JPS6130356A - Working in n.c. lathe - Google Patents

Working in n.c. lathe

Info

Publication number
JPS6130356A
JPS6130356A JP15269284A JP15269284A JPS6130356A JP S6130356 A JPS6130356 A JP S6130356A JP 15269284 A JP15269284 A JP 15269284A JP 15269284 A JP15269284 A JP 15269284A JP S6130356 A JPS6130356 A JP S6130356A
Authority
JP
Japan
Prior art keywords
machining
reference position
workpiece
coordinate
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15269284A
Other languages
Japanese (ja)
Inventor
Yasu Kobayashi
小林 鎮
Kazuki Uemura
和樹 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazaki Mazak Corp
Original Assignee
Yamazaki Mazak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Mazak Corp filed Critical Yamazaki Mazak Corp
Priority to JP15269284A priority Critical patent/JPS6130356A/en
Publication of JPS6130356A publication Critical patent/JPS6130356A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • G05B19/4015Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50291Multi-tool, several tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To permit the continuous working for a workpiece continuously in unmanned state by providing a standard-position correcting program memory and installing a Z-axis coordinate measuring means for the standard plane of a work separately from a tool. CONSTITUTION:A standard-position correcting program memory 5 into which a standard-position correcting program AMP is stored is installed, and the Z-axis coordinat measuring means for the standard plane of a work such as a touch sensor 12, etc., separately from a tool 17 is installed. After a work 16 is caught, the Z-axis cooridnate value of the standard planes such as the edge surface 16a, working surface 16c, side surface 16d, etc. of the work 16 is measured by the above-described Z-axis coordinate measuring means on the basis of the standard- position correcting program AMP, and the coordinate corrected value AX for the supposed standard position USP is obtained from the Z-axis coordinate value of the measured standard plane. Then, the working standard position RSO of the work 16 is set, and the working on the basis of the working program PRO is carried-out. Therefore, the working for the work 16 can be carried-out continuously in unmanned state.

Description

【発明の詳細な説明】 (a)、産業上の利用分野 本発明は数値制御旋盤において、チャッキングされたワ
ーク位置のZ軸方向のバラツキに応じて、加工基準位置
を変化させることの可能な数値制御旋盤における加工方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is a numerically controlled lathe that is capable of changing a machining reference position according to variations in the position of a chucked workpiece in the Z-axis direction. This article relates to machining methods in numerically controlled lathes.

(b)、従来の技術 従来、旋盤にワークを装着して加工する場合、。(b), conventional technology Conventionally, when processing a workpiece by mounting it on a lathe.

ワークのZ軸方向の端面を加工プログラム上の加工基準
位置(以下この「加工プログラム上の加工基準位置」を
「仮想基準位置」と称する。)として採用することが多
く行われている。こうした場合、加工プログラムに基づ
く加工は、仮想基準位置を基準に行われるので、ワーク
端面のZ座標が1仮想基準位置に一致することなくチャ
ッキングさ。
The end face of a workpiece in the Z-axis direction is often employed as a machining reference position on a machining program (hereinafter, this "machining reference position on a machining program" is referred to as a "virtual reference position"). In such a case, since the machining based on the machining program is performed based on the virtual reference position, the Z coordinate of the workpiece end face does not match one virtual reference position and the workpiece is chucked.

れている場合には(実際には、ワーク端面が仮想基準位
置に一致してチャッキングされている場合は少ない。)
、一度工具刃先をワーク端面に当てて、そのZ座標位置
を測定し、その値と予め設定された仮想基準位置との間
の誤差を補正して加工を行っていた。
(Actually, there are few cases where the end face of the workpiece is chucked in alignment with the virtual reference position.)
The tool tip is once applied to the end surface of the workpiece, its Z coordinate position is measured, and the error between that value and a preset virtual reference position is corrected for machining.

(C)0発明が解決しようとする問題点しかし、これで
は、ワークを加工する度毎に、オペレータは刃先をワー
クに当てて仮想基準位置を補正する必要が有り、極めて
繁雑な手間を必要とするばかりか、最近の加工作業の無
人化の趨勢にも反するものであった。また、刃先をワー
クに当てて補正を行う場合には、刃先が破損することを
防止するために工具を切削送りでワーク端面まで送る必
要が有り、かな9の時間を必要とする欠点が有った。
(C) 0 Problems to be solved by the invention However, with this method, each time a workpiece is machined, the operator needs to touch the cutting edge to the workpiece to correct the virtual reference position, which requires extremely troublesome work. Not only that, but it also went against the recent trend toward unmanned processing operations. In addition, when performing correction by applying the cutting edge to the workpiece, it is necessary to feed the tool to the end face of the workpiece by cutting feed in order to prevent the cutting edge from being damaged, which has the disadvantage of requiring 9 hours of time. Ta.

また、こうした不都合を解消するtこめに、ワーク端面
を仮想基準位置に一致するまで予備的に加工する方法も
有ったが、゛この方法は、ワ゛−りをいちいち測定する
必要が無いかわりに、ワーク端面を仮想基準位置に一致
させる前加工に多くの時間がかかるばかりか切削取代を
多く必要とし材料の無駄が生じる不都合が有った。
Additionally, in order to eliminate these inconveniences, there was a method in which the end face of the workpiece was preliminarily machined until it coincided with the virtual reference position, but this method eliminates the need to measure the radius each time. However, the pre-processing to align the end face of the workpiece with the virtual reference position not only takes a lot of time, but also requires a large amount of cutting allowance, resulting in wasted material.

本発明は、前述の欠点を解消すべく、ワークがチャッキ
ングされる度に工具をワークに接触させて手動で仮想基
準位置を補正するといった繁雑な作業を行う必要が無く
、従って、連続的にワークを無人状態で加工することが
出来、しかも座標測定に際して工具の破損等を気にする
必要がなく、座標測定を迅速に行うことが出来るばかり
か、加工プログラムの実行に先立って前加工を行う必要
の無い、数値制御旋盤における加工方法を提供すること
を目的とするものである。
In order to solve the above-mentioned drawbacks, the present invention eliminates the need to manually correct the virtual reference position by bringing a tool into contact with the work each time the work is chucked, and therefore continuously Workpieces can be machined unattended, and there is no need to worry about tool damage when measuring coordinates. Not only can coordinates be measured quickly, but pre-machining can be performed before executing the machining program. The purpose of this invention is to provide a machining method in a numerically controlled lathe that does not require any processing.

(d)6問題点を解決するための手段 即ち、本発明は、基準位置補正プログラムを格納した基
準位置補正プログラムメモリを設けると共に、工具とは
別途にワークの基準面のZ座標測定手段を設け、ワーク
をチャッキングした後、加工プログラムに基づく加工を
該ワークに対して。
(d) Means for solving the 6 problems, that is, the present invention provides a reference position correction program memory storing a reference position correction program, and also provides a means for measuring the Z coordinate of the reference surface of the workpiece separately from the tool. , After chucking the workpiece, process the workpiece based on the machining program.

行う前に、前記基準位置補正プログラムメモリから読み
出された基準位置補正プログラムに基づいて該ワークの
基準面のZ座標値をZ座標測定手段により測定し、測定
されtコ基準面のZ座標値から前記仮想基準位置に対す
る座標補正値を求め、該座標補正値に基づいて当該ワー
クについての加工基準位置を設定し、該加工基準位置に
基づいて加工プログラムに基づく加工を行うようにして
構成される。
Before performing the measurement, the Z coordinate value of the reference surface of the workpiece is measured by the Z coordinate measuring means based on the reference position correction program read from the reference position correction program memory, and the Z coordinate value of the measured reference surface is determined. A coordinate correction value for the virtual reference position is determined from the coordinate correction value, a machining reference position is set for the workpiece based on the coordinate correction value, and machining is performed based on the machining program based on the machining reference position. .

(e)0作用 上記した構成により、本発明は、基準位置補正プログラ
ムに基づいてZ座標測定手段がワークの基準面のZ座標
を測定し、その結果により、加工プログラムを実行すべ
き加工基準位置を求め、その求められた加工基準位置に
基づいて加工プログラムによる加工を実行してゆくよう
に作用する。
(e) 0 effect With the above-described configuration, the Z coordinate measuring means measures the Z coordinate of the reference surface of the workpiece based on the reference position correction program, and based on the result, the machining reference position at which the machining program should be executed is determined. is determined, and the machining is executed according to the machining program based on the determined machining reference position.

(f)、実施例 以下、本発明の実施例を図面に基づき説明する。(f), Example Embodiments of the present invention will be described below based on the drawings.

第1図は本発明による一加工方法の一実施例が適用され
た数値制御旋盤の一例を示す制御ブロック図、第2図乃
至第4図は本発明による加工基準位置の設定態様を示す
概略図である。
FIG. 1 is a control block diagram showing an example of a numerically controlled lathe to which an embodiment of a machining method according to the present invention is applied, and FIGS. 2 to 4 are schematic diagrams showing how to set a machining reference position according to the present invention. It is.

数値制御旋盤1は、第1図に示すように、主制御部2を
有しており、主制御部2にはバス線3を介して基準位置
補正プログラムメモリ5、刃物台駆動制御部6、タッチ
センサ駆動制御部7、加工基準位置設定部9及び加工プ
ログラムメモリー0等が接続している。刃物台駆動制御
部6には刃物台11が、タッチセンサ駆動制御部7には
タッチセンサー2がそれぞれ各制御部6.7によりZ軸
及びX軸方向、即ち矢印A1B方向及びC,D方向に移
動駆動自在に設けられており、タッチセンサ12には加
工基準位置設定部9に接続された。
As shown in FIG. 1, the numerically controlled lathe 1 has a main control section 2, and the main control section 2 is connected via a bus line 3 to a reference position correction program memory 5, a turret drive control section 6, A touch sensor drive control section 7, a machining reference position setting section 9, a machining program memory 0, etc. are connected. The turret drive control section 6 has a turret 11, and the touch sensor drive control section 7 has a touch sensor 2, which are controlled by respective control sections 6.7 in the Z-axis and X-axis directions, that is, in the direction of arrows A1B and C and D. The touch sensor 12 is connected to the processing reference position setting section 9 .

座標演算部13が接続している。また、加工基準位置設
定部9には加工基準位置座標値メモリー57パ が接続している。なお、番号16はチャッキングされた
ワークを現わす。
A coordinate calculation unit 13 is connected. Further, a machining reference position coordinate value memory 57 is connected to the machining reference position setting section 9. Note that the number 16 represents a chucked work.

数値制御旋盤1は以上のような構成を有するのて、数値
制御旋盤1によるワーク16の加工は“1、工i、ヶ5
A)%!J□。34.おゎえお工、。゛ダラムPROに
基づいて主制御部2が刃物台駆動制御部6を介して刃物
台11を、刃物台11に搭載された工具17と共に矢印
A、B及びC,D方向に移動駆動して行ってゆく。この
際、ワーク16に対する工具17の加工は、加工プログ
ラムPROが作成される際に基準′とされた仮想基準位
置USPを基準に実行され、従って何らの補正も行わな
い場合には、工具17は仮想基準位置USPを基準にし
て位置決めが行われる。そこで、主制御部2は、ワーク
16がチャックに装着されて、加工プログラムPROに
基づく加工が行われる前に、基準位置補正プログラムメ
モリ5がら基準位置補正プログラムAMPを読み出して
、基準位置の補正動作を実行する。
Since the numerically controlled lathe 1 has the above configuration, the machining of the workpiece 16 by the numerically controlled lathe 1 is "1, machining i, machining 5".
A)%! J□. 34. Oh my goodness. Based on Durham PRO, the main control section 2 drives the tool post 11 to move in the directions of arrows A, B, C, and D via the tool post drive control section 6 together with the tool 17 mounted on the tool post 11. I'm going to go. At this time, the machining of the workpiece 16 by the tool 17 is performed based on the virtual reference position USP that was used as the reference when the machining program PRO was created, and therefore, if no correction is made, the tool 17 Positioning is performed based on the virtual reference position USP. Therefore, before the workpiece 16 is mounted on the chuck and machining is performed based on the machining program PRO, the main control unit 2 reads out the reference position correction program AMP from the reference position correction program memory 5 and performs the correction operation for the reference position. Execute.

即ち、主制御部2ば基準位置補正プログラムAMPの指
示に基づいて、タッチセンサ駆動制御部7を駆動して、
タッチセンサ12を実際の加工基準位置R3Pが設定さ
れるへきワーク16の端面16 aに当接接触させる。
That is, the main control section 2 drives the touch sensor drive control section 7 based on the instructions of the reference position correction program AMP.
The touch sensor 12 is brought into contact with the end surface 16a of the cut work 16 where the actual machining reference position R3P is set.

タッチセンサ12がワーク端面16aに接触すると、信
号S1がタッチセンサ12から座標位置演算部13に出
力され、座標位置演算部13はその時点のタッチセンサ
12の、従ってワーク端面16aのZ座標値を演算して
、そのZ座標値Z9を加工基準位置設定部9に出力する
。加工基準位置設定部9は、加工プログラムPRO中の
仮想基準位置USPのZ座標値Zxと端面16aの座標
値Z とを比較し、座標補正値AXを(1)式により求
める。
When the touch sensor 12 comes into contact with the workpiece end surface 16a, a signal S1 is output from the touch sensor 12 to the coordinate position calculation section 13, and the coordinate position calculation section 13 calculates the Z coordinate value of the touch sensor 12 at that time, and hence of the workpiece end surface 16a. The calculated Z coordinate value Z9 is output to the processing reference position setting section 9. The machining reference position setting unit 9 compares the Z coordinate value Zx of the virtual reference position USP in the machining program PRO with the coordinate value Z of the end face 16a, and determines the coordinate correction value AX using equation (1).

AX=’Z6−Z、                
  ・・・・・・(1)座標補正値AXが求められたと
ころで、加工基準位置設定部9ばその座標補正値AXに
基づいて現在チャッキングされているワーク16に対す
る加工基準位置R3Pを、仮想基準位置USPを座標。
AX='Z6-Z,
(1) Once the coordinate correction value AX has been determined, the processing reference position setting unit 9 virtually sets the processing reference position R3P for the currently chucked workpiece 16 based on the coordinate correction value AX. Coordinate the reference position USP.

補正値AXに相当するだけZ軸方向にシフトさせる形で
設定し、その座標値を加工基準位置座標値メモリ15内
に格納する。
The coordinate value is set to be shifted in the Z-axis direction by an amount corresponding to the correction value AX, and the coordinate value is stored in the machining reference position coordinate value memory 15.

こうして、これから加工すべきワーク16についての加
工基準位置R3Pが設定されたところで、加工基準位置
設定部9は加工基準位置RS P。
In this way, when the machining reference position R3P for the workpiece 16 to be machined is set, the machining reference position setting section 9 sets the machining reference position RSP.

の設定完了信号S2を主制御部2に出力し、主−輝部2
は、それを受けて直ちに加工プログラムPROに基づく
加工を、仮想基準位置USPによらず、加工基準位置座
標値メモリ15内に格納された加工基準位置R3Pを基
準に実行する。すると、ワーク16はその端面に加工基
準位置R3Pが設定される形となるので、加ニブ四グラ
ムPROによる加工は、工具17が仮想基準位置USP
まで無駄な切削動作を行うことな(、直ちに端面16a
から開始される。
The setting completion signal S2 is output to the main control section 2, and
Immediately upon receiving this, the machining based on the machining program PRO is performed based on the machining reference position R3P stored in the machining reference position coordinate value memory 15, not based on the virtual reference position USP. Then, the workpiece 16 has a machining reference position R3P set on its end face, so when machining with the four-gr nib PRO, the tool 17 is set at the virtual reference position USP.
Do not perform unnecessary cutting operations until the end surface 16a is removed immediately.
It starts from.

ワーク16に対する加工プログラムPROに基づく加工
が終了し、ワーク16が取り外され、新たなワーク16
がチャッキングされると、主制御部2は前回のワーク1
6の場合と同様に、加工プログラムPROに基づく加工
を行う前に、基準位置補正プログラムAMPによる仮想
基準位置USPを加工基準位置R3Pに補正する動作を
行い、そこで加工プログラムPROによる加工を開始す
る。即ち、基準位置補正プログラムAMPによる加工基
準位置R8Pの設定動作は、ワーク16毎に行われるこ
とになる。
The machining based on the machining program PRO for the workpiece 16 is completed, the workpiece 16 is removed, and a new workpiece 16 is installed.
When the work 1 is chucked, the main control unit 2
As in case 6, before performing machining based on the machining program PRO, an operation is performed to correct the virtual reference position USP to the machining reference position R3P using the reference position correction program AMP, and then machining based on the machining program PRO is started. That is, the setting operation of the machining reference position R8P by the reference position correction program AMP is performed for each workpiece 16.

なお、上述の実施例はワ″−り16のZ座標測定手段と
してタッチセンサ12を用いた場合について述べたが、
Z座標の測定手段としてはワーク16の端面16a等の
基準面の座標が測定出来る限りどのような物でもよく、
レーザ等を用いた非接触的な手段でも良いことは勿論で
ある。
In addition, although the above-mentioned embodiment described the case where the touch sensor 12 was used as the Z coordinate measuring means of the workpiece 16,
Any means for measuring the Z coordinate may be used as long as it can measure the coordinates of a reference surface such as the end surface 16a of the workpiece 16.
Of course, non-contact means using a laser or the like may also be used.

また、第2図に、仮想基準位置USPよりもワーク端面
16a等の基準面が図中左方に有り、座標補正値AXが
負となる場合について示す。更に、第3図にはワーク1
6の基準面をワーク16端面16aにとらず、別の側面
16dに設定した例を示す。このように、Z座標の測定
手段が測定するワーク16の基準面は、必ずしも加工基
準位置R3Pが設定される端面16aに一致している必
要は無く、加工基準位置R8Pに対してZ軸方向に一定
の距1iLだけ離れていても、その距離りが既知の値で
あれば、該距離りを考慮して座標補正値AXを求めれば
よく、何らの問題も無い。また、第4図に示すように、
ワーク16の基準面と・して、第1工程により加工され
た加工面16cを採用し、その加工面16cを基準にし
て、ワーク反転後の第2工程の加工基準位置R3Pを設
定する際に、本発明を適用すると、ワーク16反転後の
第2工程の開始を迅速に行うことが出来るので、極めて
有効である・ (g)8発明の効果    ″ 以上、説明したように、本発明によれば、基準位置補正
プログラムAMPを格納した基準位置補正プログラムメ
モリ5を設けると共に、工具17とは別途にタッチセン
サ12等のワークの基準面のZ座標測定手段を設け、ワ
ーク16をチャッキングした後、加工プログラムPRO
に基づく加工を該ワーク16に対して行う前に、基準位
置補正プログラムAMPに基づいて該ワーク16の端面
16a、加工面16c1側面16d等の基準面のZ座標
値を前記Z座標測定手段により測定し、測定された基準
面のZ座標値から仮想基準位置Uspに対する座標補正
値AXを求め、該座標補正値AXに基づいて当該ワーク
16についての加工基準位置R3Pを設定し、該加工基
準位置R8Pに基づいて加工プログラムPROに基づく
加工を行うように構成しtこので、オペレータがワーク
16がチャッキングされる度に工具17をワーク16に
接触させて手動で仮想基準位置を補正するといった繁雑
な作業を行う必要が無くなり、連続的にワーク16を無
人状態で加工することが出来る。
Further, FIG. 2 shows a case where the reference plane such as the workpiece end surface 16a is located to the left of the virtual reference position USP in the figure, and the coordinate correction value AX is negative. Furthermore, in Figure 3, workpiece 1
An example is shown in which the reference plane of No. 6 is not set at the end surface 16a of the workpiece 16, but is set at another side surface 16d. In this way, the reference surface of the workpiece 16 measured by the Z coordinate measuring means does not necessarily have to coincide with the end surface 16a where the machining reference position R3P is set, but may be in the Z-axis direction with respect to the machining reference position R8P. Even if they are separated by a certain distance 1iL, if the distance is a known value, the coordinate correction value AX can be determined by taking the distance into consideration, and there will be no problem. Also, as shown in Figure 4,
The machining surface 16c machined in the first step is used as the reference surface of the workpiece 16, and when setting the machining reference position R3P for the second step after reversing the workpiece, using the machining surface 16c as a reference. When the present invention is applied, the second process can be started quickly after the workpiece 16 is reversed, so it is extremely effective. For example, a reference position correction program memory 5 storing a reference position correction program AMP is provided, and a means for measuring the Z coordinate of the reference surface of the workpiece, such as a touch sensor 12, is provided separately from the tool 17, and after chucking the workpiece 16, , machining program PRO
Before performing machining on the workpiece 16 based on the reference position correction program AMP, the Z coordinate values of the reference surfaces such as the end surface 16a, the processed surface 16c1 and the side surface 16d of the workpiece 16 are measured by the Z coordinate measuring means based on the reference position correction program AMP. Then, a coordinate correction value AX for the virtual reference position Usp is determined from the Z coordinate value of the measured reference plane, and a machining reference position R3P for the workpiece 16 is set based on the coordinate correction value AX, and the machining reference position R8P is set. The configuration is such that machining is performed based on the machining program PRO based on the processing program PRO.This eliminates the need for the operator to manually correct the virtual reference position by bringing the tool 17 into contact with the workpiece 16 each time the workpiece 16 is chucked. There is no need to carry out the work, and the workpiece 16 can be processed continuously in an unmanned state.

また、Z軸座標測定手段は工具17とは別途に設けられ
ているので、座標測定に際して工具17の破損等を気に
する必要がなく、座標測定を迅速に行うことが出来、ワ
ーク16の加工に要する全体的な時間の短縮に寄与し得
る。
In addition, since the Z-axis coordinate measuring means is provided separately from the tool 17, there is no need to worry about damage to the tool 17 when measuring coordinates, and the coordinate measurement can be performed quickly. This can contribute to reducing the overall time required.

更に、加工プログラムPROに基づく加工の前にワーク
16端面を仮想基準位置uspに合わせるように切削す
る前加工を行う必要が無いので、無駄な切削動作の発生
が未然に防止され、加工時間が大幅に短縮されるばかり
か、ワークの切削取代が少なくて済み、高価な材料を無
駄にしないで済む。
Furthermore, since there is no need to perform pre-machining to align the end face of the workpiece 16 with the virtual reference position usp before machining based on the machining program PRO, unnecessary cutting operations are prevented from occurring and machining time is significantly reduced. Not only is the cutting time reduced, but the machining allowance for the workpiece is also reduced, and expensive materials are not wasted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による加工方法の一実施例が適用された
数値制御旋盤の一例を示す制御ブロック図、第2図乃至
第4図は本発明による加工基準位置の設定態様を示す概
略図である。 1・・・・・・数値制御旋盤 5・・・・・・基準位置補正プログラムメモリ10・・
・・・・加工プログラムメモリ11・・・・・・刃物台 12・・・・・・Z座標測定手段(タッチセンサ)16
・・・・・・ワーク 16a・・・・・・基準面(端面) 16c・・・・・・基準面(加工面) 16d・・・・・・基準面(側面) 17・・・・・・工具  。 Zs・・・・・・座標値 PRO・・・・・・加工プログラム AMP・・・・・・基準位置補正プ資グラムR3P・・
・・・・加工基準位置 usp・・・・・・仮想基準位置 出願人  株式会社 山崎鉄工所 代理人  弁理士  相1)伸二 翌 ZS ZX ワーク    ZS  ZX 第4図
FIG. 1 is a control block diagram showing an example of a numerically controlled lathe to which an embodiment of the processing method according to the present invention is applied, and FIGS. 2 to 4 are schematic diagrams showing how to set the processing reference position according to the present invention. be. 1... Numerical control lathe 5... Reference position correction program memory 10...
... Machining program memory 11 ... Turret 12 ... Z coordinate measuring means (touch sensor) 16
Workpiece 16a... Reference surface (end surface) 16c... Reference surface (processed surface) 16d... Reference surface (side surface) 17...・Tools. Zs...Coordinate value PRO...Machining program AMP...Reference position correction program R3P...
...Processing reference position usp...Virtual reference position Applicant Yamazaki Iron Works Co., Ltd. Agent Patent attorney Phase 1) Shinji ZS ZX Work ZS ZX Figure 4

Claims (1)

【特許請求の範囲】 仮想基準位置に基づく加工プログラムを格 納した加工プログラムメモリ及び、工具の装着された刃
物台を有し、前記加工プログラムメモリから読み出され
た加工プログラムに基づいて刃物台を駆動制御して、チ
ャッキングされたワークに対して所定の加工を行う数値
制御旋盤において、基準位置補正プログラムを格納した
基準位置補正プログラムメモリを設けると共に、工具と
は別途にワークの基準面のZ座標測定手段を設け、ワー
クをチャッキングした後、加工プログラムに基づく加工
を該ワークに対して行う前に、前記基準位置補正プログ
ラムメモリから読み出された基準位置補正プログラムに
基づいて該ワークの基準面のZ座標値をZ座標測定手段
により測定し、測定された基準面のZ座標値から前記仮
想基準位置に対する座標補正値を求め、該座標補正値に
基づいて当該ワークについての加工基準位置を設定し、
該加工基準位置に基づいて加工プログラムに基づく加工
を行うようにして構成した数値制御旋盤における加工方
法。
[Scope of Claims] It has a machining program memory storing a machining program based on a virtual reference position and a tool rest on which a tool is attached, and drives the tool rest based on the machining program read from the machining program memory. In a numerically controlled lathe that performs predetermined machining on a chucked workpiece, a reference position correction program memory storing a reference position correction program is provided, and the Z coordinate of the reference plane of the workpiece is stored separately from the tool. A measuring means is provided, and after chucking the workpiece and before machining the workpiece based on the machining program, the reference surface of the workpiece is determined based on the reference position correction program read from the reference position correction program memory. Measure the Z coordinate value of the reference surface using a Z coordinate measuring means, obtain a coordinate correction value for the virtual reference position from the measured Z coordinate value of the reference surface, and set a processing reference position for the workpiece based on the coordinate correction value. death,
A machining method in a numerically controlled lathe configured to perform machining based on a machining program based on the machining reference position.
JP15269284A 1984-07-23 1984-07-23 Working in n.c. lathe Pending JPS6130356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15269284A JPS6130356A (en) 1984-07-23 1984-07-23 Working in n.c. lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15269284A JPS6130356A (en) 1984-07-23 1984-07-23 Working in n.c. lathe

Publications (1)

Publication Number Publication Date
JPS6130356A true JPS6130356A (en) 1986-02-12

Family

ID=15546047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15269284A Pending JPS6130356A (en) 1984-07-23 1984-07-23 Working in n.c. lathe

Country Status (1)

Country Link
JP (1) JPS6130356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344748U (en) * 1986-09-09 1988-03-25
JPH05269723A (en) * 1992-03-27 1993-10-19 Daitoua Yogyo Kk Shaping device of foundation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344748U (en) * 1986-09-09 1988-03-25
JPH052273Y2 (en) * 1986-09-09 1993-01-20
JPH05269723A (en) * 1992-03-27 1993-10-19 Daitoua Yogyo Kk Shaping device of foundation

Similar Documents

Publication Publication Date Title
KR940003150B1 (en) Method of correcting misalignment of a workpiece on numerically controlled machine tool
JPS5959339A (en) Method of retreating tool from work and returning it to workand numerical controlled machining device executing the me- thod
US4584795A (en) Numerical control grinding machine for grinding a taper portion of a workpiece
JPH027793B2 (en)
JP6881725B2 (en) Work processing method, spindle angle correction device and compound lathe
JPS6130356A (en) Working in n.c. lathe
JPS62163109A (en) Numerical controller
JP2845711B2 (en) Machining method of work with character line
JPS60180749A (en) Correction controlling method for machining reference point in numerically controlled lathe
JPS5877450A (en) Grinder element dressing device for angular grinding machine
JP2926524B2 (en) Numerical controller with trial cutting function
JPH05177480A (en) Controller of machining center equipped with automatic tool changer
JPS6099545A (en) Machine tool
JPS61226264A (en) Grinder operation robot device
JP2693022B2 (en) NC machine tool control method
JP3886694B2 (en) Grinding apparatus and grinding method
JP2685832B2 (en) Numerically controlled grinding machine
JPS63212466A (en) Grinding method for numerically controlled cylindrical grinder
KR101538795B1 (en) A workpiece cutting method of tool axis rotation
JPH02160402A (en) Cutting feed setting device for machine tool
JP2553227B2 (en) Tool damage detection method for machine tools
JP2000079543A (en) Taper grinding method by cnc cylindrical grinder
JPH04131910A (en) Method and device for setting work coordinate shift variable of numerically controlled lathe
JPH0363761B2 (en)
JPS63134170A (en) Grinding method for numerically controlled external cylindrical grinding machine