JP2686844B2 - Thin-walled workpiece processing method - Google Patents

Thin-walled workpiece processing method

Info

Publication number
JP2686844B2
JP2686844B2 JP19839890A JP19839890A JP2686844B2 JP 2686844 B2 JP2686844 B2 JP 2686844B2 JP 19839890 A JP19839890 A JP 19839890A JP 19839890 A JP19839890 A JP 19839890A JP 2686844 B2 JP2686844 B2 JP 2686844B2
Authority
JP
Japan
Prior art keywords
error
workpiece
machining
state
chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19839890A
Other languages
Japanese (ja)
Other versions
JPH0482646A (en
Inventor
和久 三宅
Original Assignee
オ−クマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オ−クマ株式会社 filed Critical オ−クマ株式会社
Priority to JP19839890A priority Critical patent/JP2686844B2/en
Publication of JPH0482646A publication Critical patent/JPH0482646A/en
Application granted granted Critical
Publication of JP2686844B2 publication Critical patent/JP2686844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は把持時に変形しやすい薄肉工作物の加工方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a thin-walled work piece which is easily deformed when gripped.

従来の技術 薄肉管状工作物の旋削,研削加工等ではチャックで把
持すると把持部が変形しこの状態で加工したあと把持を
開放すると歪部が弾性復元して良好な真円を得ることが
困難である。このため特別に高精度の真円を得るために
は工作物の形状に応じてフインガチャック,真空チャッ
ク,電磁チャック等の専用チャックを使用していた。
Conventional technology When turning or grinding thin-walled tubular workpieces, the gripping part deforms when gripped by a chuck, and when the gripping is released after processing in this state, the strained part elastically restores and it is difficult to obtain a good perfect circle. is there. For this reason, special chucks such as finger chucks, vacuum chucks, and electromagnetic chucks were used according to the shape of the workpiece in order to obtain a highly accurate perfect circle.

また主軸とX軸の同期制御により非真円加工が可能な
NC工作機械では、第6図のフローチャートのように標準
チャックで把握して加工し、機外で製品の真円からの誤
差を測定し、その測定結果にもとづいて非真円形状の加
工プログラムを修正し真円をねらって加工する方法が行
われている。
In addition, non-round machining is possible by synchronous control of the spindle and X axis.
In NC machine tools, as shown in the flow chart of Fig. 6, the standard chuck is used to grasp and machine, the error from the true circle of the product is measured outside the machine, and based on the measurement result, a machining program of non-round shape is created. A method of correcting and processing to aim for a perfect circle is performed.

発明が解決しようとする課題 このように専用チャックを使用することにより工作物
が制限されるとともにチャックが高価なものとなる。ま
た歪がでないように把握するため把握力が非常に弱く軽
切削で加工を行なわなければならないので加工能率が極
めて悪いという問題がある。また前工程で高精度な基準
面加工を行わなければならなので工程が増すという問題
がある。さらに後者で述べた非真円加工を行なう方法
は、一度取外すことによりチャッキング状態が変わり正
確な加工が困難で良好な真円が得られない。また加工後
取外して測定データ修正して再度取付ける面倒な手順を
要し2度加工を要し加工能率が上がらないという問題が
ある。
Problems to be Solved by the Invention By using the dedicated chuck in this manner, the workpiece is limited and the chuck becomes expensive. In addition, since the grasping force is very weak and the machining must be performed by light cutting in order to grasp so that there is no distortion, there is a problem that the machining efficiency is extremely poor. In addition, there is a problem that the number of steps is increased because the high precision reference surface processing must be performed in the previous step. Further, in the latter method of performing non-round machining, the chucking state changes once it is removed, and accurate machining is difficult and a good circle cannot be obtained. Further, there is a problem that a laborious procedure of removing after processing, correcting measurement data, and re-mounting is required, processing is required twice, and processing efficiency cannot be improved.

本発明は従来の技術の有するこのような問題点に鑑み
なされたもので、その目的とするところは薄肉工作物を
標準チャックで加工時の把持力で強力に把持し高能率且
安全に極めて良い真円の工作物をうる加工方法を提供し
ようとするものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to strongly grip a thin-walled work piece with a standard chuck with a gripping force at the time of machining, which is extremely efficient and safe. It is intended to provide a processing method for obtaining a perfect circular work piece.

課題を解決するための手段 上述の目的を達成するために本発明は、NC制御の旋
盤,研削盤等のC軸制御可能な主軸のチャックに把持し
た工作物を歪が殆ど発生しない状態での極低圧力で把握
したときの工作物を半径方向寸法計測可能な計測装置に
より測定した真円からの誤差と、その把握状態から把握
力を大きくした加工時の状態の強圧力で把握したときの
工作物を計測した真円からの誤差の両真円からの誤差の
差をプログラムデータとして主軸の回転と工具の半径方
向送りを同期制御しこのプログラムデータにもとづき非
減円加工を行い把持開放後に真円をうるものである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention is a NC lathe, a grinder, or the like, in which a workpiece gripped by a chuck of a C-axis controllable spindle is hardly distorted. The error from the true circle measured by a measuring device capable of measuring the radial dimension of the workpiece when grasping at extremely low pressure and the grasping force from the grasping state The difference between the error from the true circle measured on the workpiece and the error from the true circle is used as program data to synchronously control the rotation of the spindle and the radial feed of the tool, and based on this program data, non-reducing machining is performed and the grip is released. It is a perfect circle.

作用 弱く把持したときの真円からの誤差を求め、そのまま
の状態で把持力を高め加工時の状態に強力に把持したと
きの真円からの誤差を求め両真円からの誤差の差をプロ
グラムデータとしてNCにより非真円加工を行う。
Action Find the error from the true circle when weakly gripped, increase the gripping force in that state, and find the error from the true circle when strongly gripped during machining. Program the difference between the two true circles. Non-round machining is performed by NC as data.

実施例 以下本発明を第1図にもとづき説明をする。EXAMPLE The present invention will be described below with reference to FIG.

周知のNC旋盤,またはNC研削盤において、図示しない
例えば旋盤の刃物台のタレット1に電機マイクロメータ
のような微小寸法が計測可能な計測装置2がX軸方向の
変位を計測できる方向に取付けられている。この計測装
置2の出力は図示しないNC装置に入力される。また図示
しない主軸は先端にチャック3を嵌着しC軸制御が可能
で主軸がNC装置の指令によって所要の角度位置に割出さ
れる。そしてC軸制御と刃物台のX軸制御は同期可能で
ある。NC装置の内部では主軸割出位置の計測装置のデー
タを補間機能により連続したデータとして記憶するか、
主軸を微速回転させ装置の変位連続出力を角度に対応さ
せて記憶するものである。またこのデータの記憶部,真
円からの誤差の差を求める比較演算部,この差をプログ
ラムデータとする補正プログラム作成部,補正プログラ
ム記憶部を含んでいる。
In a well-known NC lathe or NC grinder, a measuring device 2 capable of measuring a minute dimension such as an electric micrometer is attached to a turret 1 of a tool post of a lathe (not shown) in a direction capable of measuring displacement in the X-axis direction. ing. The output of the measuring device 2 is input to an NC device (not shown). Further, the unillustrated spindle is fitted with the chuck 3 at the tip thereof and the C axis can be controlled, and the spindle is indexed to a required angular position according to a command from the NC device. And the C-axis control and the X-axis control of the tool post can be synchronized. Inside the NC device, is the data of the measuring device of the spindle indexing position stored as continuous data by the interpolation function?
The main shaft is rotated at a very low speed and the continuous displacement output of the device is stored in correspondence with the angle. It also includes a storage unit for this data, a comparison calculation unit for obtaining the difference in error from the true circle, a correction program creation unit for using this difference as program data, and a correction program storage unit.

次に加工手順を第5図のフローチャートにもとづいて
説明する。
Next, the processing procedure will be described based on the flowchart of FIG.

ステップS1において薄肉加工物Wを旋盤のチャック3
に把握歪が発生しないか、発生してもごくわずかな状態
に軽く且測定圧で変位しない状態の極小圧力で第2図の
ように把握させる。
In step S1, the thin workpiece W is turned into the chuck 3 of the lathe.
As shown in Fig. 2, grasp strain is not generated, or even if it occurs, it is very slight and it is light and is not displaced by the measured pressure.

ステップS2において主軸をC軸制御して計測開始位置
に割出すとともに刃物台1をX,2軸制御して計測装置2
を工作物Wの外周に接触させ、各主軸割出位置の計測装
置2の出力を主軸割出角度に対応して主軸1回転分の真
円からの誤差を第4図のAのように記憶する。
In step S2, the main axis is controlled by the C axis to index the measurement start position, and the tool rest 1 is controlled by the X, 2 axes to measure the measuring device 2.
Is brought into contact with the outer circumference of the work W, and the output of the measuring device 2 at each spindle indexing position is stored in correspondence with the spindle indexing angle as shown in A of FIG. To do.

ステップS3において工作物を外さないでチャックの把
持力を上げて加工時の状態に強圧力で把持し工作物は第
3図の状態となる。
In step S3, the gripping force of the chuck is increased without removing the workpiece, and the workpiece is gripped with a strong pressure in the state during processing, and the workpiece becomes the state shown in FIG.

ステップS4においてこの状態で同様に把持の工作物W
の主軸割出角度に対応して主軸1回転分の真円からの誤
差を測定し第4図のBのように記憶する。
In step S4, the workpiece W similarly gripped in this state
The error from the true circle corresponding to one rotation of the spindle is measured in accordance with the spindle indexing angle of and is stored as shown in B of FIG.

ステップS5においてNC装置内の比較演算部において真
円からの誤差Bから真円からの誤差Aを減算して差を算
出する。
In step S5, the difference is calculated by subtracting the error A from the true circle from the error B from the true circle in the comparison operation unit in the NC device.

ステップS6において両真円からの誤差の差をプログラ
ムデータとして補正加工プログラムCを作成し記憶す
る。ステップS7において補正加工プログラムCにより主
軸回転と刃物台のX軸を同期制御して非真円切削加工を
行う。所定の切削終了によりチャック3の把握を開放す
ると薄肉の工作物Wは弾性復元して外径はほぼ真円状態
となる。
In step S6, the correction machining program C is created and stored with the difference between the errors from both true circles as program data. In step S7, the correction machining program C synchronously controls the rotation of the spindle and the X-axis of the tool rest to perform non-round cutting. When the grasping of the chuck 3 is released after the predetermined cutting is completed, the thin-walled work W is elastically restored and the outer diameter becomes almost a perfect circle.

効果 上述のようであるので本発明は以下の効果を奏する。Effects As described above, the present invention has the following effects.

薄肉工作物でも標準チャックが使用できて経済的であ
り強力把握が可能となり重切削,荒仕上げ加工がワンチ
ャックで可能で汎用性が高く高能率加工ができる。さら
に把握時の爪の当たり具合による把握誤差に無関係で極
めて良い真円が安定して実現できる。
Even for thin-walled workpieces, the standard chuck can be used, which is economical and enables strong gripping, and heavy cutting and rough finishing can be done with one chuck, making it versatile and highly efficient. Furthermore, an extremely good perfect circle can be stably realized irrespective of the grasping error due to the degree of hitting of the nail during grasping.

又長手方向でチャックによる歪みが異なる場合は長手
で何ケ所かに上記方法で測定しプログラムすれば長いワ
ークでも真円,円筒度とも良好な加工が可能である。
Further, when the distortion due to the chuck is different in the longitudinal direction, it is possible to perform good machining on both a perfect work and a cylindricity even if the work is long by measuring and programming at several places along the length by the above method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は工作物の計測状態説明図、第2図はチャックの
軽把握の工作物状態図、第3図は加工時の強力把握の工
作物状態図、第4図は把持工作物の真円からの誤差を表
す図、第5図は加工手順を示す図、第6図は従来の加工
手順を示す図である。 1……刃物台、2……計測装置 3……チャック、W……工作物
FIG. 1 is an explanatory view of the measurement state of the workpiece, FIG. 2 is a state diagram of the workpiece with a light grasp of the chuck, FIG. 3 is a state diagram of the workpiece with a strong grasp during machining, and FIG. FIG. 5 is a diagram showing an error from a circle, FIG. 5 is a diagram showing a machining procedure, and FIG. 6 is a diagram showing a conventional machining procedure. 1 ... Turret, 2 ... Measuring device 3 ... Chuck, W ... Workpiece

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】NC制御の旋盤,研削盤等のC軸制御可能な
主軸のチャックに把持した工作物を歪が殆ど発生しない
状態での極低圧力で把握したときの工作物を判定方向寸
法計測可能な計測装置により測定した真円からの誤差
と、その把握状態から把握力を大きくした加工時の状態
の強圧力で把握したときの工作物を計測した真円からの
誤差の両真円からの誤差の差をプログラムデータとして
主軸の回転と工具の半径方向送りを同期制御しこのプロ
グラムデータにもとづき非真円加工を行い把持開放後に
真円をうることを特徴とする薄肉工作物の加工方法。
1. A judgment direction dimension of a workpiece grasped at a chuck of a spindle capable of controlling C-axis such as an NC-controlled lathe and a grinder at an extremely low pressure in a state where almost no distortion occurs. Both the true circle of the error from the true circle measured by a measuring device that can measure and the error from the true circle of the workpiece when grasped by strong pressure in the state of machining where the grasping force is increased from the grasped state The difference between the error from the data is used as program data to control the rotation of the spindle and the radial feed of the tool synchronously, and based on this program data, non-round machining is performed and a thin circle is obtained after gripping is released. Method.
JP19839890A 1990-07-26 1990-07-26 Thin-walled workpiece processing method Expired - Fee Related JP2686844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19839890A JP2686844B2 (en) 1990-07-26 1990-07-26 Thin-walled workpiece processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19839890A JP2686844B2 (en) 1990-07-26 1990-07-26 Thin-walled workpiece processing method

Publications (2)

Publication Number Publication Date
JPH0482646A JPH0482646A (en) 1992-03-16
JP2686844B2 true JP2686844B2 (en) 1997-12-08

Family

ID=16390471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19839890A Expired - Fee Related JP2686844B2 (en) 1990-07-26 1990-07-26 Thin-walled workpiece processing method

Country Status (1)

Country Link
JP (1) JP2686844B2 (en)

Also Published As

Publication number Publication date
JPH0482646A (en) 1992-03-16

Similar Documents

Publication Publication Date Title
US4885874A (en) Method of grinding two or more cams of a camshaft
JP6881725B2 (en) Work processing method, spindle angle correction device and compound lathe
JP2686844B2 (en) Thin-walled workpiece processing method
JPS6243805B2 (en)
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
JP2020019126A (en) Automatic deburring and/or edge finishing device, and automation method of deburring and/or edge finishing
JPH0557564A (en) Machining method of thin-walled ring work
JPH05185368A (en) Grinding wheel shaping method
JPH05138438A (en) Automatic aligning method for phase of screw thread and device therefor
JP3826570B2 (en) NC lathe
JP3357083B2 (en) Automatic processing equipment
JPH08197384A (en) Tip position correction device of rotating tool
JPH03161248A (en) Indexing control device for tool rest of nc lathe
JPH06246589A (en) Noncircular workpiece error correcting method by in-machine measurement
JP2597219B2 (en) NC grinding machine
JPS632651A (en) Automatic detecting method for eccentric position of eccentric shaft
JP3812869B2 (en) Cylindrical grinding method and apparatus
JPH0711841Y2 (en) Positioning control device by monitoring the load of the feed motor
JP2696287B2 (en) High precision thin cylinder processing method
JPH056847B2 (en)
JPH06289923A (en) Automatic teaching method for robot
JPS6254653A (en) Phase alignment method
JP2941029B2 (en) Numerically controlled grinding machine
JPH055633B2 (en)
JPS6099545A (en) Machine tool

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees