JP2694377B2 - Helium gas purifier - Google Patents

Helium gas purifier

Info

Publication number
JP2694377B2
JP2694377B2 JP2172794A JP17279490A JP2694377B2 JP 2694377 B2 JP2694377 B2 JP 2694377B2 JP 2172794 A JP2172794 A JP 2172794A JP 17279490 A JP17279490 A JP 17279490A JP 2694377 B2 JP2694377 B2 JP 2694377B2
Authority
JP
Japan
Prior art keywords
gas
stage
helium
refrigerator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2172794A
Other languages
Japanese (ja)
Other versions
JPH0464869A (en
Inventor
邦広 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2172794A priority Critical patent/JP2694377B2/en
Publication of JPH0464869A publication Critical patent/JPH0464869A/en
Application granted granted Critical
Publication of JP2694377B2 publication Critical patent/JP2694377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はヘリウムガス精製装置にかかわるもので、と
くにその精製性能の向上および省エネルギー化を図った
ヘリウムガス精製装置に関するものである。
TECHNICAL FIELD The present invention relates to a helium gas refining apparatus, and more particularly to a helium gas refining apparatus with improved refining performance and energy saving.

[従来の技術] 従来から、使用により空気成分などの不純物を含んだ
ヘリウムガスを精製するためのヘリウムガス精製装置と
しては、蓄冷式ヘリウム冷凍機、たとえばギフォード・
マクマホンサイクル冷凍機(以下「GM冷凍機」と言う)
などを用い、不純物である気体成分その他とヘリウムガ
スの液化温度の差を利用するとともに、不純物を低温に
おいて吸着する用に構成した低温装置が用いられてい
る。たとえば、蓄冷式ヘリウム冷凍機の熱負荷フランジ
に気液分離器および吸着器等を設け、精製温度(77K以
下)に冷却し、不純物を含んだ高圧のヘリウムガス(被
精製ガス)を熱交換器を介して流し、ヘリウムガスを精
製するように構成したものがある(特開昭64−6656
号)。
[Prior Art] Conventionally, as a helium gas refining device for refining helium gas containing impurities such as air components by use, a regenerator type helium refrigerator such as Gifford
McMahon cycle refrigerator (hereinafter referred to as "GM refrigerator")
A low-temperature device configured to adsorb impurities at a low temperature while using the difference in liquefaction temperature between helium gas and a gas component or the like that is an impurity is used. For example, a gas-liquid separator and an adsorber are installed on the heat load flange of a cold storage helium refrigerator to cool it to a refining temperature (77K or less) and to exchange high-pressure helium gas (purified gas) containing impurities with a heat exchanger. There is one configured to purify the helium gas by flowing it through the reactor (JP-A-64-6656).
issue).

こうした構成の低温装置においては、商用周波数で上
記GM冷凍機を運転し、被冷却部に設けた温度計と電熱ヒ
ータとをPID動作(比例積分微分動作)により連動さ
せ、被精製ガスの流量ないしは純度に応じてその温度を
制御する方法が最も簡単で広く知られている。
In the low-temperature device having such a configuration, the GM refrigerator is operated at a commercial frequency, the thermometer provided in the cooled portion and the electric heater are linked by PID operation (proportional integral differential operation), and the flow rate of the gas to be purified or The simplest and widely known method is to control the temperature according to the purity.

しかしながらこの従来の方法は、一定の商用周波数で
GM冷凍機を運転することにより被冷却部をある低温度ま
で一度冷却し、被精製ガスの流量ないしは純度に応じて
電熱ヒータによりこの被冷却部を昇温制御するために、
消費電力の無駄使いとなるという問題がある。
However, this conventional method is
By operating the GM refrigerator, the cooled part is once cooled to a certain low temperature, and the temperature of the cooled part is controlled by an electric heater according to the flow rate or the purity of the gas to be purified.
There is a problem of wasting power consumption.

[発明が解決しようとする課題] 本発明は以上のような問題にかんがみてなされたもの
で、被精製ガスの流量ないしは純度に関係なく良好な効
率で精製を可能とし、精製性能の向上および省エネルギ
ー化を同時に図ったヘリウムガス精製装置を提供するこ
とを課題とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above problems, and enables purification with good efficiency regardless of the flow rate or purity of the gas to be purified, improving the purification performance and saving energy. It is an object of the present invention to provide a helium gas refining device that simultaneously achieves gasification.

[課題を解決するための手段] すなわち本発明は、真空断熱容器と、この真空断熱容
器内に設けた蓄冷式ヘリウム冷凍機、および被精製ガス
を導入導出する一段目熱交換器と、上記蓄冷式ヘリウム
冷凍機の一段目熱負荷フランジに取り付けた気液分離フ
ィルター、および一段目吸着器と、上記蓄冷式ヘリウム
冷凍機の二段目熱負荷フランジに取り付けた二段目吸着
器と、この二段目吸着器と上記一段目熱交換器との間に
設けた二段目熱交換器とを有するヘリウムガス精製装置
であって、上記気液分離フィルターおよび一段目吸着器
の温度を検出するとともに、この温度検出信号にもとづ
き、インバータ等を用いて上記蓄冷式ヘリウム冷凍機の
運転周波数を制御することを特徴とするヘリウムガス精
製装置である。
[Means for Solving the Problems] That is, the present invention provides a vacuum heat insulating container, a cold storage helium refrigerator provided in the vacuum heat insulating container, a first stage heat exchanger for introducing and extracting a gas to be purified, and the above cold storage. Gas-liquid separation filter attached to the first stage heat load flange of the system helium refrigerator, and the first stage adsorber, and the second stage adsorber attached to the second stage heat load flange of the regenerative helium refrigerator. A helium gas purification device having a second stage heat exchanger provided between the first stage heat exchanger and the first stage heat exchanger, and detecting the temperatures of the gas-liquid separation filter and the first stage heat exchanger. The helium gas refining device is characterized in that the operating frequency of the cold storage helium refrigerator is controlled by using an inverter or the like based on the temperature detection signal.

[作用] 本発明によるヘリウムガス精製装置においては、蓄冷
式ヘリウム冷凍機による冷却部の温度検出にもとづいて
その運転周波数を、インバータによるPID制御等によっ
て制御することにより、被精製ガス(ヘリウムガス)の
流量や純度に関係なく、気液分離フィルターや吸着器の
冷却温度を最適温度たとえば77K〜65Kに制御して、必要
な冷凍能力を必要な周波数電力で得ることとしたので、
必要最小限の消費電力で運転可能であり、省エネルギー
化を図ることができる。
[Operation] In the helium gas refining apparatus according to the present invention, the operating frequency is controlled by PID control by the inverter or the like based on the temperature detection of the cooling unit by the regenerator helium refrigerator, so that the gas to be purified (helium gas) Regardless of the flow rate and the purity of, the cooling temperature of the gas-liquid separation filter and the adsorber was controlled to the optimum temperature, for example, 77K to 65K, and it was decided to obtain the required refrigeration capacity with the required frequency power.
It can be operated with the minimum required power consumption, and energy can be saved.

[実施例] つぎに本発明の一実施例によるヘリウムガス精製装置
1を第1図にもとづき説明する。
[Embodiment] Next, a helium gas purification apparatus 1 according to an embodiment of the present invention will be described with reference to FIG.

第1図はこのヘリウムガス精製装置1の概略断面図で
あって、このヘリウムガス精製装置1は真空断熱容器2
と、この真空断熱容器2に設けたGM冷凍機3、一段目熱
交換器4、気液分離フィルター5、一段目吸着器6、二
段目熱交換器7、および二段目吸着器8とを有する。
FIG. 1 is a schematic sectional view of the helium gas refining apparatus 1, which is a vacuum heat insulation container 2
And a GM refrigerator 3, a first stage heat exchanger 4, a gas-liquid separation filter 5, a first stage adsorber 6, a second stage heat exchanger 7, and a second stage adsorber 8 provided in the vacuum heat insulating container 2. Have.

一段目熱交換器4には、被精製ガス(ヘリウムガス)
導入用の被精製ガス入口弁9、および導出用の圧力調整
弁10を取り付ける。
The first stage heat exchanger 4 has a gas to be purified (helium gas).
A purified gas inlet valve 9 for introduction and a pressure adjusting valve 10 for discharge are attached.

気液分離フィルター5は、GM冷凍機3の一段目熱負荷
フランジ3Aにこれを取り付けるとともに、配管により一
段目熱交換器4に接続する。また気液分離フィルター5
には液体排出弁11を取り付けるとともに、固化した不純
物も除去可能な上部フィルター5Aを内蔵する。この気液
分離フィルター5を一段目吸着器6に接続する。
The gas-liquid separation filter 5 is attached to the first stage heat load flange 3A of the GM refrigerator 3 and is connected to the first stage heat exchanger 4 by piping. Gas-liquid separation filter 5
A liquid discharge valve 11 is attached to and an upper filter 5A capable of removing solidified impurities is incorporated. The gas-liquid separation filter 5 is connected to the first stage adsorber 6.

一段目吸着器6は、同じくGM冷凍機3の一段目熱負荷
フランジ3Aにこれを取り付けるもので、二段目熱交換器
7に接続してある。
The first stage adsorber 6 is also attached to the first stage heat load flange 3A of the GM refrigerator 3 and is connected to the second stage heat exchanger 7.

二段目熱交換器7は、二段目吸着器8との間に往復流
路を形成するようにこれを二段目吸着器8に接続すると
ともに、その下流側に一段目熱交換器4を接続してあ
る。
The second-stage heat exchanger 7 is connected to the second-stage adsorber 8 so as to form a reciprocating flow path between the second-stage heat exchanger 7 and the first-stage heat exchanger 4 on the downstream side thereof. Are connected.

二段目吸着器8は、GM冷凍機3の二段目熱負荷フラン
ジ3Bにこれを取り付けてある。なお、気液分離フィルタ
ー5、一段目吸着器6および二段目吸着器8にはそれぞ
れ電熱ヒータ12を設ける。
The second stage adsorber 8 is attached to the second stage heat load flange 3B of the GM refrigerator 3. An electric heater 12 is provided in each of the gas-liquid separation filter 5, the first stage adsorber 6 and the second stage adsorber 8.

各一段目熱交換器4、気液分離フィルター5、一段目
吸着器6、二段目熱交換器7および二段目吸着器8を図
示のような配管により接続して精製回路を構成し、ヘリ
ウムガスを流通させるものとする。
Each of the first-stage heat exchanger 4, the gas-liquid separation filter 5, the first-stage adsorber 6, the second-stage heat exchanger 7 and the second-stage adsorber 8 are connected by a pipe as shown in the figure to form a purification circuit, Helium gas shall be circulated.

なお、真空断熱容器2にはシールオフバルブ13を取り
付けて真空断熱容器2内の排気真空化を可能とし、真空
断熱容器2内の各部材を多重層断熱材14を巻き付けてあ
る。
A seal-off valve 13 is attached to the vacuum heat insulating container 2 so that the inside of the vacuum heat insulating container 2 can be evacuated to vacuum, and each member in the vacuum heat insulating container 2 is wrapped with a multi-layer heat insulating material 14.

GM冷凍機3は、圧縮機ユニット15によりこれを運転す
る。この圧縮機ユニット15は制御ユニット16と、GM冷凍
機3用の冷媒たとえばヘリウムガスのコンプレッサ17
と、このコンプレッサ17の電源部18とを有する。
The GM refrigerator 3 is driven by the compressor unit 15. This compressor unit 15 includes a control unit 16 and a compressor 17 for a refrigerant for the GM refrigerator 3 such as helium gas.
And a power supply section 18 of this compressor 17.

圧縮機ユニット15は、制御回路19と、PID調節計20
と、インバータ(周波数変換器)21とを有する。
The compressor unit 15 includes a control circuit 19 and a PID controller 20.
And an inverter (frequency converter) 21.

PID調節計20は、一段目熱負荷フランジ3Aに設けた温
度計22にこれを接続してある。
The PID controller 20 is connected to a thermometer 22 provided on the first stage heat load flange 3A.

この温度計22は気液分離フィルター5および一段目吸
着器6の温度を計測可能なものである。
The thermometer 22 can measure the temperatures of the gas-liquid separation filter 5 and the first stage adsorber 6.

こうした構成のヘリウムガス精製装置1の作用を以下
説明する。
The operation of the helium gas refining device 1 having such a configuration will be described below.

まず精製運転の前に、シールオフバルブ13から排気す
ることにより真空断熱容器2内を所定の真空度にする。
また、一段目熱交換器4から始まる前記精製回路内のヘ
リウムガス置換を常温で充分に行う。ついで、精製済み
のヘリウムガスを同精製回路中に所定圧力で封入し、被
精製ガス入口弁9および圧力調整弁10を閉じた状態でGM
冷凍機3を起動することにより、一段目熱負荷フランジ
3Aおよび二段目熱負荷フランジ3Bの冷却を開始する。
First, before the refining operation, the inside of the vacuum insulation container 2 is made to have a predetermined degree of vacuum by exhausting air from the seal-off valve 13.
Further, helium gas replacement in the purification circuit starting from the first stage heat exchanger 4 is sufficiently performed at room temperature. Then, the purified helium gas is sealed in the purification circuit at a predetermined pressure, and the GM with the gas to be purified inlet valve 9 and the pressure adjusting valve 10 closed.
By starting the refrigerator 3, the first stage heat load flange
Start cooling of 3A and the second stage heat load flange 3B.

この冷却により気液分離フィルター5および一段目吸
着器6が温度65Kまで冷却された時点で、被精製ガス入
口弁9を開き、不純物を含んだヘリウムガスを流入させ
る。圧力調整弁10の圧力を封入ガスの圧力より若干高く
(約10atm)設定する。
When the gas-liquid separation filter 5 and the first-stage adsorber 6 are cooled to a temperature of 65K by this cooling, the gas to be purified inlet valve 9 is opened, and helium gas containing impurities is introduced. The pressure of the pressure control valve 10 is set slightly higher than the pressure of the enclosed gas (about 10 atm).

上記流入したヘリウムガスは、一段目熱交換機4の高
温側を通ってその低温側と熱交換することにより、不純
物たとえば水分、窒素ガス、酸素ガス、一酸化炭素ある
いは二酸化炭素などの一部が液化あるいは固化粉体化さ
れた状態で気液分離フィルター5に入る。
The inflowing helium gas passes through the high temperature side of the first-stage heat exchanger 4 and exchanges heat with the low temperature side thereof, so that some impurities such as moisture, nitrogen gas, oxygen gas, carbon monoxide or carbon dioxide are liquefied. Alternatively, it enters the gas-liquid separation filter 5 in the state of being solidified and powdered.

この気液分離フィルター5において分離された、一部
の粉体を含む液化された不純物はその底部に溜まり、一
定量が溜まると液体排出弁11から大気側に排出される。
The liquefied impurities containing a part of the powder separated in the gas-liquid separation filter 5 accumulate at the bottom thereof, and when a certain amount is accumulated, they are discharged from the liquid discharge valve 11 to the atmosphere side.

気液分離フィルター5の上部フィルター5Aにより浅い
粉体が分離除去されたヘリウムガスは、上記窒素ガスな
いしは酸素ガス等の不純物の飽和蒸気圧分がまだ含まれ
た状態で一段目吸着器6に至る。
The helium gas from which the shallow powder has been separated and removed by the upper filter 5A of the gas-liquid separation filter 5 reaches the first stage adsorber 6 while still containing the saturated vapor pressure of impurities such as nitrogen gas or oxygen gas. .

この一段目吸着器6において、上記不純ガスの飽和蒸
気圧分が吸着除去され、ヘリウムガスは二段目熱交換器
7の高温側を通り、その低温側と熱交換することによ
り、温度約18Kに冷却される。
In the first-stage adsorber 6, the saturated vapor pressure component of the impure gas is adsorbed and removed, and the helium gas passes through the high-temperature side of the second-stage heat exchanger 7 and exchanges heat with the low-temperature side of the second-stage heat exchanger 7, so that the temperature is about 18K. To be cooled.

二段目吸着器8に流入したヘリウムガスからは、ヘリ
ウムガス以外の水素ガス、ネオンガス等が吸着除去さ
れ、高純度の精製ヘリウムガスとなる。二段目吸着器8
を出た高純度のヘリウムガスは二段目熱交換機7の低温
側および一段目熱交換器4の低温側を通って昇温し、圧
力調整弁10を介してこれを取り出すことができる。
Hydrogen gas other than helium gas, neon gas, etc. are adsorbed and removed from the helium gas flowing into the second-stage adsorber 8 to obtain highly purified purified helium gas. Second stage adsorber 8
The high-purity helium gas that has exited is heated through the low temperature side of the second stage heat exchanger 7 and the low temperature side of the first stage heat exchanger 4, and can be taken out via the pressure control valve 10.

なお、上述のような精製運転により気液分離フィルタ
ー5のフィルター部の目詰まり、一段目吸着器6あるい
は二段目吸着器8の破過を生じた場合には、GM冷凍機3
の運転を停止するとともに被精製ガス入口弁9および圧
力調整弁10を閉鎖する。さらに液体排出弁11からヘリウ
ムガスを放出するとともに、気液分離フィルター5、一
段目吸着器6および二段目吸着器8の温度を電熱ヒータ
12により、温度計22が常温を示すまで昇温することによ
って精製回路内の不純物を排出再生し、つぎの精製運転
に備えるものとする。
When the purification operation as described above causes the filter portion of the gas-liquid separation filter 5 to be clogged and the first-stage adsorber 6 or the second-stage adsorber 8 to break through, the GM refrigerator 3
Then, the gas to be purified inlet valve 9 and the pressure adjusting valve 10 are closed. Further, helium gas is discharged from the liquid discharge valve 11, and the temperatures of the gas-liquid separation filter 5, the first-stage adsorber 6 and the second-stage adsorber 8 are controlled by an electric heater.
The temperature in the thermometer 22 is raised by 12 to a normal temperature to discharge and regenerate the impurities in the refining circuit to prepare for the next refining operation.

さて、流入する被精製ヘリウムガスの純度が99%以下
の場合には、気液分離フィルター5の温度を77K〜65Kの
範囲で運転し、一段目熱交換器4を通って流入するヘリ
ウムガス中の窒素ガス、酸素ガス等の不純物が液化され
た状態で、気液分離フィルター5に流入することが重要
である。
Now, when the purity of the inflowing helium gas is 99% or less, the temperature of the gas-liquid separation filter 5 is operated in the range of 77K to 65K, and the helium gas flowing in through the first-stage heat exchanger 4 It is important that the impurities such as nitrogen gas and oxygen gas are liquefied and flow into the gas-liquid separation filter 5.

なお、気液分離フィルター5の温度が65K以下で運転
され、流入するヘリウムガス中の不純物が固化すると、
気液分離フィルター5が目詰まりを起こし、精製不可能
となる。
In addition, when the temperature of the gas-liquid separation filter 5 is operated at 65 K or less and impurities in the inflowing helium gas are solidified,
The gas-liquid separation filter 5 becomes clogged and purification becomes impossible.

また、一段目吸着器6および二段目吸着器8等の吸着
器に関しては、吸着温度を77K以下に下げれば、窒素ガ
スや酸素ガス等の不純物はもちろん、水素ガスの吸着能
力も増すので、二段目吸着器8の吸着温度が低いほど、
精製能力および精製ガスの純度も向上する。
Regarding the adsorbers such as the first-stage adsorber 6 and the second-stage adsorber 8, if the adsorption temperature is lowered to 77 K or less, not only impurities such as nitrogen gas and oxygen gas but also hydrogen gas adsorbing ability is increased. The lower the adsorption temperature of the second stage adsorber 8,
The purification capacity and the purity of the purified gas are also improved.

ヘリウムガスの純度が99%以上の場合には、気液分離
フィルター5の温度を77K〜65Kの範囲で運転しても、窒
素ガスや酸素ガス等の不純物はほとんど精製されない。
この場合には、気液分離フィルター5の温度をさらに低
くすることにより、精製能力および精製ガスの純度を向
上させるものとする。
When the purity of helium gas is 99% or more, impurities such as nitrogen gas and oxygen gas are hardly purified even if the temperature of the gas-liquid separation filter 5 is operated in the range of 77K to 65K.
In this case, the temperature of the gas-liquid separation filter 5 is further lowered to improve the purification capacity and the purity of the purified gas.

つぎにGM冷凍機3の運転に関する制御について以下説
明する。
Next, the control regarding the operation of the GM refrigerator 3 will be described below.

GM冷凍機3を運転するコンプレッサ17の電源部18に設
けたインバータ21と、GM冷凍機3の一段目熱負荷フラン
ジ3Aに設けた温度計22とをPID調節計20を通して連動さ
せ、気液分離フィルター5の温度をPID制御する。
The inverter 21 provided in the power supply section 18 of the compressor 17 for operating the GM refrigerator 3 and the thermometer 22 provided on the first-stage heat load flange 3A of the GM refrigerator 3 are linked through the PID controller 20 to separate gas and liquid. The temperature of the filter 5 is PID controlled.

すなわち、コンプレッサ17の電源周波数定格(一般的
には60ヘルツ)に合わせてインバータ21の周波数範囲を
30ヘルツ〜60ヘルツとする。
That is, the frequency range of the inverter 21 is set to match the power supply frequency rating of the compressor 17 (generally 60 Hz).
30 to 60 hertz.

一段目熱交換器4に流入するヘリウムガスの流量が増
加すると、一段目熱交換器4の効率が低下するため、GM
冷凍機3への入熱も増える。また、ヘリウムガスの純度
が低いと不純物の冷却液化した冷熱が液体排出弁11を通
って排出されるために、GM冷凍機3の冷凍負担は大きく
なる。
When the flow rate of the helium gas flowing into the first-stage heat exchanger 4 increases, the efficiency of the first-stage heat exchanger 4 decreases, so GM
The heat input to the refrigerator 3 also increases. Further, if the purity of the helium gas is low, the cold heat liquefied by cooling the impurities is discharged through the liquid discharge valve 11, so that the GM refrigerator 3 has a large refrigeration burden.

こうしたヘリウムガスの流量あるいは純度の変化によ
る冷凍負荷の変化に対応して気液分離フィルター5、一
段目吸着器6および二段目吸着器8の温度を制御するに
は、まずPID制御の設定温度を70Kに設定して、室温(30
0K)からGM冷凍機3の運転を開始する。
In order to control the temperatures of the gas-liquid separation filter 5, the first stage adsorber 6 and the second stage adsorber 8 in response to changes in the refrigeration load due to changes in the flow rate or purity of the helium gas, first set the temperature for PID control. Set to 70K and room temperature (30
The operation of the GM refrigerator 3 is started from 0K).

運転開始初期においてはPID制御の設定温度と気液分
離フィルター5との温度差が大きいので、気液分離フィ
ルター5の温度が70K近くなるまでGM冷凍機3は最大能
力(60ヘルツ)で運転される。
At the beginning of operation, the temperature difference between the PID control set temperature and the gas-liquid separation filter 5 is large, so the GM refrigerator 3 is operated at maximum capacity (60 hertz) until the temperature of the gas-liquid separation filter 5 approaches 70K. It

70K近くになると、温度計22からの温度検出信号に対
応してPID調節計20により電源部18の周波数が制御さ
れ、70Kでの冷凍能力に見合った周波数でGM冷凍機3を
運転する。
When the temperature approaches 70K, the frequency of the power supply unit 18 is controlled by the PID controller 20 in response to the temperature detection signal from the thermometer 22, and the GM refrigerator 3 is operated at the frequency corresponding to the refrigerating capacity at 70K.

すなわち、ヘリウムガスの流量の増加にともなって、
気液分離フィルター5の温度は70Kより上昇するが、PID
制御によりGM冷凍機3の運転周波数が上昇の方向で制御
される。
That is, as the flow rate of helium gas increases,
The temperature of gas-liquid separation filter 5 rises above 70K, but PID
By the control, the operating frequency of the GM refrigerator 3 is controlled in the increasing direction.

またヘリウムガス精製運転中にその流量が減ると、逆
に気液分離フィルター5の温度は70Kより下がり、GM冷
凍機3の運転周波数は低下の方向で制御されることにな
る。
Further, if the flow rate decreases during the helium gas refining operation, the temperature of the gas-liquid separation filter 5 will drop below 70K, and the operating frequency of the GM refrigerator 3 will be controlled in the decreasing direction.

かくして、被精製ヘリウムガスの流量ないしは純度に
関係なく、GM冷凍機3による気液分離フィルター5や吸
着器6、8等冷却部の温度制御が可能であり、精製性能
あるいは操作性の向上を図ることができる。
Thus, regardless of the flow rate or purity of the helium gas to be purified, the temperature of the cooling section such as the gas-liquid separation filter 5 and the adsorbers 6 and 8 can be controlled by the GM refrigerator 3 to improve the purification performance or operability. be able to.

さらに商用周波数が50ヘルツの地区においても、60ヘ
ルツ運転が可能で、精製処理能力の向上を図ることがで
きる。また、従来のような電熱ヒータの制御方式に比較
して断線等の問題がない。
Furthermore, even in areas where the commercial frequency is 50 Hertz, 60 Hertz operation is possible, and the refining processing capacity can be improved. Further, there is no problem such as disconnection as compared with the conventional control method of the electric heater.

[発明の効果] 以上のように本発明によれば、インバータ等を用いて
蓄冷式冷凍機の運転周波数を制御することとしてので、
消費電力を精製運転に要する必要最小限に抑え、精製性
能の向上とともに省エネルギー化を図ることができる。
[Effects of the Invention] As described above, according to the present invention, the operating frequency of the regenerative refrigerator is controlled by using an inverter or the like.
It is possible to reduce power consumption to the minimum necessary for refining operation, improve refining performance, and save energy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例によるヘリウムガス精製装置
1の概略断面図である。 1……ヘリウムガス精製装置 2……真空断熱容器 3……GM冷凍機 3A……一段目熱負荷フランジ 3B……二段目熱負荷フランジ 4……一段目熱交換器 5……気液分離フィルター 5A……上部フィルター 6……一段目吸着器 7……二段目熱交換器 8……二段目吸着器 9……被精製ガス(ヘリウムガス)入口弁 10……圧力調整弁 11……液体排出弁 12……電熱ヒータ 13……シールオフバルブ 14……多重層断熱材 15……圧縮機ユニット 16……制御ユニット 17……コンプレッサ 18……電源部 19……制御回路 20……PID調節計 21……インバータ(周波数変換器) 22……温度計
FIG. 1 is a schematic sectional view of a helium gas purification apparatus 1 according to an embodiment of the present invention. 1 …… Helium gas refining device 2 …… Vacuum insulation container 3 …… GM refrigerator 3A …… First stage heat load flange 3B …… Second stage heat load flange 4 …… First stage heat exchanger 5 …… Gas-liquid separation Filter 5A …… Upper filter 6 …… First stage adsorber 7 …… Second stage heat exchanger 8 …… Second stage adsorber 9 …… Refine gas (helium gas) inlet valve 10 …… Pressure control valve 11… Liquid discharge valve 12 Electric heater 13 Seal off valve 14 Multilayer insulation 15 Compressor unit 16 Control unit 17 Compressor 18 Power unit 19 Control circuit 20 PID controller 21 ... Inverter (frequency converter) 22 ... Thermometer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空断熱容器と、 この真空断熱容器内に設けた蓄冷式ヘリウム冷凍機、お
よび被精製ガスを導入導出する一段目熱交換器と、 前記蓄冷式ヘリウム冷凍機の一段目熱負荷フランジに取
り付けた気液分離フィルター、および一段目吸着器と、 前記蓄冷式ヘリウム冷凍機の二段目熱負荷フランジに取
り付けた二段目吸着器と、 この二段目吸着器と前記一段目熱交換器との間に設けた
二段目熱交換器とを有するヘリウムガス精製装置であっ
て、 前記気液分離フィルターおよび一段目吸着器の温度を検
出するとともに、この温度検出信号にもとづいて前記蓄
冷式ヘリウム冷凍機の運転周波数を制御することを特徴
とするヘリウムガス精製装置。
1. A vacuum heat insulating container, a regenerator helium refrigerator provided in the vacuum heat insulating container, a first stage heat exchanger for introducing and extracting a gas to be purified, and a first stage heat load for the regenerator helium refrigerator. A gas-liquid separation filter attached to the flange, and a first stage adsorber, a second stage heat load of the regenerator helium refrigerator, a second stage adsorber attached to the flange, the second stage adsorber and the first stage heat A helium gas refining device having a second stage heat exchanger provided between the exchanger, the temperature of the gas-liquid separation filter and the first stage adsorber is detected, and based on this temperature detection signal, A helium gas refining device characterized by controlling the operating frequency of a cold storage helium refrigerator.
JP2172794A 1990-07-02 1990-07-02 Helium gas purifier Expired - Fee Related JP2694377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172794A JP2694377B2 (en) 1990-07-02 1990-07-02 Helium gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172794A JP2694377B2 (en) 1990-07-02 1990-07-02 Helium gas purifier

Publications (2)

Publication Number Publication Date
JPH0464869A JPH0464869A (en) 1992-02-28
JP2694377B2 true JP2694377B2 (en) 1997-12-24

Family

ID=15948486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172794A Expired - Fee Related JP2694377B2 (en) 1990-07-02 1990-07-02 Helium gas purifier

Country Status (1)

Country Link
JP (1) JP2694377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846458B2 (en) 2020-10-01 2023-12-19 Sumitomo Heavy Industries, Ltd. Cryocooler and control method of cryocooler

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099592A (en) * 2005-10-07 2007-04-19 Iwatani Industrial Gases Corp Method and apparatus for generating ortho and para hydrogen, and device for generating standard ortho and para hydrogen used for calibration
CN102564066B (en) * 2012-02-10 2013-10-16 南京柯德超低温技术有限公司 Low-temperature device for separating and purifying gas based on small-sized low-temperature refrigerating machine
US10352617B2 (en) * 2014-09-25 2019-07-16 University Of Zaragoza Apparatus and method for purifying gases and method of regenerating the same
JP6402430B2 (en) * 2015-03-31 2018-10-10 大陽日酸株式会社 Liquid helium filter and liquid helium filter unit
CN114370601B (en) * 2021-12-17 2023-08-08 华能核能技术研究院有限公司 Liquid nitrogen injection system, method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846458B2 (en) 2020-10-01 2023-12-19 Sumitomo Heavy Industries, Ltd. Cryocooler and control method of cryocooler

Also Published As

Publication number Publication date
JPH0464869A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
JP3726965B2 (en) Oxygen production method and apparatus
US3854914A (en) Recovery of neon and helium from air by adsorption and closed cycle neon refrigeration
EP1612496B1 (en) Air separator
JP2694377B2 (en) Helium gas purifier
JP2005083588A (en) Helium gas liquefying device, and helium gas recovering, refining and liquefying device
KR20060091067A (en) Method and apparatus for cryogenic helium purification
JPH08291967A (en) Method and apparatus for separating the air
JP3195986B2 (en) Helium gas supply method and device
JP3526648B2 (en) High-purity nitrogen gas production equipment
JPS6410252B2 (en)
JPH0652140B2 (en) He gas purification equipment
CN116558229B (en) Helium purifier capable of continuously working and purifying method
JP3143757B2 (en) Helium gas purification apparatus and operating method thereof
CN111981760B (en) Heating and unfreezing method of low-temperature air separation device
JP3054062B2 (en) Purifier
JP2001033155A (en) Air separator
JPH0436552A (en) Refrigerator with cryogenic adsorption cylinder
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH01260265A (en) Very-low-temperature refrigeration device
JPH01123957A (en) Cryogenic freezing device
JPH04158175A (en) Gas refining device
JPH0336486A (en) Operation system for air and liquid separator's cooling water tower
JPH04275904A (en) Equipment for producing oxygen and method for raising temperature of air for raw material thereof
JP2005090915A (en) Air separator and air separating method
JPH0689956B2 (en) Small He liquefaction refrigeration system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees