JPS6099545A - Machine tool - Google Patents

Machine tool

Info

Publication number
JPS6099545A
JPS6099545A JP20495883A JP20495883A JPS6099545A JP S6099545 A JPS6099545 A JP S6099545A JP 20495883 A JP20495883 A JP 20495883A JP 20495883 A JP20495883 A JP 20495883A JP S6099545 A JPS6099545 A JP S6099545A
Authority
JP
Japan
Prior art keywords
grindstone
program
workpiece
machining
manual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20495883A
Other languages
Japanese (ja)
Inventor
Fumito Okino
文人 興野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20495883A priority Critical patent/JPS6099545A/en
Publication of JPS6099545A publication Critical patent/JPS6099545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4166Controlling feed or in-feed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34365After interrupt of operation, do other task and go on - resume operation

Abstract

PURPOSE:To facilitate the working over the working precision of a machine system according to necessity by intercepting the execution of a program and inserting the manual operation independent from an input value and permitting the continuation of the execution of the program after the manual operation. CONSTITUTION:An operator transmits the insertion instruction for manual cutting-in operation from an operating panel and retreats 42 a grindstone to XTEMP position close to a workpiece from the grinding completion stop position 41 and measures the dimension of a worked part. When the actually measured dimension is +DELTAX for an input value Xs, the grindstone is manually advanced to the XNOM=Xs-DELTAX position 43, and additional work for the workpiece is carried-out. After the additional work, the grindstone is held at XNOM position for a certain time, and each deflection of the grindstone 2, NC motor 3 for cutting-in of grindstone, and a feeding mechanism 4 is removed, and the grindstone is retreated 44 in order to measure the worked part of the workpiece again. When the allowable range for the actually measured dimension Xs is satisfied, the instruction for completing manual operation is transmitted from the operating panel, and a controller continues the execution of a program from the next step, and thus the precision free from the error due to thermal deformation, etc. of the machine can be obtained.

Description

【発明の詳細な説明】 本発明は工作機械に関し、プログラムによる一連の運転
の途中にオペレータによる手動操作全挿入することがで
きるように改良したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a machine tool, which is improved so that an operator can completely insert manual operations during a series of operations according to a program.

通常の数値制御工作機械は、予め作成しインプットされ
た一連の加工手順即ちプログラムに従って動作する。そ
のため、機械ヘッドの熱変形等があると、目的とする加
工寸法即ちプログラムインプット値に対し、実際の加工
物寸法に誤差を生じるという問題があった。このことを
第1図〜第3図によシ、説明する。第1図は数値制御工
作機械の一例としての円筒研削盤を示し、図中、1は工
作機械の本体、2は加工工具(砥石)、3は砥石切込用
の数値制御モータ、4は砥石切込用の送シ機構、5は加
工物(ワーク)のZ方向移動用数値制御モータ、6はワ
ークのZ方向移動用送シ機構、7と8はワーク保持用の
センタ、9はワーク、■Gは砥石2の周速、獅はワーク
9の周速、a、b、cはワーク9の被加工個所である。
A typical numerically controlled machine tool operates according to a series of machining procedures or programs that are created and input in advance. Therefore, if there is thermal deformation of the machine head, there is a problem in that an error occurs in the actual workpiece size with respect to the target machining size, that is, the program input value. This will be explained with reference to FIGS. 1 to 3. Figure 1 shows a cylindrical grinder as an example of a numerically controlled machine tool. In the figure, 1 is the main body of the machine tool, 2 is a processing tool (grinding wheel), 3 is a numerically controlled motor for cutting the grindstone, and 4 is a grinding wheel. A feeding mechanism for cutting, 5 a numerically controlled motor for moving the workpiece in the Z direction, 6 a feeding mechanism for moving the workpiece in the Z direction, 7 and 8 a center for holding the workpiece, 9 a workpiece, (2) G is the circumferential speed of the grindstone 2, ji is the circumferential speed of the workpiece 9, and a, b, and c are the parts of the workpiece 9 to be machined.

第2図は数値制御工作機械における制御装置の一例全示
し、図中、11は加工データの入出力装置、12は制御
装置、13は中央処理装置(CPU)、14はシステム
バス、15は加工データ入出力装置11用のインタフェ
ース、16はシステム制御用ブpグラムの収納メモリ(
ROM)、17は加工データプログラムの収納メモリ(
RAM)、18ti機械制御信号の出力用インタフェー
ス、19は機械制御信号の入力用インタフェースである
。なお、加工データ入出力装置11としては、オペレー
タが操作する操作盤、紙テープ入力装置、データ通信装
置などがある。システムバス14はアドレスバス、デー
タバス、コンl−ロールバスによシ措成される。更に、
第3図は従来の加工サイクルの一例とし、円筒研削にお
けるプランジサイクルに必要なデータを示している。第
3図においてXo#′i加工起動位置データ、XGFi
ワーク接触用の伝速送シ開始点データ、XBfi、粗研
削開始点データ、XFは精研削開始点データ、Xsは加
工仕上径データ、zLは加工個所のZ方向位置データ、
Foは砥石の早送多速度データ、FGはワーク接触用の
送シ速度データ、FBは粗研削の送シ速度データ、FF
は精研削の送シ速度データ、SRは粗研削終了時のタイ
マ時間データ、SFは精研削終了時のタイマ時間データ
、Xwはワークの前加工寸法径データである。
Figure 2 shows an example of a control device in a numerically controlled machine tool. In the figure, 11 is an input/output device for machining data, 12 is a control device, 13 is a central processing unit (CPU), 14 is a system bus, and 15 is a machining device. An interface for the data input/output device 11, and 16 a storage memory for system control programs (
ROM), 17 is a processing data program storage memory (
RAM), 18ti is an interface for outputting machine control signals, and 19 is an interface for inputting machine control signals. Note that the processed data input/output device 11 includes a control panel operated by an operator, a paper tape input device, a data communication device, and the like. The system bus 14 is comprised of an address bus, a data bus, and a control bus. Furthermore,
FIG. 3 is an example of a conventional machining cycle, and shows data necessary for a plunge cycle in cylindrical grinding. In Fig. 3, Xo#'i machining start position data, XGFi
Transmission transmission start point data for workpiece contact, XBfi, rough grinding start point data, XF is fine grinding start point data, Xs is machining finish diameter data, zL is Z direction position data of the machining location,
Fo is the rapid multi-speed data of the grinding wheel, FG is the feed speed data for contacting the workpiece, FB is the feed speed data for rough grinding, FF
is the fine grinding feed speed data, SR is the timer time data at the end of rough grinding, SF is the timer time data at the end of fine grinding, and Xw is the pre-machining dimension diameter data of the workpiece.

第3図よシ判るように従来の加工サイクルでは、機械(
工具)はXsの仕上径位置まで切込んだ後、82時間停
止してから後退する。この場合、プログラムインプット
された仕を径データXsは第1図の砥石2切込用の数値
制御モータ3及び送シ機構4で設定された座標位置であ
る。従って熱変形などで例えば第1図の機械本体(ベッ
ド)lが変形して砥石2とワーク9の相対位置に変化が
生じた場合は、その量がそのまま加工誤差となる。
As shown in Figure 3, in the conventional machining cycle, the machine (
After cutting to the finishing diameter position of Xs, the tool stops for 82 hours and then retreats. In this case, the cutting diameter data Xs inputted into the program is the coordinate position set by the numerically controlled motor 3 and feed mechanism 4 for cutting the grindstone 2 shown in FIG. Therefore, if, for example, the machine body (bed) l shown in FIG. 1 is deformed due to thermal deformation or the like and the relative position between the grindstone 2 and the workpiece 9 changes, the amount will directly become a machining error.

このように、従来の数値制御工作機械はプログラム運転
という、無人化を基本としていたため、熱変形2位置決
めのばらつき等全ての要素を含む機械系の加工精度よシ
も良い製品精度を得ることはできないという問題があっ
た。
In this way, conventional numerically controlled machine tools were based on program operation, which was unmanned, so it was difficult to obtain product accuracy that was better than the machining accuracy of mechanical systems, which includes all elements such as thermal deformation and positioning variations. The problem was that I couldn't do it.

この問題を解決するため従来は次のような(1)。In order to solve this problem, the following method (1) has been conventionally used.

(2)の方法がとられているが、それぞれ欠点がある。Method (2) has been used, but each has its drawbacks.

(1)加工終了後に加工部分の寸法全計測して誤差it
−求め、プログラムインプット値を修正したシ、座標原
点を補正する方法。
(1) After finishing machining, measure all the dimensions of the machined part and check for errors.
- How to calculate and correct program input values and correct the coordinate origin.

この方法では、現在加工中のワークは補正することがで
きないため、不良品となる欠点がある。
This method has the disadvantage that the workpiece currently being processed cannot be corrected, resulting in a defective product.

(2)電気的計測装置全併用して、加工中に到達寸法を
計測し、計測装置からの計測信号によって工作機械全制
御する方法。
(2) A method in which all electrical measuring devices are used to measure the final dimensions during machining, and the entire machine tool is controlled by measurement signals from the measuring devices.

この方法には高価な計測装置を必要とする欠点がある他
、数値制御プログラムの意味がなくなシ、またプログラ
ムの自由度が計測装置によって制限されるという欠点が
ある。
This method has the drawback of requiring an expensive measuring device, as well as the disadvantage that the numerical control program is meaningless, and the degree of freedom of the program is limited by the measuring device.

本発明は上述した従来技術の欠点に銑み、プログラム運
転中においても必要に応じて機械系の加工精度よシも良
い精度でワークを簡単且つ安価に加工することができる
工作機械を提供することを目的とする。
The present invention addresses the above-mentioned drawbacks of the prior art and provides a machine tool that can easily and inexpensively process a workpiece with an accuracy better than that of a mechanical system, if necessary, even during program operation. With the goal.

この目的を達成する本発明の工作機械の構成は、プログ
ラムインプットされた一連の加工手順で運転される工作
機械において、プログラム運転を途甲で中断しプログラ
ムインプット値とは無関係なオペレータによる手動運転
動作を挿入することができる機能と手動運転動作の後に
再度プログラム運転を継続する機能とを有する制御装置
金具えたこと全特徴とする。
The configuration of the machine tool of the present invention that achieves this objective is such that, in a machine tool that is operated according to a series of machining procedures inputted into a program, the program operation is interrupted at a certain point, and manual operation is performed by an operator unrelated to the program input values. The main feature is that the control device has the function of inserting the program and the function of continuing the program operation again after the manual operation operation.

本発明によれば、プログラム運転の自動サイクル中に、
一旦工具全一定量後退させ、それ以後は再度オペレータ
がサイクル継続の指示を与えるまでの間は、オペレータ
による手動切込動作などの手動操作が可能となる。従っ
て、機械系の加工精度で十分な加工個所に対しては連続
的に自動加工を進めれば良く、高精度を要求される加工
個所に対してはマイクロメータ等の汎用の簡単な計測器
を用いてオペレータが加工寸法を測定し、必要量の追加
加工を手動操作で行うことができ、熱変形などによる誤
差のない高い加工精度が得られる。
According to the invention, during the automatic cycle of programmed operation,
Once the entire tool is retracted by a certain amount, the operator can perform manual operations such as manual cutting operations until the operator again issues an instruction to continue the cycle. Therefore, continuous automatic machining is sufficient for areas where mechanical machining accuracy is sufficient, and general-purpose simple measuring instruments such as micrometers are used for areas that require high precision. This allows the operator to measure the machining dimensions and manually perform additional machining of the required amount, resulting in high machining accuracy without errors due to thermal deformation, etc.

以下、本発明の一実施例を第4図〜第6図によシ説明す
る。第4図は円筒研削におけるプランジ加工を例にとシ
、途中に手動操作を含む加工サイクルの例を示す。なお
、第4図中で第3図と同じものには同符号を付しである
。第5図は第4図の加工サイクルの例を実現するプログ
ラムデータ構成の例を示す。但し、位置データは目標値
を示すと共に移動命令を兼ねる。第6図は手動操作全可
能とする処理のフローチャートを示す。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 6. FIG. 4 shows an example of a machining cycle including manual operation in the middle, taking plunge machining in cylindrical grinding as an example. In FIG. 4, the same parts as in FIG. 3 are given the same reference numerals. FIG. 5 shows an example of a program data structure for realizing the example machining cycle shown in FIG. However, the position data indicates the target value and also serves as a movement command. FIG. 6 shows a flowchart of processing to enable full manual operation.

第1図〜第3図を参照しながら第4図に沿って本発明の
一笑施例葡説明する。
An embodiment of the present invention will be explained along with FIG. 4 while referring to FIGS. 1 to 3.

(1)第4図における加工起動40から研削後の停止4
1までのサイクルは第3図に示した従来のプログラム運
転と同じである。
(1) From machining start 40 to stop 4 after grinding in Fig. 4
The cycles up to 1 are the same as the conventional program operation shown in FIG.

(2)第4図における研削後の停止41以後44の操作
までの破線で示したサイクルはオペレータによる手動操
作を示す。即ち、 オペレータ紘第2図の加工データ入出力装置11例えば
操作盤によって手動切込操作の挿入指令を行い、研削終
了停止41の状態からワークよ”) XTEMP 位置
への砥石後退42にさせ、マイク目メータなどによルワ
ーク加工部分の寸法測定を行う。この時の実測寸法は仕
上径のプログラムインプット値Xsに対し+△Xであっ
たとする。
(2) In FIG. 4, the cycle indicated by a broken line from the post-grinding stop 41 to the operation 44 indicates manual operation by the operator. That is, the operator issues a command to insert a manual cutting operation using the machining data input/output device 11 in FIG. The dimensions of the workpiece machined part are measured using an eye meter, etc. It is assumed that the actual dimension at this time is +△X with respect to the program input value Xs of the finished diameter.

オペレータは上記のΔχ全除去するため、砥石を XN0M :xs−△X の位置43まで手動前進させ、ワークの追加工全行う。The operator uses the grinding wheel to remove all of the above Δχ. XN0M: xs-△X Manually advance the workpiece to position 43 and perform all additional work on the workpiece.

但し、XS e XTEMP e XN0Mは全て第1
図の工具系即ち砥石切込用数値制御モータ3及び送シ機
構4に設定された座標系における砥石2の現在値全第2
図の加工データ入出力装置11上の表示装置を介してオ
ペレータが読み取った値である。
However, XS e XTEMP e XN0M are all 1st
The current value of the grindstone 2 in the coordinate system set in the tool system shown in the figure, that is, the numerically controlled motor 3 for cutting the grindstone and the feed mechanism 4
This is the value read by the operator via the display device on the processed data input/output device 11 shown in the figure.

追加工の後、オペレータは43のXN0M位置で一定時
間砥石ヲイキ、持して第1図の工具系即ち砥石2.砥石
切込用数値制御モータ3及び送シ機構4の撓みを十分除
去し、再度ワークの加工部分寸法全計測するために砥石
後退44を行う。この場合、砥石後退位置が42の位置
と同じである必要はない。
After the additional machining, the operator holds the grinding wheel at the XN0M position of 43 for a certain period of time, and then moves the tool system shown in Fig. 1, that is, grinding wheel 2. After sufficiently removing the deflection of the numerical control motor 3 for cutting the grindstone and the feed mechanism 4, the grindstone is retreated 44 in order to measure the entire dimension of the machined part of the workpiece again. In this case, the grindstone retreat position does not need to be the same as the position 42.

計測の結果、実測寸法が仕上径Xsの許容範囲を外れた
場合は、再度追加工を行う。
As a result of the measurement, if the actual measurement size is outside the allowable range of the finished diameter Xs, additional machining is performed again.

なお、手動による砥石の前進、後退は第2図の加工デー
タ入出力装置11t−介してパルス発生器による押ボタ
ン信号をソフトウェア処理によシ移動指令とする等があ
る。
Note that manual advancement and retraction of the grindstone may be performed by using a push button signal from a pulse generator as a movement command through software processing via the machining data input/output device 11t shown in FIG.

(3) 加工部分の実測寸法が均の許容範囲を満足する
場合は、オペレータは第2図の加工データ入出力装置1
1例えば操作盤によシ手動操作完了の指令を与える。こ
の指令信号により制御装置は次のステップよシブログラ
ム全継続する。例えば、次の位置xlへFoで早送シさ
れる。
(3) If the actual measured dimensions of the machining part satisfy the tolerance range, the operator should use the machining data input/output device 1 shown in Figure 2.
1. For example, give a command to the operation panel to complete the manual operation. This command signal causes the control device to continue the entire program to the next step. For example, it is fast-forwarded to the next position xl using Fo.

第5図のプログラムデータで説明すると、ステップ51
にワーク接触用低速送シ開始点XGまで砥石をFoで早
送りする命令があシ、次いで粗研削開始点XRまで速度
FGで砥石を移動する命令、精研削開始点xFまで速度
FRで粗研削させる命令がある。更にステップ52に粗
研削後のSR待時間タイマ命令があシ、次いで仕上径X
sまで速度FFで希研削きせる命令、精研削後の82時
間のタイマ命令があり、次にステップ53として手動切
込操作全可能とする命令M1ステップ54から手動切込
操作の完了後に再度連続自動運転に入る命令XI 、 
FOがある。
To explain using the program data in FIG. 5, step 51
There is an instruction to rapidly move the grindstone at Fo to the low-speed feed start point XG for contacting the workpiece, then an instruction to move the grindstone at speed FG to the rough grinding start point XR, and coarse grinding at speed FR to the fine grinding start point xF. I have an order. Furthermore, in step 52, there is an SR waiting time timer command after rough grinding, and then the finishing diameter
There is a command to perform fine grinding at speed FF up to s, a timer command for 82 hours after fine grinding, and then, in step 53, a command to enable full manual cutting operation M1 From step 54, after the manual cutting operation is completed, continuous automatic Order to enter operation XI,
There is an FO.

ステップ530ザイクル途中に手動切込操作を可能とす
る命令を第6図によシ説明する。
Step 530 A command that enables manual cutting operation during the cycle will be explained with reference to FIG.

第2図の加工データ入出力装置11例えば操作盤を介し
てオペレータが操作ハンドルや押ボタンなどによシ手動
操作挿入の信号全入力した場合、ステップ61として手
動切込操作の挿入が有効であるとする処理を行う。一般
にプログラム自動運転時には、加工データ入出力装置に
付随する手動操作回路は無効とされる。つまシ、オペレ
ータが誤って操作ノンドル等に釉れ、そのために工作機
械がプログラム指令以外の動作を行うことを防ぐように
なっている。従って、プログラムが粗研削後の停止状態
に入っている場合などに、手動切込操作の挿入が有効と
される。ステップ62は手動切込に対応する処理會示し
、指令パルス分の移動処理、移動に伴う現在値の更新な
どがある。なお、これらの処理が別口路で独立して行わ
nる場合は、本ループ中でのと牡らの処理は不要である
。ステップ63ではオペレータが第2図の操作盤など加
工データ入出力装置11を介して指令する手動切込操作
完了の意志を判別する。ステップ64は先のステップ6
1の逆処理であル、研削中などにオペレータが手動切込
操作の指令を出してもこれを無効とする。
When the operator inputs all the signals for manual operation insertion through the operation handle, pushbutton, etc. via the processing data input/output device 11 in FIG. Perform the processing as follows. Generally, during programmed automatic operation, the manual operation circuit associated with the machining data input/output device is disabled. This is designed to prevent the machine tool from performing operations other than those specified by the program if the operator accidentally glazes the operating nozzle or the like. Therefore, insertion of a manual cutting operation is effective when the program is in a stopped state after rough grinding. Step 62 is a processing system corresponding to manual cutting, which includes movement processing for the command pulse and updating of the current value accompanying movement. Note that if these processes are performed independently through separate routes, the other processes in this loop are unnecessary. In step 63, it is determined whether the operator intends to complete the manual cutting operation commanded via the machining data input/output device 11 such as the operation panel shown in FIG. Step 64 is the previous step 6
In the reverse process of step 1, even if the operator issues a command for manual cutting operation during grinding, it is invalidated.

第6図に示す手動切込操作を可能とする処理は、ン7ト
ウエア、ハードウェアiずれでも実現することができ、
本発明はこれらの別を問わない。この処理は第3図の制
御装置12に組込まれる。
The process that enables the manual cutting operation shown in FIG. 6 can be realized by both software and hardware.
The present invention does not care about these differences. This process is incorporated into the control device 12 shown in FIG.

以上説明した如く、本発明の工作機械によれば、外部計
測信号による制御ではなく、従来の無人化を指向した数
値制御とは逆にプログラム運転の途中の必要個所はオペ
レータが介在することができるので、機械の熱変形など
による誤差のない高い加工精度全簡単且つ安価に得られ
る。
As explained above, according to the machine tool of the present invention, the control is not based on external measurement signals, but rather allows the operator to intervene at necessary points during program operation, contrary to conventional numerical control aimed at unmanned operation. Therefore, high machining accuracy without errors caused by thermal deformation of the machine, etc. can be obtained easily and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は数値制御工作機械の一例と・してあげた円筒研
削盤の簡略構成図、第2図は制御装置の一例を示すブロ
ック構成図、第3図はプログラム運転の一例を説明する
ための加工サイクルの図、第4図はプログラム運転の途
中に手動切込操作を含む加工サイクルの図、第5図はそ
のプログラムデータの構成例を示す図、第6図は手動切
込操作を可能とする処理のフローチャートである。 図 面 中、 11は加工データ入出力装置、 12は制御装置、 13は中央処理装置、 16はシステム制御用プログラムの収納メモリ、 18社加加工−タプ算ダラムの収納メモリである。 第5図 第6図
Figure 1 is a simplified configuration diagram of a cylindrical grinder as an example of a numerically controlled machine tool, Figure 2 is a block configuration diagram showing an example of a control device, and Figure 3 is for explaining an example of program operation. Figure 4 is a diagram of a machining cycle that includes manual cutting operation during program operation, Figure 5 is a diagram showing an example of the configuration of the program data, and Figure 6 is a diagram that allows manual cutting operation. FIG. In the drawing, 11 is a processing data input/output device, 12 is a control device, 13 is a central processing unit, 16 is a storage memory for a system control program, and 18 is a storage memory for machining and processing by 18 companies. Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] プ日グラムインプットされた一連の加工手順で運転され
る工作機械において、プログラム運転を途中で中断しプ
ログラムインプット値とは無関係なオペレータによる手
動運転動作を挿入することができる機能と手動運転動作
の後に再度プログラム運転全継続する機能とを有する制
御装置を具えたこと全特徴とする工作機械。
In a machine tool that is operated according to a series of machining steps input in a program program, there is a function that allows the operator to interrupt the program operation in the middle and insert a manual operation operation by the operator that is unrelated to the program input value, and a function that allows the operator to insert a manual operation operation that is unrelated to the program input value. A machine tool characterized in that it is equipped with a control device that has the function of continuing full program operation again.
JP20495883A 1983-11-02 1983-11-02 Machine tool Pending JPS6099545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20495883A JPS6099545A (en) 1983-11-02 1983-11-02 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20495883A JPS6099545A (en) 1983-11-02 1983-11-02 Machine tool

Publications (1)

Publication Number Publication Date
JPS6099545A true JPS6099545A (en) 1985-06-03

Family

ID=16499121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20495883A Pending JPS6099545A (en) 1983-11-02 1983-11-02 Machine tool

Country Status (1)

Country Link
JP (1) JPS6099545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198742A (en) * 1989-01-26 1990-08-07 Sodick Co Ltd Nc device
US5485366A (en) * 1992-01-10 1996-01-16 Mitsubishi Denki Kabushiki Kaisha Sequence controller including error correction and method therefor
CN104097126A (en) * 2014-07-20 2014-10-15 苏州塔可盛电子科技有限公司 Automatic regulating system for wood sanding machine
JP2022159935A (en) * 2021-04-05 2022-10-18 Dmg森精機株式会社 Machine tool, information processor and information processing program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198742A (en) * 1989-01-26 1990-08-07 Sodick Co Ltd Nc device
US5485366A (en) * 1992-01-10 1996-01-16 Mitsubishi Denki Kabushiki Kaisha Sequence controller including error correction and method therefor
CN104097126A (en) * 2014-07-20 2014-10-15 苏州塔可盛电子科技有限公司 Automatic regulating system for wood sanding machine
JP2022159935A (en) * 2021-04-05 2022-10-18 Dmg森精機株式会社 Machine tool, information processor and information processing program

Similar Documents

Publication Publication Date Title
KR950000839B1 (en) Machine tool numerical controller with a trouble stop function
EP0352635B1 (en) Numerically controlled grinding machine
US5562526A (en) Method and apparatus for grinding a workpiece
US4513380A (en) Method of tool recovery in threadcutting apparatus
US4502125A (en) Numerical controller for an angular slide grinding machine
US4773187A (en) Numerically controlled grinding machine
EP0129092A2 (en) Numerical control device for use with a machine tool and a machine tool having such a device
US4268949A (en) Tracing milling machine
EP0505836A2 (en) Method and apparatus for dressing an angular grinding wheel
JPS6099545A (en) Machine tool
JPS62163109A (en) Numerical controller
US5654618A (en) Process for the two-dimensional determination of a work-area contour for lathes
JPS61214947A (en) Nc controller having automatic return function
JP2926524B2 (en) Numerical controller with trial cutting function
JP2685832B2 (en) Numerically controlled grinding machine
JP2944947B2 (en) Grinding method of numerically controlled cylindrical grinder
JPS6125753A (en) Operation of automatic machine tool
JPH04131910A (en) Method and device for setting work coordinate shift variable of numerically controlled lathe
JPS6130356A (en) Working in n.c. lathe
JPS58132606A (en) Apparatus for setting coordinate value of fixed position of end surface
JPH033750A (en) Numerical control device having control function of plural bracing device
JP2940975B2 (en) Numerically controlled grinding machine
JPS60197345A (en) Nail molding device
JPS63134170A (en) Grinding method for numerically controlled external cylindrical grinding machine
JP2663931B2 (en) Graphic display method of numerical controller