used for etching, or a mask of a predetermined shape may be formed on the surface of the p-layer 3 from the beginning, and the first electrode 11 may be formed thereon. After that, the mask can be formed even by removing the mask.

【0014】さらに、本発明の発光素子は、前記窓部1
3に第一の電極113と電気的に接続されたボンディン
グ用の第二の電極12が形成されている。しかも、第二
の電極12は、第一の電極11よりも強固にp層3に接
着されているため、ボンディング時に第二の電極12を
引っ張る力が作用しても、第一の電極11が剥がれるこ
とはない。
Further, in the light emitting device according to the present invention, the window 1
3, a second electrode 12 for bonding electrically connected to the first electrode 113 is formed. Moreover, since the second electrode 12 is more firmly adhered to the p-layer 3 than the first electrode 11, even if a force pulling on the second electrode 12 is applied during bonding, the first electrode 11 will not move. It does not come off.

【0015】第二の電極12は、p層3とオーミック接
触させてもよいが、オーミックは第一の電極11で得て
いるため、特にオーミック接触させる必要はない。その
ため、第二の電極12は第一の電極11と電気的に接触
して、p層3に強固に付着していれば、どのような材料
を使用してもよい。
The second electrode 12 may be in ohmic contact with the p-layer 3, but need not be in ohmic contact since the ohmic is obtained by the first electrode 11. Therefore, any material may be used as long as the second electrode 12 is in electrical contact with the first electrode 11 and is firmly attached to the p-layer 3.

【0016】第二の電極12を第一の電極11と電気的
に接続し、しかもp層3に第一の電極11よりも強固に
接着させる手段として、例えば次のような方法が挙げら
れる。まずそのひとつとして、第二の電極12の材料に
第一の電極(11)よりもp型窒化ガリウム系化合物半
導体層と接着性のよい材料を選定し、その材料で第二の
電極を12を形成する方法がある。この方法によると、
第二の電極12の膜厚を自由に形成でき、非常に薄く形
成して透光性にすることもできる。例えば、p層3と非
常に接着性がよい材料として、例えばCr、Al、Au
等の内の少なくとも2種類以上、もしくはAl単独を使
用することができる。これらの材料はp型層と良好なオ
ーミック接触を得ることはできないが、非常に接着性が
よく、ボンディング時に剥がれにくい傾向がある。従っ
て、これらの材料で第二の電極12を形成すると透光性
薄膜としても剥がれにくい。また、前記第二の電極を多
層膜構造とし、p層と接する側をp層と接着性のよい材
料として、最上層をボンディング材料と接着性のよい材
料とすることもできる。
As a means for electrically connecting the second electrode 12 to the first electrode 11 and bonding the second electrode 12 to the p-layer 3 more strongly than the first electrode 11, for example, the following method can be used. First, as a material of the second electrode 12, a material having better adhesiveness to the p-type gallium nitride-based compound semiconductor layer than the first electrode (11) is selected, and the second electrode 12 is formed of the material. There is a method of forming. According to this method,
The thickness of the second electrode 12 can be freely formed, and the second electrode 12 can be formed to be extremely thin to be light-transmitting. For example, as a material having very good adhesion to the p layer 3, for example, Cr, Al, Au
And the like, or at least two of them, or Al alone can be used. These materials do not provide good ohmic contact with the p-type layer, but have very good adhesion and tend not to peel off during bonding. Therefore, when the second electrode 12 is formed of these materials, it is difficult to peel off the light-transmitting thin film. Alternatively, the second electrode may have a multilayer structure, the side in contact with the p-layer may be made of a material having good adhesion to the p-layer, and the uppermost layer may be made of a material having good adhesion to the bonding material.

【0017】そこで、同一p型GaN層の上に、Ni−
Auを0.01μmの膜厚で蒸着した透光性の電極10
00個と、Cr−Al、Al−Au、Cr−Au、およ
びAlを同じく0.01μmの膜厚でそれぞれ1000
個蒸着した透光性の電極に、金線をワイヤーボンディン
グし、その金線を離す際に、電極が剥がれる数をチェッ
クして、電極の歩留を試験したところ、Ni−Auより
なる電極は歩留がおよそ60%であったのに対し、他の
Cr等よりなる電極は全て98%以上の歩留であった。
なお、電極面積は全て同一とし、さらにNi−Au等の
記載はp層と接する側をNiとし、ボンディング側をA
uとした多層膜構造であることを示している。このよう
に金属の種類によって、p層との接着力の差があり、第
二の電極12の接着力が大きい材料を選定することによ
り、第一の電極11の剥がれを防止することができる。
[0017] Therefore, on the same p-type GaN layer, Ni-
Translucent electrode 10 deposited with Au to a thickness of 0.01 μm
And 1000 pieces of Cr-Al, Al-Au, Cr-Au, and Al each having a thickness of 0.01 μm.
When a gold wire was wire-bonded to the individually deposited translucent electrode, and when the gold wire was released, the number of peeled electrodes was checked and the yield of the electrodes was tested. While the yield was about 60%, all the other electrodes made of Cr and the like had a yield of 98% or more.
Note that the electrode areas are all the same, Ni-Au and the like are indicated by Ni on the side in contact with the p layer and A on the bonding side.
u indicates a multilayer film structure. As described above, there is a difference in adhesion between the first electrode 11 and the p-layer depending on the type of the metal, and the first electrode 11 can be prevented from peeling by selecting a material having a large adhesion to the second electrode 12.

【0018】また次の手段として、第二の電極12の膜
厚を厚く形成することにより、自然にp層3との付着力
を大きくして、ボンディング時に剥がれにくくする方法
がある。この方法によると、第二の電極12は厚膜とな
り透光性でなくなるが、例えば第一の電極11と同一材
料を使用して厚膜で形成することにより、第二の電極1
2でもオーミック接触を得ることができる。
As the next means, there is a method in which the second electrode 12 is formed to have a large thickness, thereby naturally increasing the adhesion to the p-layer 3 so that the second electrode 12 is hardly peeled off during bonding. According to this method, the second electrode 12 becomes a thick film and is not light-transmitting. However, for example, by forming the second electrode 12 from a thick film using the same material as the first electrode 11,
2, an ohmic contact can be obtained.

【0019】図3は本発明の他の実施例に係る発光素子
を示す斜視図であり、この発光素子は第一の電極11の
隅部を切り欠いて窓部13を形成しており、窓部13と
n層の電極4とは対角線上に配置してある。なお、この
図は窓部13が分かりやすいように第二の電極12は形
成されていない。
FIG. 3 is a perspective view showing a light emitting device according to another embodiment of the present invention. The light emitting device has a window 13 formed by cutting out a corner of a first electrode 11. The portion 13 and the n-layer electrode 4 are arranged diagonally. In this figure, the second electrode 12 is not formed so that the window 13 can be easily understood.

【0020】以上、n層とp層とを順に積層したホモ構
造の発光素子について説明したが、本願はp層を発光観
測面とする窒化ガリウム系化合物半導体発光素子であれ
ば、ダブルへテロ構造、シングルへテロ構造等の発光素
子の構造は問わず、あらゆる構造に適用できる。
The light emitting device having the homo structure in which the n-layer and the p-layer are sequentially stacked has been described above. However, the present invention is directed to a gallium nitride-based compound semiconductor light-emitting device having the p-layer as a light-emission observation surface. It can be applied to any structure regardless of the structure of the light emitting element such as a single hetero structure.

【0021】[0021]

【発明の効果】以上説明したように、本発明の発光素子
はp層側を発光観測面としても、p層に形成する第一の
電極を透光性の電極とし、さらにほぼ全面に形成してい
ることにより電流が均一に広がり、p−n接合界面の発
光を十分に外部に取り出すことができる。また第一の電
極とボンディング用の第二の電極を分けて形成し、ボン
ディング用電極のp層の付着力を第一の電極よりも大き
くしていることにより、第一の電極の剥がれ、第二の電
極の剥がれを防止し、信頼性に優れた素子を提供するこ
とができる。
As described above, in the light emitting device of the present invention, the first electrode formed on the p layer is formed as a translucent electrode, and the light emitting element is formed substantially over the entire surface even when the light emission observation surface is on the p layer side. As a result, the current spreads uniformly, and light emission at the pn junction interface can be sufficiently extracted to the outside. Further, the first electrode and the second electrode for bonding are formed separately, and the adhesive force of the p-layer of the bonding electrode is made larger than that of the first electrode. The separation of the two electrodes can be prevented, and an element having excellent reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る発光素子をp層側か
らみた平面図。
FIG. 1 is a plan view of a light emitting device according to one embodiment of the present invention as viewed from a p-layer side.

