JP2689471B2 - Array type semiconductor laser manufacturing method - Google Patents

Array type semiconductor laser manufacturing method

Info

Publication number
JP2689471B2
JP2689471B2 JP63091941A JP9194188A JP2689471B2 JP 2689471 B2 JP2689471 B2 JP 2689471B2 JP 63091941 A JP63091941 A JP 63091941A JP 9194188 A JP9194188 A JP 9194188A JP 2689471 B2 JP2689471 B2 JP 2689471B2
Authority
JP
Japan
Prior art keywords
light emitting
laser
light
semiconductor laser
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63091941A
Other languages
Japanese (ja)
Other versions
JPH01262688A (en
Inventor
岩男 駒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63091941A priority Critical patent/JP2689471B2/en
Publication of JPH01262688A publication Critical patent/JPH01262688A/en
Application granted granted Critical
Publication of JP2689471B2 publication Critical patent/JP2689471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光情報処理に適したアレー型半導体レーザ
に関する。
TECHNICAL FIELD The present invention relates to an array type semiconductor laser suitable for optical information processing.

(従来の技術) 従来、半導体レーザにおいて高出力化と共振器端面の
劣化防止とを目的として発光端面部に発振波長に対し、
透明な窓領域を設け、端面での発振光の吸収を避ける構
造考えられている。このような構造のひとつに、共振器
両端をAl混晶比が活性層より多い組成で埋込む構造が知
られている。
(Prior Art) Conventionally, in a semiconductor laser, for the purpose of increasing the output and preventing deterioration of the end face of the resonator, the emission end face portion is tuned to the oscillation wavelength,
A structure is considered in which a transparent window region is provided to avoid absorption of oscillation light at the end face. As one of such structures, a structure is known in which both ends of the resonator are filled with a composition having a higher Al mixed crystal ratio than the active layer.

一例として、1982年ブロウベルトらがアプライド・フ
ィジックス・レター巻40で提案した「大共振器AlGaAs埋
込みヘテロ構造ウィンドウレーザ」(“Large Optical
cavity AlGaAs furied heterostructure window laser
s"Appl.phys.Lett.vol 40.p1020)の共振器方向断面の
構造概略図を第5図に示す。
For example, "Large Optical AlGaAs Embedded Heterostructure Window Laser" proposed by Blaubert et al. In Applied Physics Letter Volume 40 in 1982 ("Large Optical
cavity AlGaAs furied heterostructure window laser
s "Appl.phys.Lett.vol 40.p1020) shows the schematic structure of the cross section in the cavity direction in Fig. 5.

第5図のレーザ構造は、液相成長法により、P−AlyG
a1-yAs光ガイド層34まで連続に成長した後、共振器端部
付近を25μm、エッチングでn形GaAs基板31まで除去
し、クラッド層32よりもAl混晶比が小さく、光ガイド層
34よりAl液晶比が大きな高抵抗光窓領域38,39により、
活性層33を共振器方向に埋込んでなる。第5図の構造
は、キャリアの再結合で発生した光に対して吸収のない
領域を備えているから、出力を大きくでき、端面破壊レ
ベルを数十mWから150mWにまで向上し得る。
Laser structure of FIG. 5 is a liquid-phase growth method, P-Al y G
a 1-y As After continuously growing up to the optical guide layer 34, the n-type GaAs substrate 31 is removed by etching at 25 μm in the vicinity of the resonator end, and the Al mixed crystal ratio is smaller than that of the cladding layer 32.
High resistance light window regions 38 and 39, which have a larger Al liquid crystal ratio than 34,
The active layer 33 is embedded in the cavity direction. The structure of FIG. 5 has a region that does not absorb light generated by recombination of carriers, so that the output can be increased and the end face breakdown level can be improved from several tens mW to 150 mW.

(発明が解決しようとする課題) 共振器両端を活性層よりAl混晶比の大きい結晶で埋込
んでなる第5図の構造では、成長層界面の結晶性劣化や
埋込み端面、界面の垂直形状からのズレが反射損失とな
り、レーザ特性を悪化させるとともに、素子の信頼性が
十分に得られない。
(Problems to be solved by the invention) In the structure of FIG. 5 in which both ends of the resonator are filled with crystals having a higher Al mixed crystal ratio than the active layer, the crystallinity deterioration of the growth layer interface and the embedded edge face, the vertical shape of the interface Deviation from the above results in reflection loss, deteriorating the laser characteristics, and the reliability of the device cannot be sufficiently obtained.

そこで、本発明の目的は、これらの欠点を除去し、モ
ード制御された一回成長窓領域を有する高出力半導体レ
ーザの製造方法を提供することにある。
Therefore, an object of the present invention is to eliminate these drawbacks and to provide a method of manufacturing a high-power semiconductor laser having a mode-controlled single-growth window region.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する手段
は、半導体基板上にIII−V族多元結晶の活性層を設け
てなり、該活性層には隣接した二つのストライプ状の発
光領域、発光ストライプIおよび発光ストライプIIが形
成してあり、前記発光ストライプIが、レーザ発振によ
りレーザ光を発生する活性領域とこの活性領域の両端か
ら光出射端面に到る間を占める窓領域とからなるアレー
型半導体レーザの製造方法であって、前記活性層を含む
多層半導体層は有機金属気相成長法で結晶の成長をして
形成し、前記活性層の成長工程では、マスクにより選択
的にレーザ光を照射して結晶の成長をし、前記マスクは
前記発光ストライプIの窓領域と前記発光ストライプII
の全域に該レーザ光を照射するパターンをなしており、
前記光出射端面は劈開により形成することを特徴とす
る。
(Means for Solving the Problem) The means provided by the present invention for solving the above-mentioned problems is that a III-V group polycrystal active layer is provided on a semiconductor substrate and is adjacent to the active layer. Two stripe-shaped light emitting regions, a light emitting stripe I and a light emitting stripe II, are formed, and the light emitting stripe I reaches an active region where laser light is generated by laser oscillation and both ends of the active region to a light emitting end face. A method for manufacturing an array type semiconductor laser comprising a window region occupying a space, wherein a multilayer semiconductor layer including the active layer is formed by crystal growth by a metal organic chemical vapor deposition method, and the active layer growth step is performed. In order to grow crystals by selectively irradiating laser light with a mask, the mask uses the window region of the light emitting stripe I and the light emitting stripe II.
Has a pattern of irradiating the laser beam over the entire area of
The light emitting end face is formed by cleavage.

(実施例) 以下、図面を参照して、本発明の一実施例を説明す
る。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の方法で製造したアレー型
半導体レーザの構造を示す斜視図、第2図はその実施例
の製造方法を示す工程図、第3図は第2図(b)の工程
を分り易く示す斜視図、第4図はその実施例で用いる結
晶成長方法を示す概念図である。
FIG. 1 is a perspective view showing the structure of an array type semiconductor laser manufactured by the method of one embodiment of the present invention, FIG. 2 is a process drawing showing the manufacturing method of the embodiment, and FIG. 4) is a perspective view showing the process of FIG. 4) in an easy-to-understand manner, and FIG. 4 is a conceptual view showing a crystal growth method used in the embodiment.

この実施例の製造方法では、まず(100)p形GaAs基
板(Znドープp形不純物濃度1×1019cm-3)1上に、成
長温度650℃成長圧力50torrの減圧MOVPE成長技術を用
い、p形Al0.55Ga0.45Asクラッド層2(亜鉛ドープ、p
形不純物濃度1×1018cm-3)を2μm、p形Al0.4Ga0.6
As光ガイド層3(亜鉛ドープ、p形不純物濃度7×1017
cm-3)を0.5μm、光照射無しで、順次に連続して成長
させる(第2図(a))。
In the manufacturing method of this embodiment, first, on a (100) p-type GaAs substrate (Zn-doped p-type impurity concentration 1 × 10 19 cm −3 ) 1, a reduced pressure MOVPE growth technique with a growth temperature of 650 ° C. and a growth pressure of 50 torr is used. p-type Al 0.55 Ga 0.45 As clad layer 2 (zinc-doped, p
Type impurity concentration 1 × 10 18 cm −3 ) 2 μm, p-type Al 0.4 Ga 0.6
As optical guide layer 3 (zinc-doped, p-type impurity concentration 7 × 10 17
cm −3 ) is 0.5 μm, and is successively grown without light irradiation (FIG. 2 (a)).

次にエキシマレーザ(出力1.5W/cm2、パルスエネルギ
密度30mJ/cm2、波長193nm)により、第4図に示す様
に、反応管52の外からマスク52を通して選択的にサセプ
タ51上のp型GaAs基板1に光を照射しながら、結晶を成
長させる。この結晶成長においては選択的な光照射パタ
ーンを用いる。その選択的な光照射パターンでは、第3
図に示すように、非光照射領域部分はアレーレーザ形成
時の発光ストライプIの活性領域に対応させ、一方光照
射領域部分は前記発光ストライプIの窓領域と発光スト
ライプIIの全域に対応させる。
Next, with an excimer laser (output 1.5 W / cm 2 , pulse energy density 30 mJ / cm 2 , wavelength 193 nm), as shown in FIG. 4, p on the susceptor 51 is selectively passed from outside the reaction tube 52 through the mask 52. The crystal is grown while irradiating the type GaAs substrate 1 with light. A selective light irradiation pattern is used in this crystal growth. In the selective light irradiation pattern, the third
As shown in the figure, the non-light-irradiated area portion corresponds to the active area of the light-emitting stripe I when the array laser is formed, while the light-irradiated area portion corresponds to the window area of the light-emitting stripe I and the entire light-emitting stripe II.

以下の工程においては各層の層厚は、非光照射部分の
層厚で制御する。100μm幅で300μm間隔に選択的光照
射を伴なう減圧MOVPE成長で、さらに活性層4を500Å
(ノンドープ)、n形Al0.55Ga0.45Asクラッド層5(シ
リコンドープ、n形不純物濃度1×1017cm-3)、n+形Ga
Asキャップ層6(シリコンドープ、n形不純物濃度3×
1018cm-3)を0.5μm、順次に連続して成長させる(第
2図(b)、第3図)。
In the following steps, the layer thickness of each layer is controlled by the layer thickness of the non-irradiated portion. Low pressure MOVPE growth with selective light irradiation at 100 μm width and 300 μm intervals, and further 500 Å of active layer 4
(Non-doped), n-type Al 0.55 Ga 0.45 As cladding layer 5 (silicon-doped, n-type impurity concentration 1 × 10 17 cm -3 ), n + -type Ga
As cap layer 6 (silicon-doped, n-type impurity concentration 3 ×
10 18 cm −3 ) of 0.5 μm is successively grown continuously (FIG. 2 (b), FIG. 3).

次に、絶縁膜をCVDで5000Å形成し、フォトリソグラ
フィ技術により共振器方向に平行に5μm幅のストライ
プ状絶縁膜21を残す。この絶縁膜上からGa+イオンビー
ム(ドーズ量4×1014cm-2)を少なくともp形クラッド
層2まで注入し、700℃で、20分間アニールし、絶縁膜2
1を除去する(第2図(c))。
Next, an insulating film is formed by CVD to 5000 Å, and a striped insulating film 21 having a width of 5 μm is left in parallel with the cavity direction by a photolithography technique. A Ga + ion beam (dose amount 4 × 10 14 cm -2 ) is injected up to at least the p-type cladding layer 2 from above the insulating film, and annealed at 700 ° C. for 20 minutes to form the insulating film 2
1 is removed (Fig. 2 (c)).

再びCVDで絶縁膜を3000Å形成し、フォトリソグラフ
ィ技術により、共振器方向に対して垂直に、光照射で形
成されたストライプ幅よりも内側へ50μm幅広に絶縁膜
7を残す(第2図(d))。
The insulating film is formed again by CVD to 3000 Å, and the insulating film 7 is left by 50 μm wider inward than the stripe width formed by the light irradiation by the photolithography technique, perpendicularly to the cavity direction (Fig. 2 (d )).

次にストライプ状n形電極8を選択的にイオンミリン
グとフォトリソグラフィ技術により形成し、裏面にp形
電極9を形成する(第2図(e))。以上の工程により
第1図のアレー形半導体レーザが得られる。このアレー
形半導体レーザは複数個の発光領域を有し、そのうち一
つ発光領域(波長λ)には端面部に窓領域を有してい
る。
Next, the striped n-type electrode 8 is selectively formed by ion milling and photolithography, and the p-type electrode 9 is formed on the back surface (FIG. 2 (e)). The array type semiconductor laser of FIG. 1 is obtained by the above steps. This array type semiconductor laser has a plurality of light emitting regions, and one of the light emitting regions (wavelength λ 2 ) has a window region at the end face portion.

(実施例の作用効果) 上述の実施例で製造された第1図の構造の半導体レー
ザの動作について以下に説明する。Ga+イオンビームが
注入されたn形領域は高抵抗になることが、平山らの報
告により知られているので(応用物理学会欧文誌24巻レ
ター、965,1985年“Eletrical Properties of Ga Ion B
earn Implanted GaAs Epilayer")、p形電極9より注
入されたキャリアは、イオン注入された領域10には注入
されず、共振器中央のストライプ状活性領域に集中す
る。さて、エキシマレーザ光照射下でのAlxGa1-xAs減圧
(50torr)成長では、非照射部分に対して、Δ×=0.02
〜0.05変化し、エキシマレーザ光照射により有機金属の
トリメチルアルミニウムの分解効率が上がり、結晶中の
Al混晶比が増加することが、柊元らにより、1986年結晶
成長学会誌巻77 223頁に報告されている“(J.Crystal.
Growth,77,P223,(1986)"Selective Area Control of
Material Properties in laser−Assisted NOVPE of Ga
As and AlGaAs")。
(Effects of Embodiment) The operation of the semiconductor laser having the structure of FIG. 1 manufactured in the above embodiment will be described below. It is known from the report by Hirayama et al. That the n-type region implanted with Ga + ion beam has a high resistance (The Journal of Applied Physics, Vol.
earned Implanted GaAs Epilayer "), carriers injected from the p-type electrode 9 are not injected into the ion-implanted region 10 but are concentrated in the stripe-shaped active region in the center of the resonator. Of Al x Ga 1-x As under reduced pressure (50torr) on the non-irradiated area, Δx = 0.02
~ 0.05 change, the decomposition efficiency of the organic metal trimethylaluminum increased by the excimer laser irradiation,
An increase in the Al mixed crystal ratio was reported by Hiiragimoto et al. In 1986, Journal of Crystal Growth, Vol. 77, p. 223 (“J. Crystal.
Growth, 77, P223, (1986) "Selective Area Control of
Material Properties in laser-Assisted NOVPE of Ga
As and AlGaAs ").

Al混晶比が0.4以上では、エキシマレーザ光を照射す
ることにより混晶比が0.04〜0.05変化する。エキシマレ
ーザ光の照射下でn−Al0.55Ga0.45Asクラッド層を2μ
m形成するので、照射部分と非照射部分には成長速度の
差によりテーパー状にストライプパターンが形成され、
これをマスクのアライメントに用いることが可能であ
る。
When the Al mixed crystal ratio is 0.4 or more, the mixed crystal ratio is changed by 0.04 to 0.05 by irradiating the excimer laser beam. The n-Al 0.55 Ga 0.45 As cladding layer was 2 μm under the irradiation of excimer laser light.
m is formed, a tapered stripe pattern is formed between the irradiated portion and the non-irradiated portion due to the difference in growth rate,
This can be used for mask alignment.

そこで、活性層4のAl混晶比は0.15で、照射部分と非
照射部分とのAl混晶比変化から、見積るとΔEg>50meV
となり、照射部分は、キャリアの再結合によって生じた
光に対して、窓としてはたらき、共振器端面破壊レベル
が上昇する。また、照射部分と非照射部分がテーパー状
に結合されているとともに、活性層4下の光ガイド層3
の成長までは、ウエハ全体が非照射成長であり、結合部
分での段差ズレを生じない。したがって、本実施例の製
造方法により、結合部での反射損失が悪く、しかも窓領
域が形成できる。このように製作された第1図の半導体
レーザでは高出力動作が期待できる。また、実施例の方
法では一回の結晶成長で半導体レーザが得られるから、
製作工程で活性領域端部を空気さらすことはない。そこ
で、製作された半導体レーザには界面劣化の問題もな
く、高い信頼性が期待できる。
Therefore, the Al mixed crystal ratio of the active layer 4 is 0.15, and it is estimated from the change of the Al mixed crystal ratio between the irradiated portion and the non-irradiated portion that ΔEg> 50 meV.
Thus, the irradiated portion acts as a window for the light generated by the recombination of carriers, and the level of the end face breakdown of the resonator is increased. Further, the irradiated portion and the non-irradiated portion are coupled in a tapered shape, and the light guide layer 3 below the active layer 4 is formed.
Up to the growth, the entire wafer is non-irradiated and no step deviation occurs at the joint portion. Therefore, according to the manufacturing method of this embodiment, the reflection loss at the coupling portion is poor and the window region can be formed. High output operation can be expected in the semiconductor laser of FIG. 1 manufactured in this way. Further, in the method of the embodiment, a semiconductor laser can be obtained by a single crystal growth,
The fabrication process does not expose the edges of the active area to air. Therefore, the manufactured semiconductor laser can be expected to have high reliability without the problem of interface deterioration.

また、第1図のアレー形半導体レーザにおいては、隣
り合う発光領域から発生するレーザ光の波長は、非光照
射部分、すなわち発光ストライプIの波長を780nmとす
ると、光照射部分、すなわち発光ストライプIIの波長は
755nmよりも短かくなりΔλ>25nmが期待できる。この
ように、本発明になるアレー形半導体レーザは多波長型
であり、情報処理装置に適用して、書き込みと読み出し
とを並行して行なってもクロストークが起り難い。
Further, in the array type semiconductor laser of FIG. 1, the wavelength of the laser light generated from the adjacent light emitting regions is such that when the wavelength of the non-light irradiation portion, that is, the light emitting stripe I is 780 nm, the light irradiation portion, that is, light emitting stripe II. Is the wavelength of
It is shorter than 755 nm and Δλ> 25 nm can be expected. As described above, the array-type semiconductor laser according to the present invention is a multi-wavelength type, and crosstalk hardly occurs even when it is applied to an information processing device and writing and reading are performed in parallel.

(発明の効果) 本発明の方法によれば、以上に説明した様に、一回成
長で、共振器両端面付近に窓領域を有し、この窓領域が
活性領域とテーパー状に結合され、窓領域と活性領域と
の結合部での反射損失も無く、モード制御された高出力
高信頼の半導体レーザがアレー型半導体レーザの一発光
ストライプとして作成でき、従って本発明の方法を適用
して、隣接した発光領域の発振波長が互いに異なるアレ
ー形半導体レーザを製造できる。
(Effects of the Invention) According to the method of the present invention, as described above, single growth has a window region in the vicinity of both end faces of the resonator, and this window region is coupled with the active region in a tapered shape, There is also no reflection loss at the coupling portion between the window region and the active region, and a mode-controlled high-power highly-reliable semiconductor laser can be formed as one emission stripe of an array-type semiconductor laser, and therefore, the method of the present invention is applied, It is possible to manufacture an array type semiconductor laser in which the emission wavelengths of adjacent light emitting regions are different from each other.

本発明の方法で製造したアレー形半導体レーザを情報
処理装置の光源として用いれば、データの書き込み及び
読み出しを並行して行なってもクロストークが起り難
い。
When the array type semiconductor laser manufactured by the method of the present invention is used as a light source of an information processing device, crosstalk is unlikely to occur even when data writing and reading are performed in parallel.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の方法により製造されたアレ
ー形半導体レーザを示す斜視図であり、第2図はその実
施例の製造工程図、第3図は第2図(b)の工程を分り
易く示す斜視図である。第4図は選択的光照射方法を示
す概念図、第5図は従来の窓構造レーザの構造を示す断
面図である。 1……p−GaAs基板、2……p−Al0.55Ga0.45Asクラッ
ド層、3……p−Al0.4Ga0.6As光ガイド層、4……Al
0.15Ga0.85As活性層、5……n−Al0.55Ga0.45Asクラッ
ド層、6……n+−GaAsキャップ層、7……絶縁膜、8…
…n形電極、9……p形電極、10……Ga+イオンビーム
注入領域、21……絶縁膜、31……n形GaAs基板、32……
n形AlxGa1-xAsクラッド層、33……活性層、34……p形
AlyGa1-yAs光ガイド層、35……p形Alx′Ga1−x′As
クラッド層、36……n形GaAsブロック層、37……Zn拡散
領域、38,39……AlzGa1-zAs窓領域、40……p形電極、4
1……n形電極、42……絶縁膜、51……サセプタ、52…
…MOVPE反応管、52……マスク、54……ミラー、55……
エキシマレーザ光。
FIG. 1 is a perspective view showing an array type semiconductor laser manufactured by a method of an embodiment of the present invention, FIG. 2 is a manufacturing process drawing of the embodiment, and FIG. 3 is a drawing of FIG. 2 (b). It is a perspective view showing a process easily. FIG. 4 is a conceptual diagram showing a selective light irradiation method, and FIG. 5 is a sectional view showing a structure of a conventional window structure laser. 1 ... p-GaAs substrate, 2 ... p-Al 0.55 Ga 0.45 As clad layer, 3 ... p-Al 0.4 Ga 0.6 As optical guide layer, 4 ... Al
0.15 Ga 0.85 As active layer, 5 ... n-Al 0.55 Ga 0.45 As clad layer, 6 ... n + -GaAs cap layer, 7 ... Insulating film, 8 ...
... n-type electrode, 9 ... p-type electrode, 10 ... Ga + ion beam implantation region, 21 ... insulating film, 31 ... n-type GaAs substrate, 32 ...
n-type Al x Ga 1-x As clad layer, 33 …… active layer, 34 …… p-type
Al y Ga 1-y As optical guide layer, 35 ...... p-type Al x 'Ga 1-x' As
Cladding layer, 36 ... n-type GaAs block layer, 37 ... Zn diffusion region, 38,39 ... Al z Ga 1-z As window region, 40 ... p-type electrode, 4
1 ... n-type electrode, 42 ... insulating film, 51 ... susceptor, 52 ...
… MOVPE reaction tube, 52 …… mask, 54 …… mirror, 55 ……
Excimer laser light.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上にIII−V族多元結晶の活性
層を設けてなり、該活性層には隣接した二つのストライ
プ状の発光領域、発光ストライプIおよび発光ストライ
プIIが形成してあり、前記発光ストライプIが、レーザ
発振によりレーザ光を発生する活性領域とこの活性領域
の両端から光出射端面に到る間を占める窓領域とからな
るアレー型半導体レーザの製造方法において、前記活性
層を含む多層半導体層は有機金属気相成長法で結晶の成
長をして形成し、前記活性層の成長工程では、マスクに
より選択的にレーザ光を照射して結晶の成長をし、前記
マスクは前記発光ストライプIの窓領域と前記発光スト
ライプIIの全域に該レーザ光を照射するパターンをなし
ており、前記光出射端面は劈開により形成することを特
徴とするアレー型半導体レーザの製造方法。
1. A semiconductor substrate is provided with an active layer of a group III-V multi-element crystal, in which two adjacent striped light emitting regions, a light emitting stripe I and a light emitting stripe II are formed. In the method for manufacturing an array type semiconductor laser, the light emitting stripe I comprises an active region for generating a laser beam by laser oscillation and a window region occupying between both ends of the active region to a light emitting end face. Is formed by growing a crystal by a metal organic chemical vapor deposition method. In the step of growing the active layer, the mask is selectively irradiated with laser light to grow the crystal. The array type semiconductor is characterized in that the window region of the light emitting stripe I and the entire region of the light emitting stripe II are patterned to irradiate the laser light, and the light emitting end face is formed by cleavage. Body laser manufacturing method.
JP63091941A 1988-04-14 1988-04-14 Array type semiconductor laser manufacturing method Expired - Lifetime JP2689471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091941A JP2689471B2 (en) 1988-04-14 1988-04-14 Array type semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091941A JP2689471B2 (en) 1988-04-14 1988-04-14 Array type semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPH01262688A JPH01262688A (en) 1989-10-19
JP2689471B2 true JP2689471B2 (en) 1997-12-10

Family

ID=14040619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091941A Expired - Lifetime JP2689471B2 (en) 1988-04-14 1988-04-14 Array type semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JP2689471B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821756B2 (en) * 1986-10-31 1996-03-04 セイコーエプソン株式会社 Semiconductor laser manufacturing method

Also Published As

Publication number Publication date
JPH01262688A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
JP2831667B2 (en) Semiconductor laser device and method of manufacturing the same
EP0406005A2 (en) Semiconductor laser and manufacture method therefor
US4843031A (en) Method of fabricating compound semiconductor laser using selective irradiation
US5013684A (en) Buried disordering sources in semiconductor structures employing photo induced evaporation enhancement during in situ epitaxial growth
JPH0719931B2 (en) Semiconductor laser device and manufacturing method thereof
EP0311445B1 (en) A semiconductor laser device and a method for the production of the same
US5737351A (en) Semiconductor laser including ridge structure extending between window regions
JPH0656906B2 (en) Semiconductor laser device
JPH10200190A (en) Semiconductor laser and fabrication thereof
JPH08148757A (en) Manufacture of semiconductor laser
US6080598A (en) Method of producing semiconductor laser element with mirror degradation suppressed
US4759025A (en) Window structure semiconductor laser
JP2689471B2 (en) Array type semiconductor laser manufacturing method
US4514896A (en) Method of forming current confinement channels in semiconductor devices
JPH10261835A (en) Semiconductor laser device and its manufacture
US5490159A (en) Visible light semiconductor laser
JPH0846283A (en) Manufacture of semiconductor laser
JP2727944B2 (en) Method of manufacturing semiconductor laser array
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP2679057B2 (en) Manufacturing method of semiconductor laser
JPH09283858A (en) Compd. semiconductor optical device manufacturing method and apparatus
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JP2751699B2 (en) Semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JP3143105B2 (en) Method for manufacturing semiconductor laser device