JPH01260265A - Very-low-temperature refrigeration device - Google Patents

Very-low-temperature refrigeration device

Info

Publication number
JPH01260265A
JPH01260265A JP8715588A JP8715588A JPH01260265A JP H01260265 A JPH01260265 A JP H01260265A JP 8715588 A JP8715588 A JP 8715588A JP 8715588 A JP8715588 A JP 8715588A JP H01260265 A JPH01260265 A JP H01260265A
Authority
JP
Japan
Prior art keywords
cold box
gas
temperature side
divided
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8715588A
Other languages
Japanese (ja)
Inventor
Kozo Matsumoto
松本 孝三
Jun Yoshida
純 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8715588A priority Critical patent/JPH01260265A/en
Publication of JPH01260265A publication Critical patent/JPH01260265A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a cold box, which produces a liquefied gas at a very low temperature level rendering impurities removable by solidification or adsorption, to sustain continuous operation over a long period of time by dividing the ordinary temperature side of the cold box into a plurality of units in a setup to alternate their use. CONSTITUTION:High pressure helium gas at an ordinary temperature is conveyed from a compressor unit 1 to units 10a, 10b of a first cold box, wherein the helium gas drawn into a first heat exchanger 11a is cooled to about 80K by heat exchange with liquid nitrogen or the like supplied through a liquid nitrogen feed pipe 13a; gaseous impurities which remain unsolidified are removed by adsorption at internal adsorbers 12a, 12b so that a high purity gas is obtainable from the outlet of the cold box on the ordinary temperature side. This gas is then fed into a second cold box 20 on the low temperature side. The use of the cold box on the ordinary temperature side, which is divided, is alternated between the units 10a, 10b at suitable intervals of time according to the amount of the impurities solidified or adsorbed in order to make the removal continuous so that the system can sustain continuous operation over a long period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は極低温冷凍装置に係り、特に長期の連続運転を
要求される装置に好適な極低温冷凍装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cryogenic refrigeration system, and particularly to a cryogenic refrigeration system suitable for equipment that requires long-term continuous operation.

〔従来の技術〕[Conventional technology]

陰低虐冷凍装道1例えばヘリウム冷凍装置では。 For example, in a helium refrigeration system.

現在、圧縮後として油噴射式スクリュー圧縮機が採用さ
れている。これは、油噴射式スクリュー圧縮機が長期連
M運転性等の機器としての信相性が高く、操作性が優れ
ていると共に、油分喝技術の進歩が有ったためである。
Currently, an oil injection screw compressor is used for post-compression. This is because the oil injection screw compressor has high reliability as a device such as long-term continuous operation, excellent operability, and advances in oil separation technology.

現在、油分1lIl!装置では、吐出ガス中の油分をO
−11)I)m(Vol)以下に除去可能でみる。また
、ヘリウム冷凍装置の被冷却設備として代表的なものは
超電導マグネブトであるが、超電導マグネットは構造が
複雑であると共に多量の有機材を使用するために、不純
ガスの置換除去が困難なものである。さらに、4.4に
以下の冷凍温度を必要とする場合は、大気圧力よIJ低
い減圧状態を作らざるを得す、この場合には大気から空
気等の不純ガスを系内に引き込む可能性が残る。
Currently, the oil content is 1lIl! In the device, the oil content in the discharged gas is
-11) It is assumed that it can be removed to below I)m (Vol). In addition, superconducting magnets are a typical type of equipment to be cooled in helium refrigeration equipment, but superconducting magnets have a complex structure and use a large amount of organic material, making it difficult to replace and remove impurity gas. be. Furthermore, if a freezing temperature below 4.4 is required, it is necessary to create a reduced pressure state that is IJ lower than the atmospheric pressure.In this case, there is a possibility that impure gases such as air may be drawn into the system from the atmosphere. remain.

上記したように、極低温冷凍装置(こは微量とは言え、
各種の不純物が連続的に冷媒ガス中に混入してくるが、
従来のや低温冷凍装置では、補助寒冷IIIλである液
体窒素温度レベル(約80K)に内部吸4器を設けてい
るのが見られるのみだった。
As mentioned above, cryogenic refrigeration equipment (although the amount is small,
Various impurities are continuously mixed into the refrigerant gas,
Conventional low-temperature refrigeration equipment has only been seen to be equipped with an internal suction device at the liquid nitrogen temperature level (approximately 80K), which is auxiliary cooling IIIλ.

なお、この種に関するものとしては、特開昭57−62
368号等が挙げられる。
Regarding this kind, Japanese Patent Application Laid-Open No. 57-62
No. 368 etc. are mentioned.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は圧縮機からの油分、被冷却設備からの0
02 +水等、減圧ラインからの空気分、等の各棟の不
純物(おのおの、同化温度が異なる。)が冷媒ガス中に
倣麓とはいえ混入してくることに配慮されておらず、長
期間の連続運転を要求される装置には対応できないとい
う問題があった。上記、各種の不純物は、極低温冷凍装
置内の各同化温度レベルで同化付着成長し、高圧冷媒ガ
スの流動抵抗を増大せしめ、極端な場合は装置を停止せ
ざるを得なくなる。
The above-mentioned conventional technology eliminates oil from the compressor and oil from the equipment to be cooled.
02 + No consideration was given to the fact that impurities from each building, such as water, air from the decompression line, etc. (each has a different assimilation temperature), may be mixed into the refrigerant gas, even if it is at the base of the refrigerant gas. There was a problem in that it could not be applied to equipment that required continuous operation for a period of time. The above-mentioned various impurities assimilate and grow at each assimilation temperature level within the cryogenic refrigeration equipment, increasing the flow resistance of the high-pressure refrigerant gas, and in extreme cases, the equipment must be stopped.

本発明の目的は、長期の連続運転が可能な極低温冷凍装
置を提供することにある。
An object of the present invention is to provide a cryogenic refrigeration system that can be operated continuously for a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、不純物な固化、又は吸着で除去できる温度
レベルでコールドボックスを分割し、分割した常温側の
コールドボックスな複数個設けて切り替え使用できるよ
うにすることにより、達成される。
The above object is achieved by dividing the cold box at a temperature level at which impurities can be removed by solidification or adsorption, and by providing a plurality of divided cold boxes on the room temperature side so that they can be used interchangeably.

〔作  用〕[For production]

分割した常温側のコールドボックスに導入された常温高
圧ガスは、温度低下と共に各不純物の固化21!度で同
化付着し順次除去され、固化しなかった不純ガスは内部
吸呑器で吸着除去され、分割した常温側のコールドボッ
クス出口では高純度のガスとなり分割した低i 4HI
Iのコールドボックスに供給される。
The room-temperature high-pressure gas introduced into the divided cold box on the room-temperature side solidifies each impurity as the temperature drops 21! The impurity gas that did not solidify was adsorbed and removed by the internal suction device, and became high-purity gas at the outlet of the divided cold box on the room temperature side.
I's cold box.

分割した常温側のコールドボックスは、不純物の同化、
又は吸着によって遍当な時間で、他の常温側のコールド
ボックスに切り替える。
The divided cold box on the room temperature side is used to assimilate impurities,
Or switch to another cold box on the room temperature side at a reasonable time by adsorption.

〔実 施 例〕〔Example〕

以下9本発明の一実施例をm1図により説明する。 An embodiment of the present invention will be described below using the m1 diagram.

第1図において1は圧縮機ユニット、2は圧縮機、3は
油分離装!、10aおよび10 bは分割した常温側で
ある第1のコールドボックス、11 aおよび11 b
は第1の熱交換器、12 aおよび12 bは内部吸着
器、13 aおよび13bは液体窒素供給管、14 a
および14 bは高圧ガス人口弁、15aおよびts 
bは高圧ガス出口弁、16.および16 bは低圧ガス
出口弁、17 aおよび17 bは低圧ガス人口弁、1
8 aおよび18bは液体窒素供給弁、題は分割した低
温側である男2のコールドボックス、21は第2の熱交
換器、22は第3の熱交換器、23は第4の熱交換器、
冴は膨張機人口弁、5は膨張機、漢はジュールトムソン
弁(以下、JT弁と略称)、父は被冷許設何である。
In Figure 1, 1 is a compressor unit, 2 is a compressor, and 3 is an oil separator! , 10a and 10b are the divided room temperature side first cold boxes, 11a and 11b
is the first heat exchanger, 12 a and 12 b are internal adsorbers, 13 a and 13 b are liquid nitrogen supply pipes, 14 a
and 14b are high pressure gas valves, 15a and ts
b is a high pressure gas outlet valve; 16. and 16 b are low pressure gas outlet valves, 17 a and 17 b are low pressure gas population valves, 1
8a and 18b are liquid nitrogen supply valves, the cold box of man 2 is the divided low temperature side, 21 is the second heat exchanger, 22 is the third heat exchanger, 23 is the fourth heat exchanger ,
Sae is the expansion valve, 5 is the expander, Han is the Joule-Thomson valve (hereinafter referred to as JT valve), and father is the refrigerated equipment.

次に、以上のように構成された極低温冷凍装置の動作に
ついて説明する。第1のコールトポ1クスは、この場合
、10a、10bの2系統設け、a系統が精製運転中、
b系統を再生中とする。圧縮機ユニットlから出た常湿
高圧ヘリウムはff1lのコールドボックス10 aに
送られ、第1の熱交換器11aで液体窒素供給管13 
aから供給される液体窒素。
Next, the operation of the cryogenic refrigeration apparatus configured as above will be explained. In this case, the first coal topo box has two systems 10a and 10b, and system a is in refining operation.
Assume that line b is being regenerated. The normal humidity high pressure helium discharged from the compressor unit l is sent to the cold box 10a of ff1l, and is transferred to the liquid nitrogen supply pipe 13 in the first heat exchanger 11a.
Liquid nitrogen supplied from a.

および低圧ガスと熱交換し約80Kまで冷却される。こ
の間、高圧ガス中の油分、002.水等の同化温度が約
80に以上の不純物は第1の熱交換器11 a内で同化
除去される。第1の熱交換器11 aを出た高圧ガス中
のN2+ 02等のflllの不純物は、活性炭等を充
填した内部吸着器12aで吸着除去され、高純度の高圧
ガスとして第2のコールドボックス加に導入される。第
2のコールドボックス美に導入された高純度の高圧ガス
は第2の熱又換器4で冷却された後、膨張機ラインと液
化ラインに分岐し、膨張機ラインのガスは膨張機人口弁
スを通り、膨張8!5で断熱膨張して温度低下による寒
冷発生後、低圧ガスに合流する。液化ラインに分岐した
ガスは、第3および第4の熱交換器n、23でさらに温
良降下したi!、JT弁漢で断熱自由膨張して一部が液
化し被冷却設備間で冷却負荷を吸収する。被冷却設備(
資)で冷却負荷を吸収してガス化した低圧ガスは、第2
のコールドボックスIに戻り、第4〜@2の熱交換器2
3〜21で寒冷回収された後、第1のコールドボックス
10 a内の第1の熱交換器11 aでさらに寒冷回収
されて圧縮機ユニットlに戻る。
Then, it exchanges heat with low pressure gas and is cooled to about 80K. During this time, the oil content in the high pressure gas, 002. Impurities such as water having an assimilation temperature of about 80 or higher are assimilated and removed in the first heat exchanger 11a. All impurities such as N2+02 in the high pressure gas exiting the first heat exchanger 11a are adsorbed and removed by an internal adsorber 12a filled with activated carbon, etc., and are transferred to the second cold box as high-purity high pressure gas. will be introduced in The high-purity high-pressure gas introduced into the second cold box is cooled by the second heat exchanger 4, and then branched into the expander line and the liquefaction line, and the gas in the expander line is transferred to the expander valve. The gas passes through the gas, expands adiabatically at an expansion rate of 8!5, and after the temperature decreases and generates cold, it merges with the low pressure gas. The gas branched into the liquefaction line is further cooled down in the third and fourth heat exchangers n, 23. , JT Benkan undergoes adiabatic free expansion and partially liquefies, absorbing the cooling load between the cooled equipment. Cooled equipment (
The low-pressure gas absorbed the cooling load and gasified by the second
Return to cold box I, and heat exchanger 2 from 4th to @2
After being cold-recovered in steps 3 to 21, it is further cold-recovered in the first heat exchanger 11a in the first cold box 10a and returned to the compressor unit 1.

一方、再生中のb系統は、先ず、高圧ガス人口弁14b
、高圧ガス出口弁15b、低圧ガス人口弁17b、低圧
ガス出口弁16b、液体窒素供給弁18 bを閉止し図
示省略した放出ラインを使用して系内の脱圧な行なう。
On the other hand, the b system that is being regenerated first starts with the high pressure gas valve 14b.
, the high-pressure gas outlet valve 15b, the low-pressure gas population valve 17b, the low-pressure gas outlet valve 16b, and the liquid nitrogen supply valve 18b are closed, and the system is depressurized using a discharge line (not shown).

その後、図示省略した加温ラインを使用して系内な常温
近辺まで加温し、更に、真空引き置換により不純ガスを
系外に除去する。不純ガスの系外への除去完了後、液体
窒素を供給し。
Thereafter, a heating line (not shown) is used to heat the inside of the system to around room temperature, and further, impurity gas is removed from the system by evacuation and displacement. After the impure gas has been removed from the system, liquid nitrogen is supplied.

精製運転可能な低温状態にまで冷却する。Cool down to a low temperature that allows refining operations.

以上1本実施例によれば、第1のコールドボックスを切
り替えて、圧縮機、被冷却設備等から冷媒ガスに混入す
る不純物を必要最少限の温度範囲で連続的に除去できる
ので、最少限の費用で長期連続運転を可能にすることが
できる。
According to the first embodiment, impurities mixed into the refrigerant gas from the compressor, equipment to be cooled, etc. can be continuously removed within the minimum necessary temperature range by switching the first cold box. Long-term continuous operation can be achieved at low cost.

なお1本−実施例では、第1のコールドボックスを独立
した真空保冷槽で形成し、それぞれのコールドボックス
との熱しゃ断を図っているが、第2のコールドボックス
の真空保冷槽と一体で形成し、それぞれの部分をシール
ド槽で隔離して構成するようにしても良い。
In addition, in the example, the first cold box is formed with an independent vacuum cold storage tank to isolate heat from each cold box, but it is formed integrally with the vacuum cold storage tank of the second cold box. However, each part may be separated by a shield tank.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1のコールドボックスを切り替えて
圧縮機等からの各種不純ガスを連続的に除去できるので
、長期連続運転が可能となる。
According to the present invention, since various impurity gases from the compressor etc. can be continuously removed by switching the first cold box, long-term continuous operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である極低温冷凍装置を示す
概略構成図である。
FIG. 1 is a schematic diagram showing a cryogenic refrigeration system as an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、圧縮機ユニットと、該圧縮機ユニットの吐出ガスで
ある常温高圧ガスを導入し極低温液化ガスを生成するコ
ールドボックスとから構成される極低温冷凍装置におい
て、常温と極低温液化ガス温度と間の或る温度レベルで
コールドボックスを分割し、該分割した常温側のコール
ドボックスを複数個並列に設け切り替え可能にしたこと
を特徴とする極低温冷凍装置。 2、前記コールドボックスを補助寒冷源温度レベルで分
割した特許請求の範囲第1項記載の極低温冷凍装置。 3、前記分割した常温側のコールドボックスに内部吸着
器を設けた特許請求の範囲第1項記載の極低温冷凍装置
。 4、前記分割した常温側のコールドボックスの高圧冷媒
ガスの入口圧力と出口圧力との差圧が設定値以上になっ
た時に前記分割した常温側のコールドボックスを切り替
える特許請求の範囲第1項記載の極低温冷凍装置。
[Claims] 1. In a cryogenic refrigeration system consisting of a compressor unit and a cold box that introduces room temperature high pressure gas, which is the discharge gas of the compressor unit, to produce cryogenic liquefied gas, A cryogenic refrigeration system characterized in that a cold box is divided at a certain temperature level between the cryogenic liquefied gas temperature and a plurality of the divided cold boxes on the room temperature side are provided in parallel and can be switched. 2. The cryogenic freezing apparatus according to claim 1, wherein the cold box is divided by auxiliary cold source temperature level. 3. The cryogenic freezing apparatus according to claim 1, wherein an internal adsorption device is provided in the divided cold box on the room temperature side. 4. The divided cold box on the room temperature side is switched when the pressure difference between the inlet pressure and the outlet pressure of the high-pressure refrigerant gas in the divided cold box on the room temperature side becomes equal to or higher than a set value. cryogenic freezing equipment.
JP8715588A 1988-04-11 1988-04-11 Very-low-temperature refrigeration device Pending JPH01260265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8715588A JPH01260265A (en) 1988-04-11 1988-04-11 Very-low-temperature refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8715588A JPH01260265A (en) 1988-04-11 1988-04-11 Very-low-temperature refrigeration device

Publications (1)

Publication Number Publication Date
JPH01260265A true JPH01260265A (en) 1989-10-17

Family

ID=13907098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8715588A Pending JPH01260265A (en) 1988-04-11 1988-04-11 Very-low-temperature refrigeration device

Country Status (1)

Country Link
JP (1) JPH01260265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206527A (en) * 1991-08-20 1993-08-13 Taiyo Sanso Co Ltd Dehydrating method for cryo-liqefied gas
JPH06117991A (en) * 1992-10-06 1994-04-28 Taiyo Sanso Co Ltd Managing method for moisture of low temperature liquefied gas
CN106949655A (en) * 2017-03-16 2017-07-14 中国科学院理化技术研究所 Helium cryogenic system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206527A (en) * 1991-08-20 1993-08-13 Taiyo Sanso Co Ltd Dehydrating method for cryo-liqefied gas
JPH06117991A (en) * 1992-10-06 1994-04-28 Taiyo Sanso Co Ltd Managing method for moisture of low temperature liquefied gas
CN106949655A (en) * 2017-03-16 2017-07-14 中国科学院理化技术研究所 Helium cryogenic system
CN106949655B (en) * 2017-03-16 2019-03-05 中国科学院理化技术研究所 Helium cryogenic system

Similar Documents

Publication Publication Date Title
US4853015A (en) High purity nitrogen and oxygen gas production equipment
US4732595A (en) Oxygen gas production apparatus
KR102373686B1 (en) Pre-cooling module of hydrogen and hydrogen liquefier containing thereof
EP1612496B1 (en) Air separator
US2526996A (en) Method and apparatus for separating mixed gases
JPS6146747B2 (en)
JPH01260265A (en) Very-low-temperature refrigeration device
US3246478A (en) Process and apparatus for separating low-boiling gas mixtures
CN114165987B (en) Liquid carbon dioxide production device and production method thereof
KR20240032909A (en) Equipment and methods for liquefying hydrogen
JP2694377B2 (en) Helium gas purifier
JPH0436552A (en) Refrigerator with cryogenic adsorption cylinder
JPH11118350A (en) Separating method of air and air separating system
JP2574815B2 (en) Cryogenic refrigeration equipment
US3141751A (en) Process and apparatus for purifying and separating compressed gas mixtures
US20230392859A1 (en) Cryogenic Gas Cooling System and Method
JPH0721358B2 (en) Cryogenic liquefier
JPH04161770A (en) Liquefaction machine
JP3021389B2 (en) High-purity nitrogen gas production equipment
AU2016250109A1 (en) Facility and method for producing liquid helium
JP2540243B2 (en) High-purity nitrogen gas production equipment
Haselden Developments in gas liquefaction and separation
JPH06337192A (en) High-purity nitrogen gas manufacturing device
Al Rabadi et al. A generic concept for Helium purification and liquefaction plant
JPH05340666A (en) Production of super-high purity nitrogen and equipment therefor