【図2】 図1の発光素子を一点鎖線で切断した際の模
式断面図。
FIG. 2 is a schematic cross-sectional view when the light-emitting element of FIG. 1 is cut along a dashed line.

【図3】 本発明の他の実施例に係る発光素子を示す斜
視図。
FIG. 3 is a perspective view showing a light emitting device according to another embodiment of the present invention.

【図4】 Ni−Au電極の電流電圧特性を示す図。FIG. 4 is a diagram showing current-voltage characteristics of a Ni—Au electrode.

【符号の説明】[Explanation of symbols]

1・・・サファイア基板 2・・・n型窒化ガリウム系化合物半導体層 3・・・p型窒化ガリウム系化合物半導体層 4・・・n層の電極 11・・・第一の電極 12・・・第二の電極 13・・・窓部 DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... N-type gallium nitride-based compound semiconductor layer 3 ... P-type gallium nitride-based compound semiconductor layer 4 ... N-layer electrode 11 ... First electrode 12 ... Second electrode 13: Window

フロントページの続き (56)参考文献 特開 平5−129658(JP,A) 特開 昭57−10280(JP,A) 特開 昭49−122294(JP,A) 特開 昭63−244689(JP,A) 特開 昭63−56967(JP,A)Continuation of the front page (56) References JP-A-5-129658 (JP, A) JP-A-57-10280 (JP, A) JP-A-49-122294 (JP, A) JP-A-63-244689 (JP) , A) JP-A-63-56967 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁性基板(1)の上に少なくともn型
窒化ガリウム系化合物半導体層(2)と、p型窒化ガリ
ウム系化合物半導体層(3)とが順に積層されており、
そのp型窒化ガリウム系化合物半導体層(3)側を発光
観測面とする窒化ガリウム系化合物半導体発光素子にお
いて、 前記p型窒化ガリウム系化合物半導体層(3)表面のほ
ぼ全面に、透光性の第一の電極(11)が形成されてい
ると共に、前記第一の電極(11)には、その第一の電
極(11)の一部を貫通した窓部(13)が形成されて
おり、さらに前記窓部(13)には、第一の電極(1
1)と電気的に接続されたボンディング用の第二の電極
(12)が形成されており、さらにまた前記第二の電極
(12)は第一の電極(11)よりも強くp型窒化ガリ
ウム系化合物半導体層(3)に接着されていることを特
徴とする窒化ガリウム系化合物半導体発光素子。
1. An insulating substrate (1) comprising at least an n-type gallium nitride-based compound semiconductor layer (2) and a p-type gallium nitride-based compound semiconductor layer (3) laminated in order.
A gallium nitride-based compound semiconductor light emitting device having a light emission observation surface on the side of the p-type gallium nitride-based compound semiconductor layer (3), wherein substantially all of the surface of the p-type gallium nitride-based compound semiconductor layer (3) is transparent. A first electrode (11) is formed, and the first electrode (11) has a window (13) formed through a part of the first electrode (11). Further, the window (13) has a first electrode (1).
A second electrode (12) for bonding electrically connected to 1) is formed, and the second electrode (12) is more strongly p-type gallium nitride than the first electrode (11). A gallium nitride-based compound semiconductor light emitting device, which is bonded to the based compound semiconductor layer (3).
【請求項2】 前記第二の電極(12)は前記第一の電
極(11)よりもp型窒化ガリウム系化合物半導体層と
接着性のよい材料で形成されていることを特徴とする請
求項1に記載の窒化ガリウム系化合物半導体発光素子。
2. The semiconductor device according to claim 1, wherein the second electrode is formed of a material having better adhesiveness to the p-type gallium nitride-based compound semiconductor layer than the first electrode. 2. The gallium nitride-based compound semiconductor light emitting device according to 1.
【請求項3】 前記第二の電極(12)はCr、Al、
Auより選択された少なくとも2種類以上の材料、また
はAl単独よりなることを特徴とする請求項1または請
求項2に記載の窒化ガリウム系化合物半導体発光素子。
3. The method according to claim 1, wherein the second electrode (12) comprises Cr, Al,
The gallium nitride-based compound semiconductor light-emitting device according to claim 1, wherein the gallium nitride-based compound semiconductor light-emitting device is made of at least two kinds of materials selected from Au or Al alone.
【請求項4】 前記第二の電極(12)の膜厚が、前記
第一の電極(1)の膜厚よりも厚くされていることを特
徴とする請求項1に記載の窒化ガリウム系化合物半導体
発光素子。
4. The gallium nitride-based compound according to claim 1, wherein the thickness of the second electrode (12) is larger than the thickness of the first electrode (1). Semiconductor light emitting device.
【請求項5】 前記第一の電極(11)がNi、および
Auよりなることを特徴とする請求項1に記載の窒化ガ
リウム系化合物半導体発光素子。
5. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein said first electrode is made of Ni and Au.
JP23468493A 1993-01-28 1993-09-21 Gallium nitride based compound semiconductor light emitting device Expired - Fee Related JP2697572B2 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
JP23468493A JP2697572B2 (en) 1993-09-21 1993-09-21 Gallium nitride based compound semiconductor light emitting device
DE69425186T DE69425186T3 (en) 1993-04-28 1994-04-27 A gallium nitride III-V semiconductor device semiconductor device and method for its production
TW90209918U TW491406U (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device having an ohmic electrode
EP99114356A EP0952617B1 (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device
DE69433926T DE69433926T2 (en) 1993-04-28 1994-04-27 A semiconductor device of a gallium nitride III-V semiconductor compound
EP94106587A EP0622858B2 (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device and method of producing the same
TW083103775A TW403945B (en) 1993-04-28 1994-04-27 Gallium nitride based III - V group compound semiconductor device having an ohmic electrode and producing method thereof
KR1019940009055A KR100286699B1 (en) 1993-01-28 1994-04-27 Gallium Nitride Group 3-5 Compound Semiconductor Light-Emitting Device and Manufacturing Method Thereof
EP04012118A EP1450415A3 (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device
US08/234,001 US5563422A (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor device and method of producing the same
CNB031458696A CN1240143C (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor
CNB03145870XA CN1262024C (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor
CN94106935A CN1046375C (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor device having an ohmic electrode, and method of producing the same
CNB031458688A CN1253948C (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor
CNB03145867XA CN1240142C (en) 1993-04-28 1994-04-28 Gallium nitride group compound semiconductor photogenerator
US08/670,242 US5767581A (en) 1993-04-28 1996-06-17 Gallium nitride-based III-V group compound semiconductor
US08/665,759 US5652434A (en) 1993-04-28 1996-06-17 Gallium nitride-based III-V group compound semiconductor
US08/995,167 US5877558A (en) 1993-04-28 1997-12-19 Gallium nitride-based III-V group compound semiconductor
KR1019980022092A KR100225612B1 (en) 1993-04-28 1998-06-12 Gallium nitride-based iii-v group compound semiconductor
CNB981183115A CN1262021C (en) 1993-04-28 1998-08-11 Nitrided gallium III-V group compound semiconductor device and its mfg.method
US09/209,826 US6093965A (en) 1993-04-28 1998-12-11 Gallium nitride-based III-V group compound semiconductor
KR1019990032148A KR100551364B1 (en) 1993-04-28 1999-08-05 Gallium nitride-based group compound light-emitting element and its electrode forming method
US09/448,479 US6204512B1 (en) 1993-04-28 1999-11-24 Gallium nitride-based III-V group compound semiconductor device and method of producing the same
US09/750,912 US6507041B2 (en) 1993-04-28 2001-01-02 Gallium nitride-based III-V group compound semiconductor
US10/292,583 US6610995B2 (en) 1993-04-28 2002-11-13 Gallium nitride-based III-V group compound semiconductor
KR1020030035961A KR100551365B1 (en) 1993-04-28 2003-06-04 Gallium nitride-based group compound light-emitting element
US10/609,410 US6998690B2 (en) 1993-04-28 2003-07-01 Gallium nitride based III-V group compound semiconductor device and method of producing the same
US11/198,465 US7205220B2 (en) 1993-04-28 2005-08-08 Gallium nitride based III-V group compound semiconductor device and method of producing the same
US11/714,890 US7375383B2 (en) 1993-04-28 2007-03-07 Gallium nitride based III-V group compound semiconductor device and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23468493A JP2697572B2 (en) 1993-09-21 1993-09-21 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0794782A JPH0794782A (en) 1995-04-07
JP2697572B2 true JP2697572B2 (en) 1998-01-14

