JP2690390B2 - Rare earth bonded magnet manufacturing method - Google Patents

Rare earth bonded magnet manufacturing method

Info

Publication number
JP2690390B2
JP2690390B2 JP2182498A JP18249890A JP2690390B2 JP 2690390 B2 JP2690390 B2 JP 2690390B2 JP 2182498 A JP2182498 A JP 2182498A JP 18249890 A JP18249890 A JP 18249890A JP 2690390 B2 JP2690390 B2 JP 2690390B2
Authority
JP
Japan
Prior art keywords
rare earth
magnetic powder
transition metal
kneading
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2182498A
Other languages
Japanese (ja)
Other versions
JPH0469903A (en
Inventor
郁美 成田
恭彦 土橋
政幸 石川
Original Assignee
株式会社三協精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三協精機製作所 filed Critical 株式会社三協精機製作所
Priority to JP2182498A priority Critical patent/JP2690390B2/en
Publication of JPH0469903A publication Critical patent/JPH0469903A/en
Application granted granted Critical
Publication of JP2690390B2 publication Critical patent/JP2690390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、回転電機等の各種装置に用いられる希土類
ボンド磁石の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a rare earth bonded magnet used in various devices such as rotating electric machines.

(従来の技術) 従来から、比較的安価でしかも強力な永久磁石の開発
が種々行なわれている。例えば特開昭59-211549号公報
には、希土類−鉄−ホウ素系磁粉を接着剤で固化するこ
ととしたボンド磁石が提案されており、また特開昭61-1
74364号公報には、ミッシュメタル−遷移金属−ホウ素
系磁粉をバインダーと混合してなるプラスチック磁石が
提案されている。
(Prior Art) Conventionally, various types of relatively inexpensive and powerful permanent magnets have been developed. For example, Japanese Unexamined Patent Publication No. 59-211549 proposes a bonded magnet in which rare earth-iron-boron magnetic powder is solidified with an adhesive, and Japanese Unexamined Patent Publication No. 61-1
Japanese Patent No. 74364 proposes a plastic magnet obtained by mixing Misch metal-transition metal-boron magnetic powder with a binder.

このような希土類ボンド磁石は、希土類と遷移金属と
を含む磁性粉末を混練によってバインダー樹脂中に分散
してなるものであり、その製造方法が例えば特開昭60-1
64313号公報に記載されている。上記公報に開示された
製造方法の混練工程にはミキシングロールが使用されて
おり、バインダー樹脂中に、少量ずつ希土類磁性粉末と
シラン系カップリング剤とを混合しつつ混練を行なうよ
うにしている。得られた混練物は粉砕された後に圧延さ
れる。
Such a rare earth bonded magnet is one in which magnetic powder containing a rare earth and a transition metal is dispersed in a binder resin by kneading, and the production method thereof is, for example, JP-A-60-1.
It is described in Japanese Patent No. 64313. A mixing roll is used in the kneading step of the production method disclosed in the above publication, and the kneading is performed while mixing the rare earth magnetic powder and the silane coupling agent little by little in the binder resin. The obtained kneaded product is crushed and then rolled.

(発明が解決しようとする課題) ここで希土類と遷移金属とを含む磁性粉末の混練を行
なう場合には、発火を生じる危険性があり、発火から生
産不能に陥るおそれもある。このため希土類と遷移金属
とを含む磁性粉末を従来方法により混練する場合には、
大量かつ連続的な処理が不可能になっている。
(Problems to be Solved by the Invention) Here, when kneading the magnetic powder containing a rare earth and a transition metal, there is a risk of ignition, and there is also a risk of production failure due to ignition. Therefore, when kneading a magnetic powder containing a rare earth and a transition metal by a conventional method,
Massive and continuous processing has become impossible.

また特開昭60-164313号公報に開示された磁石の製造
方法は、サマリウム−コバルト系の磁粉を用いたもので
あり、価格の割には磁気特性はあまり良くない。したが
ってこれを回転電機等に使用しても、回転電機が高価に
なる上に価格の割に良好な特性を得ることができず、使
用範囲は極めて限定されている。
Further, the method for producing a magnet disclosed in Japanese Patent Laid-Open No. 60-164313 uses samarium-cobalt type magnetic powder, and the magnetic characteristics are not so good for the price. Therefore, even if this is used in a rotating electric machine or the like, the rotating electric machine becomes expensive and it is not possible to obtain good characteristics for the price, and the range of use is extremely limited.

そこで本発明は、希土類と遷移金属とを含む磁性粉末
の混練を大量かつ連続して行なわせることができるとと
もに、良好な磁気特性を備えることができるようにした
希土類ボンド磁石の製造方法を提供することを目的とす
る。
Therefore, the present invention provides a method for producing a rare earth bonded magnet capable of continuously kneading a large amount of magnetic powder containing a rare earth and a transition metal and having good magnetic properties. The purpose is to

(課題を解決するための手段および作用) 上記目的を達成するために請求項の1に記載された希
土類ボンド磁石の製造方法は、希土類と遷移金属とを含
む磁性粉末を、バインダー樹脂中に分散してなる希土類
ボンド磁石の製造方法において、少なくとも、(a)密
閉可能な混合槽を持つ混合装置中に不活性ガスを注入
し、該混合装置中の空気を酸素濃度0.08〜3%の気体に
置換させる工程と、(b)希土類と遷移金属とを含む磁
性粉末、エポキシ樹脂および防錆剤を、上記ガス置換後
の混合装置中に投入して混合を行ない、酸化膜、エポキ
シ樹脂膜および防錆被膜を上記磁性粉末に形成する混合
工程と、(c)上記混練工程により得られた混合物と前
記バインダー樹脂とを95℃以下の温度条件下で混練し、
希土類と遷移金属とを含む磁性粉末をバインダー樹脂中
に分散させる混練工程とを備えている。
(Means and Actions for Solving the Problems) In order to achieve the above object, the method for producing a rare earth bonded magnet according to claim 1, wherein a magnetic powder containing a rare earth and a transition metal is dispersed in a binder resin. In the method for producing a rare earth bonded magnet according to the above, at least (a) an inert gas is injected into a mixing device having a sealable mixing tank, and the air in the mixing device is changed into a gas having an oxygen concentration of 0.08 to 3%. The step of substituting, and (b) the magnetic powder containing a rare earth and a transition metal, the epoxy resin and the rust preventive agent are put into the mixing device after the gas replacement and mixed to form an oxide film, an epoxy resin film and an anti-corrosion agent. A mixing step of forming a rust coating on the magnetic powder, and (c) kneading the mixture obtained by the kneading step and the binder resin under a temperature condition of 95 ° C. or lower,
And a kneading step of dispersing magnetic powder containing a rare earth and a transition metal in a binder resin.

また請求項の2に記載された希土類ボンド磁石の製造
方法は、請求項の1に記載の希土類ボンド磁石の製造方
法において、希土類と遷移金属とを含む磁性粉末は、ホ
ウ素を含有する磁性粉末からなる。
The method for producing a rare earth bonded magnet according to claim 2 is the method for producing a rare earth bonded magnet according to claim 1, wherein the magnetic powder containing rare earth and a transition metal is a boron-containing magnetic powder. Become.

このような構成を有する手段においては、まず密閉可
能な混合槽を持つ混合装置内の空気が不活性ガスにより
発火不能な酸素濃度となるようにガス置換され、その上
で、希土類と遷移金属とを含む磁性粉末と、エポキシ樹
脂膜および防錆被膜との混合が行なわれ、磁性粉末への
被膜形成が行なわれる。すなわちこの混合工程におい
て、発火の原因となる酸素の流入はガス置換により遮断
される。
In the means having such a configuration, first, the air in the mixing device having the mixing tank which can be sealed is gas-exchanged by the inert gas so that the oxygen concentration becomes non-ignitable, and then the rare earth and the transition metal are mixed. The magnetic powder containing is mixed with the epoxy resin film and the rust preventive film to form a film on the magnetic powder. That is, in this mixing step, the inflow of oxygen, which causes ignition, is blocked by gas replacement.

上記混合工程により磁性粉末には、エポキシ樹脂膜お
よび防錆被膜が形成されるとともに、僅かに残された酸
素分によって酸化膜が形成される。そしてこのような酸
化膜、エポキシ樹脂膜および防錆被膜が形成された上
で、磁性粉末はバインダー樹脂と混練され分散される。
By the mixing step, an epoxy resin film and a rust preventive film are formed on the magnetic powder, and an oxide film is formed by a slight amount of oxygen remaining. Then, after such an oxide film, an epoxy resin film and a rust preventive film are formed, the magnetic powder is kneaded and dispersed with the binder resin.

上記酸化被膜は、適当酸素濃度下(0.08〜3%)で磁
性粉末の表面上に形成されるため、出来上がった希土類
ボンド磁石は、非常に良好な磁気特性を維持する。すな
わち本発明による磁石においては、適切な酸化処理によ
って着磁後の磁束変化率が非常に小さくなり、防錆被膜
なしのもの、酸化処理が行なわれていないもの、あるい
は酸化処理が過大となっているものにおける磁束変化率
は本発明品より大幅に増大している。
Since the oxide film is formed on the surface of the magnetic powder under an appropriate oxygen concentration (0.08 to 3%), the finished rare earth bonded magnet maintains very good magnetic characteristics. That is, in the magnet according to the present invention, the rate of change in the magnetic flux after magnetization becomes very small by the appropriate oxidation treatment, and the one without a rust preventive coating, the one without oxidation treatment, or the oxidation treatment being excessive. The rate of change of magnetic flux in the magnetic field is significantly higher than that of the product of the present invention.

混練工程においては、酸化膜、エポキシ樹脂膜および
防錆被膜によって磁粉表面の活性度が低下されていると
ともに、素材内への酸素流入が極力防止されており、か
つ該混練工程の温度は発火点以下の95℃以下に規制され
ている。したがって素材の混練を大量かつ連続的に行な
っても発火のおそれは生じることがない。
In the kneading process, the activity of the magnetic powder surface is reduced by the oxide film, the epoxy resin film and the anticorrosive film, and the inflow of oxygen into the material is prevented as much as possible, and the temperature of the kneading process is the ignition point. It is regulated below 95 ℃. Therefore, even if a large amount of material is continuously kneaded, there is no risk of ignition.

本発明にかかる希土類ボンド磁石の製造方法は、第1
図に示されるような工程を有している。
The method for producing a rare earth bonded magnet according to the present invention is the first
It has the steps as shown in the figure.

まず超急冷法により希土類−遷移金属系磁性粉末を得
る。超急冷法の一例としてはジェットキャスティング法
がある。
First, a rare earth-transition metal magnetic powder is obtained by the ultraquenching method. An example of the super-quenching method is a jet casting method.

ジェットキャスティング法においては、インゴッド状
に形成された希土類−遷移金属系磁性合金が受皿内に収
容され、不活性環境下で上記合金が高周波等によって溶
融される。溶融状態となった磁性合金はノズル付き湯溜
りに注入され、ノズルを通して回転ホイール上に落下さ
れる。回転ホイールは水によって冷却されており、ここ
で急速冷却が行なわれる。急冷された磁性合金は、リボ
ン状の磁粉に凝固されて下方に落下していき、容器内に
収集される。
In the jet casting method, a rare earth-transition metal magnetic alloy formed in the shape of an ingot is contained in a saucer, and the alloy is melted by a high frequency wave or the like in an inert environment. The molten magnetic alloy is poured into a basin with a nozzle and dropped through a nozzle onto a rotating wheel. The rotating wheel is cooled by water, where rapid cooling takes place. The quenched magnetic alloy is solidified into ribbon-shaped magnetic powder, falls downward, and is collected in a container.

ここで希土類−遷移金属系磁粉を構成する希土類とし
ては、ランタノイドのうち一種または二種以上が用いら
れ、遷移金属としては、Fe,Co,Niのうち一種または二種
以上が用いられる。この希土類−遷移金属系磁粉には、
ホウ素を含ませて希土類−遷移金属−ホウ素系磁性粉末
とすることができる。具体的には、Nd-Fe−B、Nd-Fe-C
o−B、Ce-La-Fe-Co−B、Sm-Co、Sm-Co-Fe、Sm-Co-Mn
等が用いられる。
Here, one or more kinds of lanthanoids are used as the rare earths constituting the rare earth-transition metal magnetic powder, and one or more kinds of Fe, Co, Ni are used as the transition metal. In this rare earth-transition metal magnetic powder,
A rare earth-transition metal-boron-based magnetic powder can be obtained by incorporating boron. Specifically, Nd-Fe-B, Nd-Fe-C
o-B, Ce-La-Fe-Co-B, Sm-Co, Sm-Co-Fe, Sm-Co-Mn
Are used.

つぎに希土類−遷移金属系磁性粉末にエポキシ主剤お
よび防錆剤を混合し、酸化膜、エポキシ樹脂膜および防
錆被膜を形成する(被膜形成工程)。
Next, the rare earth-transition metal magnetic powder is mixed with an epoxy main agent and a rust preventive to form an oxide film, an epoxy resin film and a rust preventive film (film forming step).

この酸化膜、エポキシ樹脂膜および防錆被膜を形成す
るにあたっては、まず混合装置中に不活性ガスが注入さ
れ、該混合装置中の空気は、酸素濃度が0.08〜3%とな
るようにガス置換される。この不活性ガスとしては、ア
ルゴンガス(Ar)、窒素ガス(N2)、炭酸ガス(CO2
などが用いられる。
In forming the oxide film, the epoxy resin film, and the anticorrosive film, first, an inert gas is injected into the mixing device, and the air in the mixing device is replaced by gas so that the oxygen concentration becomes 0.08 to 3%. To be done. As the inert gas, argon gas (Ar), nitrogen gas (N 2), carbon dioxide (CO 2)
Are used.

そしてこのガス置換が行なわれた混合装置中に、希土
類−遷移金属系磁性粉末、エポキシ主剤および防錆剤が
投入され、約2時間程度にわたって混合が行なわれる。
この混合時には、まず混合装置中に僅かに残留している
酸素によって上記磁性粉末の表面上に酸化膜が形成さ
れ、さらにその上にエポキシ樹脂膜および防錆被膜が形
成される。混合装置としては、ボールミル、V型ブレン
ダー、ダブルコーン型ブレンダー等が用いられる。酸素
濃度を0.08〜3%とするのは、酸素濃度が0.08%より小
さい場合には酸化膜を形成することができなくなるか、
あるいは形成されても極めて薄いものにしかならず、ま
た酸素濃度が3%を越えると、酸素による発火の危険を
生じるからである。
Then, the rare earth-transition metal magnetic powder, the epoxy main agent and the rust preventive agent are charged into the mixing device in which the gas replacement has been performed, and the mixing is performed for about 2 hours.
At the time of this mixing, an oxide film is first formed on the surface of the magnetic powder by the oxygen slightly remaining in the mixing device, and an epoxy resin film and an anticorrosive film are further formed thereon. As the mixing device, a ball mill, a V-type blender, a double cone type blender, or the like is used. The oxygen concentration of 0.08 to 3% means that if the oxygen concentration is less than 0.08%, it becomes impossible to form an oxide film.
Alternatively, even if formed, it is only extremely thin, and if the oxygen concentration exceeds 3%, there is a danger of ignition by oxygen.

上記エポキシ主剤としては、ビスフェノール系、フェ
ノキシ系、ノボラック系、ポリフェノール系、ポリヒド
ロキシベンゼン系あるいはこれらの誘導体等の一種また
は二種以上が用いられ、また防錆剤としてはソルビタン
モノオレエートと鉱物油または合成油の混合物等が用い
られる。
As the epoxy main agent, one or more of bisphenol-based, phenoxy-based, novolac-based, polyphenol-based, polyhydroxybenzene-based or derivatives thereof is used, and rust inhibitor sorbitan monooleate and mineral oil. Alternatively, a mixture of synthetic oils is used.

酸化膜、エポキシ樹脂膜および防錆剤の被膜が形成さ
れた磁粉は、取り出されて計量された後、加圧式ニーダ
ー等により可撓性を有するバインダー樹脂と数分にわた
って混練される(混練工程)。このときエポキシ樹脂の
硬化剤および硬化促進剤が添加される。硬化剤および硬
化促進剤をこの段階で添加するのは、磁粉の混合物を取
り出した直後から直ちに磁粉が硬化してしまうのを回避
するためである。このように混練工程により、希土類−
遷移金属系磁性粉末は、可撓性を有するバインダー樹脂
中にほぼ均一に分散される。
The magnetic powder on which the oxide film, the epoxy resin film, and the rust preventive film are formed is taken out, weighed, and then kneaded with a flexible binder resin by a pressure kneader for several minutes (kneading step). . At this time, a curing agent and a curing accelerator for the epoxy resin are added. The reason why the curing agent and the curing accelerator are added at this stage is to prevent the magnetic powder from being hardened immediately after the mixture of the magnetic powder is taken out. In this way, the rare earth-
The transition metal-based magnetic powder is almost uniformly dispersed in the flexible binder resin.

このときの可撓性を有するバインダー樹脂としては、
天然ゴム(NR)、イソプレンゴム(IR)、ブダジエンゴ
ム(BR)、スチレン−ブタジエンゴム(SBR)、ブチル
ゴム(IIR)、エチレン−プロピレンゴム(EPR)、エチ
レン−酢ビゴム(EVA)、ニトリルゴム(NBR)、アクリ
ルゴム(AR)、ウレタンゴム(UR)等が、一種または二
種以上にわたって用いられる。
As the flexible binder resin at this time,
Natural rubber (NR), isoprene rubber (IR), budadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber (IIR), ethylene-propylene rubber (EPR), ethylene-vinyl acetate rubber (EVA), nitrile rubber ( NBR), acrylic rubber (AR), urethane rubber (UR), etc. are used alone or in combination of two or more.

すなわち本実施例におけるバインダー樹脂は、いわゆ
る3元ゴムからなり、極性がないゴム成分(例えばII
R)と、極性が強いゴム成分(例えばNBR)とが、ハロゲ
ンを含有するゴム成分(例えばCR)を介して良好に混合
されている。
That is, the binder resin in this embodiment is composed of so-called ternary rubber and has a non-polar rubber component (for example, II
R) and a highly polar rubber component (eg NBR) are mixed well via a halogen-containing rubber component (eg CR).

極性がないゴム成分は耐油性・耐候性に難点があり、
また極性が強いゴム成分は非常に硬く伸展油または可塑
剤の添加を要する。そこでハロゲンを含有するゴム成分
を介して両ゴム成分を混合させることとすれば、それぞ
れのゴム成分の難点を補い合うゴム成分どうしが容易に
混合され、耐油性・耐候性の改善が行なわれるものであ
る。
Non-polar rubber components have difficulty in oil resistance and weather resistance,
A rubber component having a strong polarity is very hard and requires the addition of an extender oil or a plasticizer. Therefore, if both rubber components are mixed through a rubber component containing halogen, rubber components that complement the difficulties of each rubber component are easily mixed with each other, and oil resistance and weather resistance are improved. is there.

上記ハロゲンを含有するゴム成分としては、クロロプ
レンゴム(CR)、ハイパロン(CSM)、塩素化ポリエチ
レン等の塩素を含有するものが一種または二種以上にわ
たって用いられる。この場合、当該ハロゲン含有のゴム
成分は、バインダー樹脂全体重量に対して15重量%以下
に設定されることが好ましい。ハロゲンを含有するゴム
成分がバインダー樹脂全体重量の15重量%を越えて含ま
れる場合には、塩素ガス(Cl2)や塩酸ガス(HCl)が発
生することとなり、例えばモータの場合には整流子腐食
や磁石の錆およびコア錆の原因となるからである。
As the rubber component containing halogen, one containing chlorine, such as chloroprene rubber (CR), hypalon (CSM), chlorinated polyethylene, or the like is used, or two or more thereof are used. In this case, the halogen-containing rubber component is preferably set to 15% by weight or less based on the total weight of the binder resin. If the rubber component containing halogen exceeds 15 wt% of the total weight of the binder resin, chlorine gas (Cl 2 ) or hydrochloric acid gas (HCl) will be generated. For example, in the case of a motor, a commutator This is because it causes corrosion, rust of magnets, and core rust.

上記硬化剤としては、脂肪族ポリアミンや芳香族ポリ
アミン等のポリアミン、無水フタル酸等の酸無水物、ポ
リアミド樹脂、ポリスルフィッド樹脂、三フッ化ホウ素
等のアミンコンプレックス、フェノール樹脂等の合成樹
脂初期縮合物あるいはこれらの誘導体の一種または二種
以上が用いられる。硬化促進剤しては、トリスジメチル
アミノメチルフェノール等のアミン、1−イソブチル−
2−メチルイミダゾール等のイミダゾールあるいはこれ
らの誘導体の一種または二種以上が用いられる。
Examples of the curing agent include polyamines such as aliphatic polyamines and aromatic polyamines, acid anhydrides such as phthalic anhydride, polyamide resins, polysulfide resins, amine complexes such as boron trifluoride, and synthetic resin precondensates such as phenol resins. Alternatively, one or more of these derivatives are used. As the curing accelerator, amines such as trisdimethylaminomethylphenol, 1-isobutyl-
One or more imidazoles such as 2-methylimidazole or derivatives thereof are used.

この混練工程において、加圧ニーダーは冷却されてお
り、95℃以下、好ましくは50〜60℃の温度条件下で混練
が行なわれる。この温度設定により、混練工程における
発火の危険性が回避される。すなわち95℃を越えて混練
が行なわれると発熱より発火を生じる危険があり、また
40℃以下ではゴムの可塑化が進まず十分な混練が行なわ
れない。
In this kneading step, the pressure kneader is cooled, and the kneading is carried out at a temperature of 95 ° C or lower, preferably 50 to 60 ° C. This temperature setting avoids the risk of ignition in the kneading process. In other words, if kneading is performed at over 95 ° C, there is a danger of ignition due to heat generation.
Below 40 ° C, plasticization of rubber does not proceed and sufficient kneading cannot be performed.

以上の混練工程により得られた混練物としての磁石素
材は、加圧式ニーダーから取り出され、直ちに10kg以下
の小ロットごとに小分けされる。小分け各磁石素材は、
密閉容器内にそれぞれ封入されて保存され、磁石素材の
温度が室温に低下するまでそのまま放置される(保存工
程)。この保存工程による放熱によって発火の危険が回
避される。
The magnet material as a kneaded material obtained by the above kneading step is taken out from the pressure kneader and immediately divided into small lots of 10 kg or less. Each magnet material is divided into
Each of them is enclosed and stored in an airtight container, and is left as it is until the temperature of the magnet material drops to room temperature (preservation step). The danger of ignition is avoided by the heat radiation in this storage step.

上記保存工程によって十分な放熱が行なわれた混練物
としての磁石素材は、取り出されて所定の大きさに砕か
れる(粉砕工程)。この粉砕工程は、アルゴンガス(A
r)、窒素ガス(N2)、炭酸ガス(CO2)などの不活性
ガスの流動による冷却下で行なわれ、温度条件は95℃以
下に設定される。粉砕には回転刃等が使用される。すな
わちこの粉砕工程では、不活性ガスによる空冷が行なわ
れることとなり、ほぼ大気中での粉砕が可能になってい
る。
The magnet material as a kneaded material, which has been sufficiently radiated by the storage step, is taken out and crushed into a predetermined size (crushing step). This crushing process uses argon gas (A
r), nitrogen gas (N 2 ), carbon dioxide gas (CO 2 ), and the like under cooling by the flow of an inert gas, and the temperature condition is set to 95 ° C. or lower. A rotary blade or the like is used for crushing. That is, in this pulverization step, air cooling with an inert gas is performed, so that pulverization in the atmosphere is possible.

ついで上記粉砕工程により得られた粉砕物に対してロ
ール等による圧延が施され、シート状のボンド磁石が得
られる(シート形成工程)。
Then, the pulverized product obtained in the pulverization step is rolled by a roll or the like to obtain a sheet-shaped bond magnet (sheet forming step).

その後、所定の熱処理が施され、適宜の寸法に切断さ
れる。このとき磁性粉末に防錆処理が施されているので
シート状ボンド磁石切断面も十分な防錆能力を持ってお
り、切断後にコーティング等の防錆処理を行なう必要は
ない。
After that, a predetermined heat treatment is performed and the product is cut into appropriate dimensions. At this time, since the magnetic powder is subjected to anticorrosion treatment, the cut surface of the sheet-shaped bond magnet also has sufficient anticorrosion ability, and it is not necessary to perform anticorrosion treatment such as coating after cutting.

このような工程によって、最大エネルギー積が9.0[M
GOe]未満のシート状希土類ボンド磁石が得られる。最
大エネルギー積が9.0[MGOe]以上では、バインダー量
に対して磁粒量が多くなり過ぎて可撓性が失われてしま
い、実用に適さない。また種々の回転電機等に用いるの
に最適な最大エネルギー積は3.0[MGOe]以上であり、
最大エネルギー積は3.0[MGOe]未満の場合には、磁石
の価格の割に回転電機の特性を上げることはできない。
Through this process, the maximum energy product is 9.0 [M
It is possible to obtain a sheet-shaped rare-earth bonded magnet having a GOe] of less than. When the maximum energy product is 9.0 [MGOe] or more, the amount of magnetic particles becomes too large with respect to the amount of binder and the flexibility is lost, which is not suitable for practical use. Also, the optimum maximum energy product for use in various rotating electrical machines is 3.0 [MGOe] or higher,
If the maximum energy product is less than 3.0 [MGOe], the characteristics of the rotating electrical machine cannot be improved for the price of the magnet.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1 磁粉としては、ゼネラルモーターズ社製MQPを湿式混
合装置により予め粉砕し粒度調整したものを用いた。ま
た上記磁粉は、超急冷法により形成したままでは粒度2m
m以下の磁粉であるため、これを粉砕して粒度78μm以
下としたものを用いた。防錆剤としては、花王社製レオ
ドールSP-10を用い、またエポキシ主剤としては、油
化シェル社製エピコート828を用いた。
Example 1 As the magnetic powder, MQP manufactured by General Motors Co., Ltd. was pulverized in advance by a wet mixing device and its particle size was adjusted. Moreover, the above-mentioned magnetic powder has a grain size of 2 m if it is formed by the ultra-quenching method.
Since it is a magnetic powder of m or less, it was pulverized to have a particle size of 78 μm or less. As the rust preventive agent, Leodol SP-10 manufactured by Kao Corporation was used, and as the epoxy main agent, Epicoat 828 manufactured by Yuka Shell Co. was used.

そして混合装置容器の中に、磁粉、エポキシ主剤、防
錆剤およびアルミナボールを入れ、容器内の空気をN2
ガスで、酸素濃度が1.2%となるようにガス置換した
後、1時間の混合を行ない磁粉表面に、酸化膜、エポキ
シ樹脂膜および防錆膜を形成した。
Then, the magnetic powder, the epoxy main agent, the rust preventive agent and the alumina balls are put in the container of the mixing apparatus, and the air in the container is filled with N 2
After the gas was replaced with a gas so that the oxygen concentration became 1.2%, mixing was performed for one hour to form an oxide film, an epoxy resin film, and a rust prevention film on the surface of the magnetic powder.

つぎに以上の混合物とゴムバインダーとを、硬化剤お
よび硬化促進剤とともに加圧式ニーダーで7分間にわた
って混練した。上記硬化剤および硬化促進剤として、油
化シェル社製のYH-302およびIBMI-12を用いた。またこ
の混練時の温度は約55℃に保った。
Next, the above mixture and a rubber binder were kneaded with a curing agent and a curing accelerator in a pressure kneader for 7 minutes. As the above curing agent and curing accelerator, YH-302 and IBMI-12 manufactured by Yuka Shell Co., Ltd. were used. The temperature during this kneading was maintained at about 55 ° C.

得られた混練物を、4kgずつの小ロットに小分けして
ビニール袋に入れ、直ちに口元を縛ってから密閉容器内
に収納した。その後適当時間放置して密閉容器から混練
物を取り出し、粉砕機で粉砕した上でロール圧延を施し
シートを得た。粉砕機には朋来鉄工所製U−140回転刃
式を用いた。
The obtained kneaded material was subdivided into small lots of 4 kg each and placed in a plastic bag. After that, the kneaded product was taken out from the closed container by leaving it for an appropriate time, crushed by a crusher, and rolled to obtain a sheet. As the crusher, a U-140 rotary blade type made by Horai Iron Works was used.

ついでシートを約170℃に加熱してゴムバインダーを
加硫した後、所定の寸法に切断して可撓性磁石を得た。
Then, the sheet was heated to about 170 ° C. to vulcanize the rubber binder and then cut into a predetermined size to obtain a flexible magnet.

本実施例における配合を次表に示す。 The composition in this example is shown in the following table.

上表中のIIR-NBR-CRは、IIR(ブチルゴム)100に対し
て、NBR(ニトリルゴム)が60、CR(クロロプレンゴ
ム)が15に設定されたものである。
IIR-NBR-CR in the above table is set to 60 for NBR (nitrile rubber) and 15 for CR (chloroprene rubber) with respect to 100 IIR (butyl rubber).

この本実施例の混練工程においては、混練装置内空気
が不活性ガスにより発火不能な酸素濃度となるようにガ
ス置換されており、発火の原因となる酸素の流入はガス
置換により遮断されていた。そのため当該混合工程にお
いて発火のおそれはほとんどなかった。
In the kneading step of this example, the air in the kneading apparatus was gas-substituted by an inert gas so that the concentration of oxygen could not be ignited, and the inflow of oxygen causing ignition was blocked by gas substitution. . Therefore, there was almost no risk of ignition in the mixing process.

またつぎの混練工程では、予め形成された酸化膜、エ
ポキシ樹脂膜および防錆被膜によって磁粉表面の活性度
が低下されていること、および素材内への酸素流入が極
力防止されていることが確認された。さらにこの混練工
程においては、上記酸素遮断作用に加えて冷却による温
度規制が発火点以下に行なわれた。このため素材の混練
を大量かつ連続的に行なっても発火のおそれを生じるこ
とがなかった。
Also, in the next kneading step, it was confirmed that the activity of the magnetic powder surface was reduced by the oxide film, epoxy resin film and anticorrosive film formed in advance, and that the inflow of oxygen into the material was prevented as much as possible. Was done. Further, in this kneading step, in addition to the above oxygen blocking action, temperature regulation by cooling was performed below the ignition point. Therefore, even if a large amount of material is continuously kneaded, there is no risk of ignition.

またこのように所定の酸素濃度下(0.08〜3%)で、
磁性粉末の表面上に酸化膜が形成された希土類ボンド磁
石は、非常に良好な磁気特性を維持する。すわなち第2
図実線で示される本発明による磁石では、着磁後におけ
る放置(85℃放置)時間(横軸)に対する磁束変化率
(縦軸)は非常に小さくなっているのに対し、防錆被膜
なしで酸化処理が過大となっているもの(一点鎖線)の
磁束変化率は本発明品より変化がやや大きくなってお
り、また防錆被膜はあるが酸化処理が行なわれていない
もの(破線)の磁束変化率は本発明品より大幅に増大し
ている。
In this way, under a given oxygen concentration (0.08-3%),
A rare earth bonded magnet having an oxide film formed on the surface of magnetic powder maintains very good magnetic properties. Suwanachi second
In the magnet according to the present invention shown by a solid line, the rate of change in magnetic flux (vertical axis) with respect to the time (horizontal axis) after magnetization (left at 85 ° C.) is very small, while the rust preventive coating is not used. The rate of change in magnetic flux of the product with excessive oxidation treatment (dashed line) is slightly larger than that of the product of the present invention, and the magnetic flux of the product with an anticorrosive coating but not subjected to oxidation treatment (broken line) The rate of change is significantly higher than that of the product of the present invention.

なお得られた磁石の磁気特性は、Br=5.5[KG]、iHc
=9.9[kOe]、bHc=4.5[kOe]、(BH)max=6.2[MGO
e]であった。
The magnetic characteristics of the obtained magnet are Br = 5.5 [KG], iHc
= 9.9 [kOe], bHc = 4.5 [kOe], (BH) max = 6.2 [MGO
e].

また得られた磁石を60℃、90%RH雰囲気中に80時間放
置したところ、表面に発錆はみられなかった。さらにブ
ラシ付きDCモータの駆動用磁石として用いたところ、60
℃、200時間の連続回転後も、ブラシ材質(Ag-Pd)とコ
ミュテータ材質(Ag-Cd)に腐食の発生はなかった。
Further, when the obtained magnet was left in an atmosphere of 60 ° C. and 90% RH for 80 hours, no rust was observed on the surface. When used as a driving magnet for a brushed DC motor,
No corrosion occurred in the brush material (Ag-Pd) and commutator material (Ag-Cd) even after continuous rotation for 200 hours at ℃.

実施例2 磁粉としては、MM14(Fe0・9Co0・1797なる組成の
合金を単ロール法によって超急冷リボンとし、湿式混合
装置により粉砕し粒度調整したものを用いた。防錆剤と
しては、花王社製レオドルSP-10と米国テネコケミカ
ル社製アンデロール456との混合液とを用いた。以下上
述した実施例1と同様にしてシート状の可撓性磁石を得
た。
Example 2 As the magnetic powder, an alloy having a composition of MM 14 (Fe 0 .9 Co 0 .1) 79 B 7 was used as an ultra-quenched ribbon by the single roll method, and the particle size was adjusted by crushing with a wet mixing device. As the rust preventive agent, a mixed liquid of Leodol SP-10 manufactured by Kao Co. and Anderol 456 manufactured by Teneco Chemical Co. of the United States was used. Thereafter, a sheet-like flexible magnet was obtained in the same manner as in Example 1 described above.

この実施例による混練工程においても、発火の原因と
なる酸素の流入はガス置換により遮断されていた。その
ため当該混合工程において発火のおそれはほとんどなか
った。
Also in the kneading process according to this example, the inflow of oxygen, which causes ignition, was blocked by gas replacement. Therefore, there was almost no risk of ignition in the mixing process.

また混練工程においても、酸化膜、エポキシ樹脂膜お
よび防錆被膜によって磁性素材の活性度が低下され、ま
た磁性素材内への酸素流入はほぼ完全に阻止されている
ことが確認された。また混練工程における冷却も十分に
行なわれ、素材の混練を大量かつ連続的に行なっても混
練工程における発火のおそれはほとんどなかった。
It was also confirmed that in the kneading step, the activity of the magnetic material was lowered by the oxide film, the epoxy resin film and the rust preventive film, and the inflow of oxygen into the magnetic material was almost completely prevented. Further, the cooling in the kneading step was sufficiently performed, and even if a large amount of the materials were kneaded continuously, there was almost no risk of ignition in the kneading step.

さらに磁性粉末の表面上に酸化膜が形成されているた
め、非常に良好な磁気特性を維持していた。
Furthermore, since an oxide film was formed on the surface of the magnetic powder, very good magnetic characteristics were maintained.

なおこの実施例2により得られた磁石の磁気特性は、
Br=4.6[KG]、iHc=7.0[kOe]、bHc=3.1[kOe]、
(BH)max=4.0[MGOe]であった。
The magnetic characteristics of the magnet obtained in Example 2 are
Br = 4.6 [KG], iHc = 7.0 [kOe], bHc = 3.1 [kOe],
(BH) max = 4.0 [MGOe].

さらに得られた磁石を60℃、90%RH雰囲気中に80時間
放置したところ、表面に発錆はみられなかった。さらに
ブラシ付きDCモータの駆動用磁石として用いたところ、
60℃、200時間の連続回転後も、ブラシ材質(Ag-Pd)と
コミュテータ材質(Ag-Cd)に腐食は発生しなかった。
Furthermore, when the obtained magnet was left in an atmosphere of 60 ° C. and 90% RH for 80 hours, no rust was observed on the surface. When used as a driving magnet for a brushed DC motor,
No corrosion occurred on the brush material (Ag-Pd) and commutator material (Ag-Cd) even after continuous rotation at 60 ° C for 200 hours.

このように本発明によるシート状希土類ボンド磁石
は、回転電機等に対して好適に取り付けられ使用される
ことが確認された。
As described above, it was confirmed that the sheet-shaped rare earth bonded magnet according to the present invention is preferably attached to a rotating electric machine and used.

なお永久磁石粉の代わりに、鉄粉、鉄合金等の高透磁
率を有する金属粉を用いることとすれば、可撓性を有す
る高透磁率材を形成することができる。
If a metal powder having a high magnetic permeability such as an iron powder or an iron alloy is used instead of the permanent magnet powder, a flexible high magnetic permeability material can be formed.

(発明の効果) 以上述べたように本発明による希土類ボンド磁石の製
造方法は、不活性ガスによるガス置換が行なわれた混合
装置中で、希土類と遷移金属とを含む磁性粉末に表面活
性度を低下させるための酸化膜、エポキシ樹脂膜および
防錆被膜を形成してから混練および粉砕の各工程を行な
い、磁性素材内への酸素流入を阻止するとともに、混練
工程において発火点以下の所定の温度に冷却を行なうこ
ととしたから、混練工程における発火の危険性を回避す
ることができ、希土類と遷移金属とを含む磁性粉末の混
練を大量かつ連続して行なわせることができるととも
に、磁粉に所定の酸化膜を与えることによって良好な磁
気特性を得ることができる。
(Effects of the Invention) As described above, in the method for producing a rare earth bonded magnet according to the present invention, the surface activity of the magnetic powder containing the rare earth and the transition metal is controlled in the mixing device in which the gas replacement with the inert gas is performed. After forming an oxide film, an epoxy resin film and an anticorrosive film to reduce the temperature, each step of kneading and crushing is carried out to prevent oxygen from flowing into the magnetic material, and at a predetermined temperature below the ignition point in the kneading step. Since it is decided to perform cooling, it is possible to avoid the risk of ignition in the kneading step, it is possible to continuously knead a large amount of magnetic powder containing a rare earth and a transition metal, the magnetic powder to a predetermined Good magnetic characteristics can be obtained by providing the oxide film.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる希土類ボンド磁石の製造工程を
表わしたフロー図、第2図は本発明の一実施例における
磁石の磁束変化特性を表わした線図である。
FIG. 1 is a flow chart showing a manufacturing process of a rare earth bonded magnet according to the present invention, and FIG. 2 is a diagram showing a magnetic flux change characteristic of a magnet in an embodiment of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類と遷移金属とを含む磁性粉末を、バ
インダー樹脂中に分散してなる希土類ボンド磁石の製造
方法において、少なくとも次の工程を備えてなることを
特徴とする希土類ボンド磁石の製造方法。 (a) 混合装置中に不活性ガスを注入し、該混合装置
中の空気を酸素濃度0.08〜3%の気体に置換させるガス
置換工程。 (b) 希土類と遷移金属とを含む磁性粉末、エポキシ
樹脂および防錆剤を、上記ガス置換後の混合装置中に投
入して混合を行ない、酸化膜、エポキシ樹脂膜および防
錆被膜を上記磁性粉末に形成する混合工程。 (c) 上記混合工程により得られた混合物と前記バイ
ンダー樹脂とを、95℃以下の温度条件下で混練し、希土
類と遷移金属とを含む磁性粉末をバインダー樹脂中に分
散させる混練工程。
1. A method for producing a rare earth bonded magnet, wherein magnetic powder containing a rare earth and a transition metal is dispersed in a binder resin, which comprises at least the following steps. Method. (A) A gas replacement step of injecting an inert gas into the mixing device and replacing the air in the mixing device with a gas having an oxygen concentration of 0.08 to 3%. (B) A magnetic powder containing a rare earth and a transition metal, an epoxy resin and an anticorrosive agent are charged into the mixing device after the gas replacement and mixed to form an oxide film, an epoxy resin film and an anticorrosive film with the above magnetic property. Mixing process to form powder. (C) A kneading step of kneading the mixture obtained by the above mixing step and the binder resin under a temperature condition of 95 ° C. or lower to disperse magnetic powder containing a rare earth and a transition metal in the binder resin.
【請求項2】請求項の1に記載の希土類ボンド磁石の製
造方法において、 希土類と遷移金属とを含む磁性粉末は、ホウ素を含有し
ていることを特徴とする希土類ボンド磁石の製造方法。
2. The method for producing a rare earth bonded magnet according to claim 1, wherein the magnetic powder containing a rare earth and a transition metal contains boron.
JP2182498A 1990-07-10 1990-07-10 Rare earth bonded magnet manufacturing method Expired - Fee Related JP2690390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182498A JP2690390B2 (en) 1990-07-10 1990-07-10 Rare earth bonded magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182498A JP2690390B2 (en) 1990-07-10 1990-07-10 Rare earth bonded magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH0469903A JPH0469903A (en) 1992-03-05
JP2690390B2 true JP2690390B2 (en) 1997-12-10

Family

ID=16119346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182498A Expired - Fee Related JP2690390B2 (en) 1990-07-10 1990-07-10 Rare earth bonded magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2690390B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164313A (en) * 1984-02-07 1985-08-27 Sankyo Seiki Mfg Co Ltd Manufacture of sheet bond magnet
JPH0690968B2 (en) * 1988-03-30 1994-11-14 株式会社トーキン Manufacturing method of rare earth resin-bonded magnet excellent in oxidation resistance

Also Published As

Publication number Publication date
JPH0469903A (en) 1992-03-05

Similar Documents

Publication Publication Date Title
KR101855530B1 (en) Rare earth permanent magnet and their preparation
EP3605570B1 (en) Method for manufacturing sintered magnet
JP2004319955A (en) Rare earth magnet, manufacturing method therefor and motor using rare earth magnet
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP2690390B2 (en) Rare earth bonded magnet manufacturing method
JP2778011B2 (en) Rare earth bonded magnet
JP2690388B2 (en) Rare earth bonded magnet manufacturing method
JP2690389B2 (en) Rare earth bonded magnet manufacturing method
JP2528574B2 (en) Rare earth bonded magnet manufacturing method
JP2766746B2 (en) Rare earth bonded magnet
JP2685633B2 (en) Rare earth bonded magnet manufacturing method
JP2004031780A (en) Rare earth magnet, its manufacturing method and motor using the same
JP4234581B2 (en) Rare earth magnet, manufacturing method thereof and motor
JP2940572B2 (en) Rare earth bonded magnet
JP2940571B2 (en) Rare earth bonded magnet
JP2567165B2 (en) Method for manufacturing flexible bonded magnet
JP3206668B2 (en) Rare earth bonded magnet
JP2932407B2 (en) Rare earth bonded magnet
JP3206667B2 (en) Rare earth bonded magnet
JPH0555022A (en) Rare-earth bonded magnet
JP2887295B2 (en) Rare earth bonded magnet sheet
JPH0547525A (en) Rare earth bonded magnet
JP2006269637A (en) Rare earth-transition metal-nitrogen system magnet powder, its manufacturing method and composite for bond magnet using same and bond magnet
JPH0547526A (en) Rare earth bonded magnet
JPH0547527A (en) Rare earth bonded magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees