JPH0821756B2 - Semiconductor laser manufacturing method - Google Patents

Semiconductor laser manufacturing method

Info

Publication number
JPH0821756B2
JPH0821756B2 JP61260255A JP26025586A JPH0821756B2 JP H0821756 B2 JPH0821756 B2 JP H0821756B2 JP 61260255 A JP61260255 A JP 61260255A JP 26025586 A JP26025586 A JP 26025586A JP H0821756 B2 JPH0821756 B2 JP H0821756B2
Authority
JP
Japan
Prior art keywords
type
semiconductor laser
active layer
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61260255A
Other languages
Japanese (ja)
Other versions
JPS63114287A (en
Inventor
英明 岩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61260255A priority Critical patent/JPH0821756B2/en
Publication of JPS63114287A publication Critical patent/JPS63114287A/en
Publication of JPH0821756B2 publication Critical patent/JPH0821756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、共振器端面の劣化を防止した半導体レーザ
の構造に関するものである。
TECHNICAL FIELD The present invention relates to a structure of a semiconductor laser in which deterioration of a cavity facet is prevented.

〔発明の概要〕[Outline of Invention]

本発明は、半導体レーザにおいて、活性層の端面近傍
の混晶組成比を活性層のEgより大なるEgを有する混晶組
成比にし、そのことを活性層の薄膜を成長中にストライ
プ状の紫外光を照射して製造することにより、端面近傍
におけるレーザ発振光のバンド端吸収がなくなり且つ注
入キャリアが端面近傍では集中しなくなるために端面近
傍に光電力が集中することがないため、端面劣化が防止
され、寿命が長く且つ最大出力の大きい半導体レーザを
安価に再現性良く製造できるようにしたものである。
The present invention, in the semiconductor laser, the mixed crystal composition ratio in the vicinity of the end face of the active layer is set to a mixed crystal composition ratio having Eg larger than that of the active layer, which means that the thin film of the active layer is striped by ultraviolet rays during growth. By manufacturing by irradiating light, the band edge absorption of the laser oscillation light near the end face is eliminated and the injected carriers are not concentrated near the end face, so that the optical power is not concentrated near the end face and the end face deterioration is caused. A semiconductor laser which is prevented and has a long life and a large maximum output can be manufactured inexpensively with good reproducibility.

〔従来の技術〕[Conventional technology]

従来のウインド形ダブルヘテロ半導体レーザはアプラ
イドフイッジックスレター(Applied Physics Letter)
の第33巻(1978年)1011ページにあるようなものであっ
た。第5図にその主要断面図を示す。(502)のn型GaA
s基板上に(503)のn型Al0.3Ga0.7Asのクラッド層、
(504)のn型Al0.06Ga0.94Asの活性層、(505)のn型
Al0.3Ga0.7Asのクラッド層を順次積層しその上に(50
6)のSiO2絶縁層を形成する。SiO2膜をウインド領域を
残してストライプ状にエッチングし、その後、基板をZn
As2等の入た石英チューブ中に真空封入して、Znの拡散
を行ない、(505),(504)の層をP型にする。その後
上部にP型オーミック電極(507)、下部にn型オーミ
ック電極(501)を形成する。その結果、共振器端面近
傍の活性層はn型であり、その他がP型となって発光領
域となる。n型のAl0.06Ga0.94AsはP型に比べてわずか
にEgが大きいのでレーザ発振光が端面近傍で吸収され
ず、端面の破壊が防止される。
The conventional window type double hetero semiconductor laser is the Applied Physics Letter.
Vol. 33 (1978) page 1011. FIG. 5 shows its main sectional view. (502) n-type GaA
(503) n-type Al 0.3 Ga 0.7 As cladding layer on the substrate,
(504) n-type Al 0.06 Ga 0.94 As active layer, (505) n-type
Clad layers of Al 0.3 Ga 0.7 As are sequentially laminated and (50
6) Form the SiO 2 insulating layer. The SiO 2 film is etched in stripes leaving the window region, and then the substrate is Zn.
It is vacuum-sealed in a quartz tube containing As 2 etc. to diffuse Zn, and the layers of (505) and (504) are made P-type. After that, a P-type ohmic electrode (507) is formed on the upper part and an n-type ohmic electrode (501) is formed on the lower part. As a result, the active layer in the vicinity of the end face of the resonator is n-type, and the other is p-type to serve as a light emitting region. Since the n-type Al 0.06 Ga 0.94 As has a slightly larger Eg than the p-type, laser oscillation light is not absorbed in the vicinity of the end face, and the end face is prevented from being destroyed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし前述の従来技術ではP型AlGaAsとn型AlGaAsの
Egの違いがわずかであるため、レーザ発振光の一部は吸
収され、光出力の増大、寿命の長期化について十分な効
果を果したと言えない。更に、Znの拡散をちょうど(50
4)の活性層の下部で終端させることは困難であり、再
現性に乏しい、更に、Znの拡散の工程は非常に手間がか
かり、生産性の高い方法ではない、といった問題点を有
していた。そこで本発明はこのような問題点を解決する
もので、その目的とするところは、ウインド領域のEgが
発光領域に比べ十分に大きいため最高光出力が大きく、
寿命が長く信頼性の高い、しかも、再現性良く簡単に製
造可能な半導体レーザを提供するところにある。
However, in the above-mentioned conventional technique, P-type AlGaAs and n-type AlGaAs
Since the difference in Eg is slight, a part of the laser oscillation light is absorbed, and it cannot be said that the effect is sufficiently increased in terms of increasing the optical output and extending the life. Furthermore, the diffusion of Zn is set to (50
4) It is difficult to terminate at the lower part of the active layer, the reproducibility is poor, and the Zn diffusion process is very time-consuming and not a highly productive method. It was Therefore, the present invention solves such a problem, and an object thereof is that the maximum light output is large because Eg in the window region is sufficiently larger than that in the light emitting region,
An object of the present invention is to provide a semiconductor laser which has a long life, high reliability, and can be easily manufactured with good reproducibility.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体レーザの製造方法は、少なくとも第1
のIII族元素を含む有機金属化合物と第2のIII族元素を
含む有機金属化合物とを原料とするMOCVD法によって、
(a)単結晶半導体基板上方に第1のクラッド層を形成
する工程、(b)共振器の端面となる近傍に前記第1あ
るいは前記第2の有機金属化合物のいずれかの光吸収領
域内にある波長の紫外光を照射しながら、前記第1のク
ラッド層上に活性層を形成する工程、(c)前記活性層
上に第2のクラッド層を形成する工程、を含むことを特
徴とする。
A method for manufacturing a semiconductor laser according to the present invention is at least the first method.
By the MOCVD method using the organometallic compound containing the group III element and the second organometallic compound containing the group III element as raw materials,
(A) a step of forming a first cladding layer above the single crystal semiconductor substrate, and (b) in a light absorption region of either the first or the second organometallic compound near the end face of the resonator. A step of forming an active layer on the first clad layer while irradiating ultraviolet light of a certain wavelength, and (c) a step of forming a second clad layer on the active layer. .

〔作用〕[Action]

本発明の上記の構成によれば、たとえば、活性層がAl
xGa1-xAsの場合、ウインド領域がAlyGa1-yAs(y>x)
となり、Egの違いが十分に大きく、ウインド領域にキャ
リアの注入はなく、また、レーザ発振光の端面近傍での
光吸収はほとんどなくなるため、劈開面のマイクロクラ
ックに生ずる発熱作用がないため、レーザ発振光の最高
光出力は高くなり、更に、連続発振時の寿命も飛躍的に
延ばすことができるのである。更に発光領域とウインド
領域は同時に成膜するので、Znの拡散工程のような手間
のかかる作業がなく、再現性も良い。
According to the above configuration of the present invention, for example, the active layer is made of Al.
In the case of x Ga 1-x As, the window region is Al y Ga 1-y As (y> x)
Therefore, the difference in Eg is large enough that there is no carrier injection into the window region, and there is almost no optical absorption near the end face of the laser oscillation light, so there is no heat generation that occurs in the microcracks on the cleavage plane. The maximum optical output of the oscillated light is high, and the life during continuous oscillation can be dramatically extended. Further, since the light emitting region and the window region are formed at the same time, there is no laborious work such as the Zn diffusion process and the reproducibility is good.

〔実施例〕〔Example〕

第1図は本発明の実施例におけるウインド形ダブルヘ
テロ半導体レーザの主要断面図である。(102)のn型G
aAs基板上に(103)のn型GaAsバッファ層、(104)の
n型Al0.4Ga0.6Asクラッド層、(109)のAl0.15Ga0.85A
s活性層、(105)のP型Al0.4Ga0.6Asクラッド層、(10
6)のP型GaAsキャップ層、(107)のn栄GaAsブロッキ
ング層を順次、MOCVD法で積層形成する。活性層を形成
する時には、劈開面近傍には紫外光を照射することによ
り、MOCVD法のIII族原料であるトリメチルガリウム(以
下TMGと記す)、トリメチルアルミニウム(以下TMAと記
す)等の有機金属原料の分解効率が、光照射部のみで異
なるため、劈開面近傍のみをアルミニウム含有量の多い
Al0.2Ga0.8As層が(110)の部分に形成される。しかる
のち(107)のブロッキング層をストライプ状にエッチ
ングして、(108)のP型オーミック電極、(101)のn
型オーミック電極を形成し、前記の光照射部近傍で劈開
して共振器を形成して、利得導波型の半導体レーザが得
られる。
FIG. 1 is a main sectional view of a window type double hetero semiconductor laser according to an embodiment of the present invention. (102) n-type G
(103) n-type GaAs buffer layer, (104) n-type Al 0.4 Ga 0.6 As cladding layer, (109) Al 0.15 Ga 0.85 A on aAs substrate
s active layer, (105) P-type Al 0.4 Ga 0.6 As cladding layer, (10
The P-type GaAs cap layer of 6) and the n-type GaAs blocking layer of (107) are sequentially laminated by MOCVD. When the active layer is formed, the vicinity of the cleavage plane is irradiated with ultraviolet light, so that metalorganic raw materials such as trimethylgallium (hereinafter referred to as TMG) and trimethylaluminum (hereinafter referred to as TMA), which are group III raw materials of the MOCVD method, are formed. Since the decomposition efficiency of is different only in the light irradiation part, the aluminum content is high only near the cleavage plane.
An Al 0.2 Ga 0.8 As layer is formed on the (110) portion. After that, the blocking layer of (107) is etched in a stripe shape to form a P-type ohmic electrode of (108) and n of (101).
A type ohmic electrode is formed and cleaved in the vicinity of the light irradiation portion to form a resonator, so that a gain waveguide type semiconductor laser is obtained.

第1図の活性層のエネルギーバンドの光共振器方向の
分布を第2図に示す。劈開面近傍のウインド領域はアル
ミニウムの含有量が多い組成となっているため、発光領
域のEgはウインド領域のEgよりも十分大きくなる。その
結果、レーザ光は劈開面近傍ではほとんど吸収されるこ
とがない。従って共振器端面の破壊の原因となる光電力
の集中がなく、半導体レーザの最大出力は大きく、寿命
を飛躍的に延ばすことができる。
FIG. 2 shows the distribution of energy bands of the active layer in FIG. 1 in the direction of the optical resonator. Since the window region near the cleavage plane has a high aluminum content, the Eg of the light emitting region is sufficiently larger than the Eg of the window region. As a result, the laser light is hardly absorbed in the vicinity of the cleavage plane. Therefore, there is no concentration of optical power that causes destruction of the end face of the resonator, the maximum output of the semiconductor laser is large, and the life can be remarkably extended.

第3図にウインド型ダブルヘテロ半導体レーザ製造装
置の主要構成図を示す。(309)の原料ガス導入系から
(310)の反応管中に原料ガスを入れ、(311)の加熱さ
れた基板上に流して化合物半導体薄膜を成長する。ウイ
ンド領域の形成には、活性層成長中に、(301)のエキ
シマーレーザからの紫外光を、(302)のシリンドリカ
ルレンズで整形して(303)のミラーで反射させ(30
4),(305)の合成石英レンズで平行ビームとする。
(306)のストライプパターンを形成したマスクを通
し、(307)の縮小レンズで基板上にストライプパター
ンの焦点を結ばせる。
FIG. 3 shows a main configuration diagram of a window type double hetero semiconductor laser manufacturing apparatus. A raw material gas is introduced into the reaction tube of (310) from the raw material gas introduction system of (309), and is flown onto the heated substrate of (311) to grow a compound semiconductor thin film. To form the window region, the ultraviolet light from the (301) excimer laser is shaped by the (302) cylindrical lens and reflected by the (303) mirror during the growth of the active layer (30
4), (305) synthetic quartz lens to make a parallel beam.
The stripe pattern is focused on the substrate by the reduction lens of (307) through the mask on which the stripe pattern of (306) is formed.

第4図で示す様に、(401)の紫外光照射により活性
層形成時に(403)のアルミニウム含有量の多いウイン
ド領域がストライプ状に形成される。ウインド領域を含
むように(404)の劈開を行ない、光共振器を形成す
る。
As shown in FIG. 4, when the active layer is formed by the irradiation of (401) ultraviolet light, a window region having a large aluminum content of (403) is formed in a stripe shape. Cleavage (404) is performed so as to include the window region to form an optical resonator.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、エネルギャップの
大きいウインド領域を形成することにより共振器端面の
劣化がなく、最大出力の大きく長寿命の半導体レーザを
得られるという効果を有する。更に、活性層形成時に同
時にウインド領域が形成できることにより、Znの熱拡散
等の工程が全く不用で、製造が著しく簡便となる。その
結果、高出力半導体レーザの歩留りが向上する。
As described above, according to the present invention, by forming the window region having a large energy gap, there is an effect that a semiconductor laser having a large maximum output and a long life can be obtained without deterioration of the cavity facet. Furthermore, since the window region can be formed at the same time when the active layer is formed, the steps such as thermal diffusion of Zn are completely unnecessary, and the production is significantly simplified. As a result, the yield of the high-power semiconductor laser is improved.

更に、光共振器を形成する劈開面以外に発光領域とウ
インド領域境界には屈折率差ができるために縦モードは
単一と成り易いという効果も有する。
Furthermore, since there is a difference in refractive index between the light emitting region and the boundary of the window region in addition to the cleavage plane forming the optical resonator, there is an effect that the longitudinal mode is likely to be single.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明のウインド型ダブルヘテ
ロ半導体レーザの一実施例を示す主要断面図である。 第2図は本発明のウインド型ダブルヘテロ半導体レーザ
の活性層共振器方向のエネルギバンド分布図である。 第3図は本発明のウインド型ダブルヘテロ半導体レーザ
の製造装置の主要構成図である。 第4図(a),(b)は本発明のウインド型ダブルヘテ
ロ半導体の製造工程の一部を示す図である。 第5図は従来のウインド型ダブルヘテロ半導体レーザの
主要断面図である。 (101)……n型オーミック電極 (103)……n型GaAsバッファ層 (106)……P型GaAsキャップ層 (107)……n型GaAsブロッキング層 (108)……P型オーミック電極 (302)……シリンドリカルレンズ (303)……誘電多層膜 (304)……合成石英凹レンズ (305)……合成石英凸レンズ (308)……高周波発振器 (309)……ガス供給系 (310)……反応管 (312)……排気系 (501)……n型オーミック電極 (502)……n型GaAs基板
1 (a) to 1 (c) are main sectional views showing an embodiment of a window type double hetero semiconductor laser of the present invention. FIG. 2 is an energy band distribution diagram in the active layer cavity direction of the window type double hetero semiconductor laser of the present invention. FIG. 3 is a main block diagram of an apparatus for manufacturing a window type double hetero semiconductor laser of the present invention. 4 (a) and 4 (b) are views showing a part of the manufacturing process of the window type double hetero semiconductor of the present invention. FIG. 5 is a main sectional view of a conventional window type double hetero semiconductor laser. (101) ... n-type ohmic electrode (103) ... n-type GaAs buffer layer (106) ... P-type GaAs cap layer (107) ... n-type GaAs blocking layer (108) ... P-type ohmic electrode (302) ) …… Cylindrical lens (303) …… Dielectric multilayer film (304) …… Synthetic quartz concave lens (305) …… Synthetic quartz convex lens (308) …… High frequency oscillator (309) …… Gas supply system (310) …… Reaction Tube (312) …… Exhaust system (501) …… n-type ohmic electrode (502) …… n-type GaAs substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも第1のIII族元素を含む有機金
属化合物と第2のIII族元素を含む有機金属化合物とを
原料とするMOCVD法によって、 (a)単結晶半導体基板上方に第1のクラッド層を形成
する工程、 (b)共振器の端面となる近傍に前記第1あるいは前記
第2の有機金属化合物のいずれかの光吸収領域内にある
波長の紫外光を照射しながら、前記第1のクラッド層上
に活性層を形成する工程、 (c)前記活性層上に第2のクラッド層を構成する工
程、 を含むことを特徴とする半導体レーザの製造方法。
1. A MOCVD method using, as a raw material, an organometallic compound containing at least a first group III element and a second organometallic compound containing a group III element. Forming a clad layer, and (b) irradiating the vicinity of the end face of the resonator with ultraviolet light having a wavelength in the light absorption region of either the first or second organometallic compound, 1. A method of manufacturing a semiconductor laser, comprising: a step of forming an active layer on the first clad layer; and (c) a step of forming a second clad layer on the active layer.
JP61260255A 1986-10-31 1986-10-31 Semiconductor laser manufacturing method Expired - Lifetime JPH0821756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260255A JPH0821756B2 (en) 1986-10-31 1986-10-31 Semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260255A JPH0821756B2 (en) 1986-10-31 1986-10-31 Semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPS63114287A JPS63114287A (en) 1988-05-19
JPH0821756B2 true JPH0821756B2 (en) 1996-03-04

Family

ID=17345504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260255A Expired - Lifetime JPH0821756B2 (en) 1986-10-31 1986-10-31 Semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JPH0821756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781894A1 (en) 2013-03-18 2014-09-24 Azbil Corporation Signal amplifying circuit for electromagnetic flow meter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689471B2 (en) * 1988-04-14 1997-12-10 日本電気株式会社 Array type semiconductor laser manufacturing method
US5181218A (en) * 1988-12-14 1993-01-19 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor laser with non-absorbing mirror structure
JP2831667B2 (en) * 1988-12-14 1998-12-02 株式会社東芝 Semiconductor laser device and method of manufacturing the same
DE102017108949B4 (en) 2016-05-13 2021-08-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Semiconductor chip
DE102017109809B4 (en) 2016-05-13 2024-01-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for producing a semiconductor chip
DE102017109812A1 (en) 2016-05-13 2017-11-16 Osram Opto Semiconductors Gmbh Light-emitting semiconductor chip and method for producing a light-emitting semiconductor chip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946113A (en) * 1982-09-06 1984-03-15 Mitsubishi Heavy Ind Ltd Sealing method of gas treating apparatus
JPS61220394A (en) * 1985-03-26 1986-09-30 Mitsubishi Electric Corp Laser diode and manufacture thereof
JPH07105554B2 (en) * 1986-07-16 1995-11-13 松下電器産業株式会社 Semiconductor laser device
JPS6321889A (en) * 1986-07-16 1988-01-29 Matsushita Electric Ind Co Ltd Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781894A1 (en) 2013-03-18 2014-09-24 Azbil Corporation Signal amplifying circuit for electromagnetic flow meter

Also Published As

Publication number Publication date
JPS63114287A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
EP0406005A2 (en) Semiconductor laser and manufacture method therefor
US5573976A (en) Method of fabricating semiconductor laser
JP2002305352A (en) Semiconductor laser element
JPH0821756B2 (en) Semiconductor laser manufacturing method
US6859478B2 (en) Semiconductor light emitting device in which near-edge portion is filled with doped regrowth layer, and dopant to regrowth layer is diffused into near-edge region of active layer
US4759025A (en) Window structure semiconductor laser
JP2545233B2 (en) Method for manufacturing semiconductor laser
JP2679057B2 (en) Manufacturing method of semiconductor laser
JP2629194B2 (en) Manufacturing method of semiconductor laser
JP2629190B2 (en) Manufacturing method of semiconductor laser
JP2629722B2 (en) Manufacturing method of semiconductor laser
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JP2751699B2 (en) Semiconductor laser
KR100278623B1 (en) Semiconductor laser device and manufacturing method
JPH0258288A (en) Semiconductor laser
JPH06104522A (en) Fabrication of semiconductor laser element
JPS5948973A (en) Semiconductor laser
JPH0271574A (en) Semiconductor laser and manufacture thereof
JPH0265286A (en) Semiconductor laser
JPH01236673A (en) Manufacture of optical waveguide integration type semiconductor laser
JPH02119285A (en) Manufacture of semiconductor laser
JP2679358B2 (en) Semiconductor laser device
JP3147399B2 (en) Semiconductor laser
JPS63222476A (en) Manufacture of edge light emitting diode
JPH01300583A (en) Manufacture of semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term