Family

ID=16974825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23468493A Expired - Fee Related JP2697572B2 (en) 1993-01-28 1993-09-21 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2697572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115222B2 (en) 2008-01-16 2012-02-14 Rohm Co., Ltd. Semiconductor light emitting device and fabrication method for the semiconductor light emitting device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6281524B1 (en) 1997-02-21 2001-08-28 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JP3706458B2 (en) * 1997-03-28 2005-10-12 ローム株式会社 Semiconductor light emitting device
DE19820777C2 (en) * 1997-05-08 2003-06-18 Showa Denko Kk Electrode for semiconductor light emitting devices
DE19861228B4 (en) * 1997-05-08 2006-11-23 Showa Denko K.K. Method for producing a transparent electrode
US6268618B1 (en) 1997-05-08 2001-07-31 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
JP3693468B2 (en) * 1997-07-23 2005-09-07 シャープ株式会社 Semiconductor light emitting device
JP2003017748A (en) * 2001-06-27 2003-01-17 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light emitting element and manufacturing method therefor
JP2003069074A (en) * 2001-08-14 2003-03-07 Shurai Kagi Kofun Yugenkoshi Semiconductor device
JP3795007B2 (en) 2002-11-27 2006-07-12 松下電器産業株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2004319920A (en) * 2003-04-18 2004-11-11 Sharp Corp Electrode of oxide semiconductor and manufacturing method therefor, and oxide semiconductor light emitting element
JP4889193B2 (en) * 2003-07-23 2012-03-07 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP2005086137A (en) * 2003-09-11 2005-03-31 Mitsubishi Cable Ind Ltd GaN-BASED LIGHT EMITTING DIODE
JP3767863B2 (en) * 2003-12-18 2006-04-19 ローム株式会社 Semiconductor light emitting device and manufacturing method thereof
EP1746664B1 (en) 2004-03-31 2017-05-17 Nichia Corporation Nitride semiconductor light emitting element
WO2006011672A1 (en) 2004-07-29 2006-02-02 Showa Denko K.K. Positive electrode for semiconductor light-emitting device
WO2006013867A1 (en) 2004-08-05 2006-02-09 Showa Denko K.K. Transparent electrode for semiconductor light-emitting device
JP5232970B2 (en) 2006-04-13 2013-07-10 豊田合成株式会社 Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and lamp including the same
KR101020910B1 (en) 2008-12-24 2011-03-09 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
JP2011119519A (en) 2009-12-04 2011-06-16 Showa Denko Kk Semiconductor light emitting element and semiconductor light emitting device
KR101081135B1 (en) 2010-03-15 2011-11-07 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
JP6068165B2 (en) * 2013-01-29 2017-01-25 スタンレー電気株式会社 Semiconductor optical device and method of manufacturing semiconductor optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115222B2 (en) 2008-01-16 2012-02-14 Rohm Co., Ltd. Semiconductor light emitting device and fabrication method for the semiconductor light emitting device

Also Published As

Publication number Publication date
JPH0794782A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
JP2697572B2 (en) Gallium nitride based compound semiconductor light emitting device
US5990500A (en) Nitride compound semiconductor light emitting element and its manufacturing method
US8907366B2 (en) Light emitting diodes including current spreading layer and barrier sublayers
JP3511970B2 (en) Nitride semiconductor light emitting device
US6740906B2 (en) Light emitting diodes including modifications for submount bonding
EP2287930B1 (en) Light emitting diode including barrier layers and manufacturing method therefor
JP4449405B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP3494478B2 (en) Gallium nitride based compound semiconductor device
JP3068914U (en) Flip-chip light emitting device
JP3663281B2 (en) Semiconductor light emitting device
JP2770717B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2004207325A (en) Semiconductor device
JP2001111106A (en) Gallium nitride compound semiconductor light emitting device and manufacturing method thereof
JP2000049376A (en) Light emitting element
JP2004006919A (en) Nitride semiconductor device
KR101087970B1 (en) Semiconductor light emitting device
JP2770720B2 (en) Gallium nitride based compound semiconductor light emitting device
KR101087971B1 (en) Semiconductor light emitting device
JP2003197965A (en) Semiconductor light emitting element and its manufacturing method
KR101928328B1 (en) Semiconductor light emitting device
JPH0463480A (en) Group iii-v compound semiconductor device
JP2000106456A (en) Semiconductor element and light-emitting diode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees