JPH08197384A - Tip position correction device of rotating tool - Google Patents

Tip position correction device of rotating tool

Info

Publication number
JPH08197384A
JPH08197384A JP3173595A JP3173595A JPH08197384A JP H08197384 A JPH08197384 A JP H08197384A JP 3173595 A JP3173595 A JP 3173595A JP 3173595 A JP3173595 A JP 3173595A JP H08197384 A JPH08197384 A JP H08197384A
Authority
JP
Japan
Prior art keywords
axis
spindle
rotary tool
sensor
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3173595A
Other languages
Japanese (ja)
Other versions
JP3162936B2 (en
Inventor
Kazuhiko Kato
和彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP03173595A priority Critical patent/JP3162936B2/en
Publication of JPH08197384A publication Critical patent/JPH08197384A/en
Application granted granted Critical
Publication of JP3162936B2 publication Critical patent/JP3162936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To make a cut and machined surface procise by carrying out automatic correction by detecting a knife edge position including deflection of a rotating tool. CONSTITUTION: A measuring arm 15 having an X-axis sensor 16 and a Z-axis sensor 17 on a work spindle stock is provided on a stand-by position and a measuring position free to divide on a machine tool placing spindle heads 3-5 having end mills T1 -T3 and a spindle head 6 having a bar grinding stone T4 in parallel on an upper trestle 2 free to move in the X axial direction and having a spindle 12 for a work axially supported on the work spindle stock 11 free to move in the Z axial direction free to revolve and divide. Respective correction values are found by detecting a knife edge position including deflection of the end mills T1 -T3 by the X-axis sensor 16, and respective Z-axis correction values are found by the Z-axis sensor 17 in the same way and memorized, and at the time of machining, correction is carried out against a program command value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNC工作機械の回転工具
の振れによる変位を含む刃先位置補正装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blade edge position correcting device including displacement due to runout of a rotary tool of an NC machine tool.

【0002】[0002]

【従来の技術】従来、NC旋盤の刃先位置検出装置は図
9(a)に示すように、主軸台101に測定位置と待機
位置とに旋回割出し可能に設けた測定アーム102の先
端部に、主軸軸線と直角方向(以下X軸方向と呼ぶ)と
主軸軸線方向(以下Z軸方向と呼ぶ)を向く複数個のタ
ッチセンサ103を設け、予め記憶するタッチセンサ1
03にバイト104の刃先が当接してタッチ信号を出力
したときの加工原点からのX軸又はZ軸の距離と、タッ
チ信号で停止したときの刃物台105のX軸又はZ軸の
現在値とを比較して補正値を求め、求めた補正値により
プログラム指令値を補正しながら加工を行っている。
2. Description of the Related Art Conventionally, as shown in FIG. 9 (a), a blade position detecting device for an NC lathe is provided at the tip of a measuring arm 102 provided on a headstock 101 for swivel indexing between a measuring position and a standby position. , A touch sensor 1 that stores a plurality of touch sensors 103 that are oriented in a direction perpendicular to the spindle axis (hereinafter referred to as the X-axis direction) and in the spindle axis direction (hereinafter referred to as the Z-axis direction), and that is stored in advance.
The distance of the X-axis or Z-axis from the processing origin when the cutting edge of the cutting tool 104 abuts on 03 and outputs a touch signal, and the current value of the X-axis or Z-axis of the tool rest 105 when stopped by the touch signal. Are compared to obtain a correction value, and the machining is performed while correcting the program command value with the obtained correction value.

【0003】また、エンドミル106等回転工具の場合
は図9(b)に示すように上述と同様、タッチセンサ1
03に回転工具先端が当接したときの加工原点からのZ
軸距離と、刃物台105のZ軸現在値とを比較してZ軸
補正値を求めて補正を行っていた。
In the case of a rotary tool such as the end mill 106, as shown in FIG. 9B, the touch sensor 1 is used as described above.
Z from the processing origin when the tip of the rotary tool contacts 03
The axial distance was compared with the current Z-axis value of the tool rest 105 to obtain a Z-axis correction value and correction was performed.

【0004】しかし、エンドミル等回転工具の振れによ
る径方向の刃先の変位については補正を考慮しないのが
普通で、振れのある回転工具を用いた加工面の加工原点
からの寸法は高度な精度を得ることができない。そこ
で、精度の厳しいワークを加工する際には加工現場にお
いて回転工具を主軸に装着するときに、適当な位置に固
定したミリメス等測定器の測定子を回転工具の刃先に接
触させ、主軸を緩やかに回転させながら振れを測定し、
工具を装着し直すことにより振れを最少に調整したの
ち、加工を行っているのが現状である。
However, it is usual not to consider the correction of the displacement of the cutting edge in the radial direction due to the runout of a rotary tool such as an end mill, and the dimension of the machined surface using the runaway tool with runout from the machining origin is highly accurate. Can't get Therefore, when machining a workpiece with high accuracy, when the rotary tool is mounted on the spindle at the machining site, the probe of a measuring instrument such as a millimeter knife fixed in an appropriate position is brought into contact with the cutting edge of the rotary tool to loosen the spindle. Measure the shake while rotating to
The present situation is that the machining is performed after the runout is adjusted to the minimum by reattaching the tool.

【0005】[0005]

【発明が解決しようとする課題】従来の技術で述べた加
工現場において回転工具を振れが最少になるまで装着し
直す方法は、極めて煩雑で熟練と時間を要する作業で省
人化の妨げになるという問題を有している。本発明は従
来の技術の有するこのような問題点に鑑みなされたもの
であり、その目的とするところは、例えばワンチャック
でエンドミル(回転工具)で切削した面を砥石(回転工
具)で高精度に研削するような場合、安心して連続的に
高精度加工ができるよう回転工具の振れによる変位を含
む刃先位置を検出して自動的に補正を行うことができる
刃先位置補正装置を提供しようとするものである。
The method of re-installing the rotary tool at the machining site as described in the prior art until the runout is minimized is extremely complicated and requires labor and time, which is an obstacle to labor saving. I have a problem. The present invention has been made in view of the above problems of the conventional technique, and an object thereof is, for example, high accuracy with a grindstone (rotary tool) on a surface cut by an end mill (rotary tool) with one chuck. In the case of grinding in the same manner, an object of the present invention is to provide a blade edge position correction device that can detect the blade edge position including the displacement due to the runout of the rotary tool and automatically correct it so that high-precision machining can be performed continuously with peace of mind. It is a thing.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の回転工具の刃先位置補正装置は、ワークが取
着される移動台と回転工具用主軸頭との主軸軸線と直角
方向のX軸及び主軸軸線方向のZ軸との相対的軸移動に
より加工を行うNC工作機械の回転工具の振れによる変
位を含む刃先位置の補正装置であって、前記移動台に回
転工具外周の刃先の振れによる径方向の変位量を検出す
るX軸変位センサと回転工具先端の刃先の振れによる軸
方向の変位量を検出するZ軸変位センサとを設け、前記
X軸変位センサにより検出した径方向の変位量から求め
た加工側の刃先の振れ最大位置のX軸加工原点からのX
軸距離と振れ検出時のX軸現在値とを比較してX軸補正
値を求める手段と、前記Z軸変位センサにより検出した
軸方向の変位量から求めた加工側の刃先の振れ最大位置
のZ軸原点からのZ軸距離と振れ検出時のZ軸現在値と
を比較してZ軸補正値を求める手段とを設け、求めたX
軸補正値とZ軸補正値とにより加工時のプログラム指令
値を補正する手段を設けてなるものである。
In order to achieve the above object, the blade edge position compensating device for a rotary tool according to the present invention is arranged in a direction perpendicular to the spindle axis of the movable table on which the work is mounted and the spindle head for the rotary tool. A correction device for a cutting edge position including a displacement due to a runout of a rotary tool of an NC machine tool that performs machining by relative axial movement with respect to an X axis and a Z axis in the spindle axis direction. An X-axis displacement sensor for detecting the radial displacement due to the runout and a Z-axis displacement sensor for detecting the axial displacement due to the runout of the cutting edge of the rotary tool tip are provided, and the radial direction detected by the X-axis displacement sensor is provided. X from the X-axis machining origin of the maximum deflection of the cutting edge on the machining side calculated from the amount of displacement
Means for obtaining an X-axis correction value by comparing the axial distance and the X-axis current value at the time of shake detection, and a maximum runout position of the cutting edge of the cutting edge obtained from the axial displacement detected by the Z-axis displacement sensor. The means for comparing the Z-axis distance from the Z-axis origin and the Z-axis current value at the time of shake detection to obtain the Z-axis correction value is provided, and the X-value obtained
A means for correcting the program command value at the time of machining is provided by the axis correction value and the Z axis correction value.

【0007】[0007]

【作用】ワークが着脱可能に取着される移動台の例えば
Z軸移動位置決めと、回転工具を着脱可能に装着する主
軸が回転可能に軸承される主軸頭の例えばX軸移動位置
決めにより加工を行うNC工作機械において、切削加工
に先立って移動台に設けられた測定アーム先端のX軸変
位センサとZ軸変位センサとを主軸軸線を通る平面上の
測定位置に割出し、移動台のZ軸移動と主軸頭のX軸移
動により回転工具をX軸変位センサによる測定位置近く
に位置決めする。続いて主軸頭をX軸方向センサ側へ低
速送りして、X軸変位センサの測定子が回転工具の外周
面に当接して信号が出力されると主軸頭のX軸移動を停
止する。
Working is performed by, for example, the Z-axis movement positioning of the movable table on which the work is detachably attached, and by the X-axis movement positioning of the spindle head on which the spindle for detachably mounting the rotary tool is rotatably supported. In the NC machine tool, the X-axis displacement sensor and the Z-axis displacement sensor at the tip of the measuring arm provided on the moving table are indexed to the measurement position on the plane passing through the spindle axis and the Z-axis movement of the moving table is performed prior to cutting. By moving the spindle head along the X-axis, the rotary tool is positioned near the position measured by the X-axis displacement sensor. Then, the spindle head is fed at a low speed to the X-axis direction sensor side, and when the probe of the X-axis displacement sensor comes into contact with the outer peripheral surface of the rotary tool and a signal is output, the X-axis movement of the spindle head is stopped.

【0008】次いで、回転工具を切削時の逆方向に低速
回転して刃先の振れによる径方向の変位量を検出し、予
め記憶するX軸変位センサのX軸加工原点からの基準距
離と、検出した最大変位量とから、刃先の加工側の振れ
最大位置のX軸加工原点からX軸距離を算出し、この算
出したX軸距離と主軸頭のX軸現在値とを比較してX軸
補正値を求めて記憶する。
Next, the rotary tool is rotated at a low speed in the opposite direction of the cutting to detect the radial displacement amount due to the deflection of the cutting edge, and the reference distance from the X-axis machining origin of the X-axis displacement sensor stored in advance is detected. The X-axis distance is calculated from the X-axis machining origin at the maximum deflection of the cutting edge on the machining side, and the calculated X-axis distance is compared with the X-axis current value of the spindle head to correct the X-axis. Obtain and store the value.

【0009】次いで、移動台のZ軸移動と主軸頭のX軸
移動とにより回転工具をZ軸変位センサによる測定位置
近くに位置決めし、移動台をZ軸方向センサ側へ低速送
りしてZ軸変位センサの測定子が回転工具の先端面に当
接して当接信号が出力されると移動台のZ軸移動を停止
する。
Next, the rotary tool is positioned near the position measured by the Z-axis displacement sensor by the Z-axis movement of the movable table and the X-axis movement of the spindle head, and the movable table is fed at low speed to the Z-axis direction sensor side to move the Z-axis. When the contact point of the displacement sensor comes into contact with the tip surface of the rotary tool and a contact signal is output, the Z-axis movement of the movable table is stopped.

【0010】次いで、上述と同様回転工具を逆回転して
刃先の振れによる軸方向の変位量を検出し、振れによる
最大変位量と予め記憶するZ軸変位センサのZ軸加工原
点からの基準距離とから、刃先の加工側の振れ最大位置
のZ軸加工原点からZ軸距離を算出し、この算出したZ
軸距離と移動台のZ軸現在値とを比較してZ軸補正量を
求めて記憶する。そして切削加工時にこの記憶したX軸
補正値とZ軸補正値を呼び出してプログラム指令値に対
して補正を行いながら加工を行う。
Then, similarly to the above, the rotary tool is reversely rotated to detect the axial displacement amount due to the deflection of the cutting edge, and the maximum displacement amount due to the deflection and the reference distance from the Z-axis machining origin of the Z-axis displacement sensor stored in advance. From this, the Z-axis distance is calculated from the Z-axis processing origin at the maximum runout position of the cutting edge, and the calculated Z
The Z-axis correction amount is calculated by comparing the axial distance with the Z-axis current value of the movable table and stored. Then, at the time of cutting, the stored X-axis correction value and Z-axis correction value are called to perform processing while correcting the program command value.

【0011】[0011]

【実施例】以下本発明の実施例について図面にもとづい
て説明する。図1及び図2のNC工作機械において、床
上に設置されたベッド1上に設けられたX軸方向の案内
1a上に上台2が移動位置決め可能に載置され、上台2
上に第1主軸頭3から第4主軸頭6まで4個の主軸頭
4,5,6が前端面をほぼ一線に揃えてほぼ等ピッチか
つ並列に取着されている。
Embodiments of the present invention will be described below with reference to the drawings. In the NC machine tools shown in FIGS. 1 and 2, the upper base 2 is movably positioned on the guide 1a in the X-axis direction provided on the bed 1 installed on the floor.
Four spindle heads 4, 5 and 6 from the first spindle head 3 to the fourth spindle head 6 are mounted on the upper side in parallel at substantially equal pitches with the front end faces aligned substantially.

【0012】4個の主軸頭のうち第1主軸頭3から第3
主軸頭5までの3個はミーリング用で、回転工具用主軸
7〜9がそれぞれ回転可能に軸承されていて、残る第4
主軸頭6は研削用で砥石用主軸10が回転可能に軸承さ
れている。そして回転工具用の主軸7〜9にエンドミル
(回転工具)T1 〜T3 がそれぞれ着脱可能に装着さ
れ、砥石用主軸10に棒状砥石(回転工具)T4 が着脱
可能に装着されている。
Of the four spindle heads, the first spindle head 3 to the third spindle head 3
The three up to the spindle head 5 are for milling, and the rotary tool spindles 7 to 9 are rotatably supported, and the remaining fourth
The spindle head 6 is for grinding and a spindle 10 for a grindstone is rotatably supported. The end mill to the main shaft 7 to 9 for a rotary tool (rotary tool) T 1 through T 3 are detachably mounted respectively, rod-shaped grindstone in the grinding wheel spindle 10 (rotary tool) T 4 is detachably attached.

【0013】更に、ベッド1の左側上に設けられている
図示しないZ軸方向の案内上にワーク主軸台11が移動
位置決め可能に載置されている。ワーク主軸台11には
ワーク用主軸12が旋回割出し可能に軸承されていて、
ワーク用主軸12の先端にチャック13が同心に嵌着さ
れており、チャック13の把持爪13aにワークWが着
脱可能に把持されている。
Further, a work headstock 11 is movably mounted on a guide (not shown) provided on the left side of the bed 1 in the Z-axis direction. A work spindle 12 is supported on the work spindle stock 11 so that the work spindle 12 can be swivel-indexed.
A chuck 13 is concentrically fitted to the tip of the work spindle 12, and the work W is detachably gripped by a grip claw 13 a of the chuck 13.

【0014】更に、ワーク主軸台11の前端面11aに
ブラケット14が固着されていて、ブラケット14にL
字形の測定アーム15が旋回可能に支持されており、測
定アーム15はアクチュエータ18により上方の待機位
置aと主軸軸線を通る平面上の計測位置bとに旋回位置
決め可能とされている。そして測定アーム15の先端部
に回転工具の外周の振れによる径方向の変位量を検出す
るX軸変位センサ16(以下単にX軸センサと呼ぶ)
と、先端の振れによる軸方向の変位量を検出するZ軸変
位センサ17(以下単にZ軸センサと呼ぶ)とが取着さ
れている。
Further, a bracket 14 is fixed to the front end surface 11a of the work headstock 11 and the bracket 14 has an L-shape.
A character-shaped measuring arm 15 is rotatably supported, and the measuring arm 15 is rotatably positionable by an actuator 18 between an upper standby position a and a measuring position b on a plane passing through the spindle axis. Then, an X-axis displacement sensor 16 (hereinafter simply referred to as an X-axis sensor) that detects a radial displacement amount due to runout of the outer circumference of the rotary tool at the tip of the measurement arm 15.
And a Z-axis displacement sensor 17 (hereinafter simply referred to as a Z-axis sensor) that detects the amount of axial displacement due to the shake of the tip.

【0015】X軸センサ16及びZ軸センサ17は例え
ばKEYENCE社製AT形等の超小型接触式変位セン
サを使用することができる。このものはアモルフアス磁
性合金をコアに採用して従来の差動トランス方式にくら
べ軽量小形化された変位センサで、軸方向移動可能な測
定子の移動量に比例して基準であるゼロ点を中心とする
±電圧を出力するものである。
As the X-axis sensor 16 and the Z-axis sensor 17, it is possible to use an ultra-small contact type displacement sensor such as AT type manufactured by KEYENCE. This is a displacement sensor that uses an amorphous magnetic alloy as the core and is lighter and more compact than the conventional differential transformer system.It is centered on the zero point, which is the reference in proportion to the amount of movement of the stylus that can move in the axial direction. And outputs ± voltage.

【0016】図3は、本発明の回転工具の刃先位置補正
装置に関するNC装置19の制御システムを表すブロッ
ク線図である。プログラム記憶部21は、入力部20よ
り送られる計測プログラム及び加工プログラムを記憶す
る部分。プログラム解析部22は、プログラム内容を分
析して必要個所に信号を仕分ける部分。関数発生部23
は各軸制御に必要な関数を発生する部分である。
FIG. 3 is a block diagram showing the control system of the NC device 19 relating to the blade edge position correcting device for a rotary tool of the present invention. The program storage unit 21 is a unit that stores a measurement program and a machining program sent from the input unit 20. The program analysis unit 22 is a unit that analyzes the contents of the program and sorts the signals to the required places. Function generator 23
Is the part that generates the functions required for each axis control.

【0017】主軸モータ制御部24は、ワーク用主軸1
2を駆動する主軸モータ25の回転を制御する部分。X
軸モータ制御部26は、上台2を駆動するX軸モータ2
7の回転を制御する部分。X軸位置検出器28は、X軸
モータ27により回転され上台2のX軸方向の現在値を
検出する検出器である。Z軸モータ制御部29は、ワー
ク主軸台11を駆動するZ軸モータ30の回転を制御す
る部分。Z軸位置検出器31は、Z軸モータ30により
回転されワーク主軸台11のZ軸方向の現在値を検出す
る検出器である。
The spindle motor control unit 24 is for the work spindle 1
A part that controls the rotation of the spindle motor 25 that drives the motor 2. X
The axis motor control unit 26 controls the X-axis motor 2 that drives the upper base 2.
The part that controls the rotation of 7. The X-axis position detector 28 is a detector that is rotated by the X-axis motor 27 and detects the current value of the upper table 2 in the X-axis direction. The Z-axis motor control unit 29 is a part that controls the rotation of the Z-axis motor 30 that drives the work headstock 11. The Z-axis position detector 31 is a detector that is rotated by the Z-axis motor 30 and detects the current value of the work headstock 11 in the Z-axis direction.

【0018】X軸センサ出力検出部32は、測定位置b
に位置決めされたX軸センサの測定子16aが被測定物
(回転工具)に当接して出力したゼロを中心とする±電
圧をデジタルな数値に変換して出力する部分。X軸セン
サ基準距離記憶部33は、測定位置bに位置決めされた
X軸センサ16の測定子16aが被測定物に当接して押
し込まれX軸センサ出力検出部32より基準であるゼロ
の数値が出力されたときのセンサ位置から加工原点まで
の基準距離A(図4)を記憶する部分である。
The X-axis sensor output detector 32 is arranged at the measurement position b.
A part for converting the ± voltage centered around zero output by the contact point 16a of the X-axis sensor positioned at the contact point with the object to be measured (rotary tool) to a digital numerical value and outputting it. In the X-axis sensor reference distance storage unit 33, the probe 16a of the X-axis sensor 16 positioned at the measurement position b is pressed into contact with the object to be measured, and the X-axis sensor output detection unit 32 displays a reference value of zero. This is a part for storing the reference distance A (FIG. 4) from the sensor position to the processing origin when output.

【0019】X軸補正値算出部34は、例えば図4に示
すようにX軸センサ16により検出したエンドミルT1
外周の振れによる径方向の最大変位量CとX軸センサの
基準距離Aとから、エンドミルT1 の刃先の振れ最大位
置からX軸加工原点までの距離Bを求め、求めた距離B
とX軸位置検出器28により検出した上台2のX軸現在
値とを比較してX軸補正値D1 (図7)を求める部分で
ある。
The X-axis correction value calculation unit 34 uses, for example, the end mill T 1 detected by the X-axis sensor 16 as shown in FIG.
From the maximum displacement C in the radial direction due to the runout of the outer circumference and the reference distance A of the X-axis sensor, the distance B from the maximum runout position of the cutting edge of the end mill T 1 to the X-axis machining origin is found, and the found distance B
And an X-axis current value of the upper table 2 detected by the X-axis position detector 28 are compared to obtain an X-axis correction value D 1 (FIG. 7).

【0020】上述のX軸補正値算出部34の算出例は、
第1主軸台3のエンドミルT1 の補正値を求める場合で
あり、第2主軸頭4のエンドミルT2 又は第3主軸台5
のエンドミルT3 のそれぞれの補正値を求める場合は、
求めた距離Bに第1主軸頭3と第2主軸頭4間のピッチ
1 又は第1主軸頭3と第3主軸頭4間のピッチP
2(図7)を加算した数値とX軸現在値とを比較して補
正値D2 又はD3 を求めるものである。
A calculation example of the X-axis correction value calculation unit 34 described above is as follows.
This is a case where the correction value of the end mill T 1 of the first headstock 3 is obtained, and the end mill T 2 of the second headstock 4 or the third headstock 5 is used.
To obtain the respective correction values for the end mill T 3 of
At the obtained distance B, the pitch P 1 between the first spindle head 3 and the second spindle head 4 or the pitch P between the first spindle head 3 and the third spindle head 4
The correction value D 2 or D 3 is obtained by comparing the numerical value obtained by adding 2 (FIG. 7) and the X-axis current value.

【0021】また、第4主軸頭6の砥石T4 の補正値を
求める部分もほぼ同様であるが、この場合は計測前に機
上にてドレッシングを行うため振れを検出する必要がな
いので、距離BはX軸加工原点から静止する砥石外周面
までの距離である。X軸補正値記憶部35は求めたそれ
ぞれのX軸補正値を記憶する部分である。
Further, the portion for obtaining the correction value of the grindstone T 4 of the fourth spindle head 6 is almost the same, but in this case, since the dressing is performed on the machine before the measurement, it is not necessary to detect the shake, The distance B is the distance from the X-axis machining origin to the stationary outer peripheral surface of the grindstone. The X-axis correction value storage unit 35 is a unit that stores the obtained X-axis correction values.

【0022】Z軸センサ出力検出部36は、測定位置b
に位置決めされたZ軸センサ17の測定子が被測定物に
当接して出力した基準のゼロ点を中心とする±電圧をデ
ジタルな数値に変換して出力する部分。Z軸センサ基準
記憶部37は、Z軸センサ17の測定子が被測定物に当
接して押し込まれZ軸センサ出力検出部36より基準で
あるゼロの数値が出力されたときのセンサ位置からZ軸
加工原点までの基準距離E(図4)を記憶する部分であ
る。
The Z-axis sensor output detector 36 is arranged at the measurement position b.
A portion for converting the ± voltage centered on the reference zero point output by the contact point of the Z-axis sensor 17 positioned at the point of contact with the object to be measured and converting it into a digital numerical value. The Z-axis sensor reference storage unit 37 stores the Z position from the sensor position when the probe of the Z-axis sensor 17 is pressed into contact with the object to be measured and the reference zero value is output from the Z-axis sensor output detection unit 36. This is a part for storing the reference distance E (FIG. 4) to the axis machining origin.

【0023】Z軸補正値算出部38は、図4に示すよう
に測定位置bに位置決めされてZ軸センサ17により検
出したエンドミルT1 〜T3 先端の振れによる軸方向の
最大変位量GとZ軸センサの基準距離Eとから刃先の振
れ最大位置からZ軸加工原点までの距離Fを求め、更に
距離FとZ軸位置検出器31により検出したワーク主軸
頭11のZ軸現在値とを比較してZ軸補正値H1 〜H3
(図7)を求める部分である。
As shown in FIG. 4, the Z-axis correction value calculation unit 38 is positioned at the measurement position b and detected by the Z-axis sensor 17 and the maximum displacement amount G in the axial direction due to the shake of the tips of the end mills T 1 to T 3 is detected. The distance F from the maximum deflection of the cutting edge to the Z-axis machining origin is calculated from the reference distance E of the Z-axis sensor, and the distance F and the Z-axis current value of the work spindle head 11 detected by the Z-axis position detector 31 are calculated. Comparing the Z-axis correction values H 1 to H 3
This is a part for obtaining (FIG. 7).

【0024】また砥石T4 の補正値H4 を求める場合に
は、前述と同様振れを検出する必要がないので、距離F
はZ軸加工原点から静止する砥石端面までの距離であ
る。Z軸補正値記憶部39は求めたそれぞれの補正値を
記憶する部分である。尚、各主軸頭間のピッチはNC装
置19が絶対値方式の場合は第1主軸頭3と第3主軸距
離間をP2 、第1主軸頭3と第4主軸頭距離をP3 とし
た方が都合がよいが、NC装置がインクレメンタル方式
の場合には第2主軸頭4と第3主軸頭5間をP2 ´、第
3主軸頭5と第4主軸頭6間をP3 ´とした方が都合が
よい(図7)。
Further, when obtaining the correction value H 4 of the grindstone T 4 , it is not necessary to detect the shake like the above, so the distance F
Is the distance from the Z-axis machining origin to the stationary end face of the grindstone. The Z-axis correction value storage unit 39 is a unit that stores each of the calculated correction values. The pitch between the spindle head is NC device 19 in the case of absolute value scheme the first spindle head 3 between the third main spindle distance and P 2, a first spindle head 3 and the fourth spindle head distance P 3 Although it is more convenient, when the NC device is an incremental type, P 2 ′ is between the second spindle head 4 and the third spindle head 5, and P 3 ′ is between the third spindle head 5 and the fourth spindle head 6. Is more convenient (Fig. 7).

【0025】続いて本実施例の作用を図8の流れ図に従
って説明する。ステップS1において、測定アーム15
を計測位置bに位置決めし、ワーク主軸台11のZ軸移
動と、上台2のX軸移動とで第1主軸頭3のエンドミル
1 をX軸センサ16による測定位置XSn(XS1
の近くに位置決めする。ステップS2において、上台2
をX軸方向マイナス側へ低速で移動し、ステップS3に
おいて、X軸センサ16の測定子16aがエンドミルT
1 外周部に接触してX軸センサから信号が出たかを確認
し、NOの場合にはステップS2に戻り接触信号が出る
まで上台2をX軸移動する。
Next, the operation of this embodiment will be described with reference to the flowchart of FIG. In step S1, the measurement arm 15
Is positioned at the measurement position b, and the end mill T 1 of the first spindle head 3 is moved to the measurement position XSn (XS 1 ) by the X-axis sensor 16 by the Z-axis movement of the work headstock 11 and the X-axis movement of the upper base 2.
Position near. In step S2, upper table 2
Is moved toward the minus side in the X-axis direction at low speed, and in step S3, the tracing stylus 16a of the X-axis sensor 16 is moved to the end mill T.
1 It is confirmed whether the X-axis sensor comes into contact with the outer peripheral portion and a signal is output. If NO, the process returns to step S2 and the upper table 2 is moved along the X-axis until a contact signal is output.

【0026】そしてYESになった場合、ステップS4
において、直ちに上台2のX軸移動を停止し、ステップ
S5において、N=3以下かが確認される。この場合は
N=1なのでYESとなり、ステップS6において、主
軸7(エンドミルT1 )を低速で切削時の逆方向に逆回
転する(図5)。
If YES, then step S4
In, the X-axis movement of the upper table 2 is immediately stopped, and it is confirmed in step S5 whether N = 3 or less. In this case, since N = 1, the determination result is YES, and in step S6, the spindle 7 (end mill T 1 ) is reversely rotated at a low speed in the reverse direction during cutting (FIG. 5).

【0027】ステップS7において、エンドミルT1
逆回転で外周面の凹凸に追従して測定子16aが軸方向
移動し、図6のグラフ図に示すように刃先が前面に来る
たびにピーク点が表れる。このピーク点はエンドミルT
1 の径方向の振れを含んでおり、エンドミルT1 が1回
転以上するとゼロ点からの最大値(振れ最大値)が検出
される。
In step S7, the tracing stylus 16a axially moves following the irregularities of the outer peripheral surface by the reverse rotation of the end mill T 1 , and as shown in the graph of FIG. appear. This peak point is the end mill T
Includes the deflection of one radial, the maximum value from the zero point when the end mill T 1 is to more one rotation (deflection maximum value) is detected.

【0028】次いでステップS8において、振れの最大
値Cと予め記憶するX軸センサ基準距離Aとの和から刃
先の振れ最大位置におけるX軸加工原点からの距離Bを
算出し、算出した距離BとX軸現在値とを比較して補正
値D1 (図7)を求め、これを記憶する。
Next, in step S8, the distance B from the X-axis machining origin at the maximum deflection position of the cutting edge is calculated from the sum of the maximum deflection C and the X-axis sensor reference distance A stored in advance, and the calculated distance B is obtained. The correction value D 1 (FIG. 7) is obtained by comparing with the X-axis current value and stored.

【0029】次いでステップS9において、ワーク主軸
台11のZ軸移動と上台2のX軸移動で第1主軸頭3の
エンドミルT1 をZ軸センサ17による測定位置ZSn
(ZS1 )近くに位置決めし、ステップS10におい
て、ワーク主軸台11をZ軸方向マイナス側への低速で
移動し、ステップS11において、Z軸センサ17の測
定子がエンドミルT1 の先端部に接触して信号が出たか
を確認し、NOの場合にはステップS9に戻って接触信
号が出るまで主軸台11をZ軸移動する。
Next, in step S9, the end mill T 1 of the first spindle head 3 is moved to the measuring position ZSn by the Z-axis sensor 17 by the Z-axis movement of the work headstock 11 and the X-axis movement of the upper base 2.
(ZS 1 ), the work headstock 11 is moved to the negative side in the Z-axis direction at a low speed in step S10, and the probe of the Z-axis sensor 17 contacts the tip of the end mill T 1 in step S11. Then, it is confirmed whether a signal is output. If NO, the process returns to step S9 and the headstock 11 is moved in the Z-axis until a contact signal is output.

【0030】そしてYESになった場合にステップS1
2において、ワーク主軸台11のZ軸移動を停止し、ス
テップS13において、再びN=3以下かが確認され、
ここでもYESとなってステップS14において、主軸
7(エンドミルT1 )を低速にて逆回転する。
If YES, step S1
In 2, the Z-axis movement of the work headstock 11 is stopped, and in step S13, it is confirmed again whether N = 3 or less,
Here too, the answer is YES, and in step S14, the spindle 7 (end mill T 1 ) is reversely rotated at low speed.

【0031】次いでステップS15において、エンドミ
ルT1 の逆回転で先端面の凹凸に追従してZ軸センサ1
7の測定子が軸方向移動し、刃先が前面に来るたびにピ
ーク点が表れる。このピーク点はエンドミルT1 の振れ
による軸方向の変位を含んでおり、ピーク点のゼロ点か
らの最大値(振れ最大値)Gが検出される。
[0031] Then, in step S15, Z-axis sensor 1 to follow the unevenness of the distal end surface at the reverse rotation of the end mill T 1
The probe of No. 7 moves in the axial direction, and a peak point appears every time the cutting edge comes to the front surface. This peak point includes the displacement in the axial direction due to the shake of the end mill T 1 , and the maximum value (runout maximum value) G from the zero point of the peak point is detected.

【0032】次いでステップS16において、振れ最大
値Gと予め記憶するZ軸センサの基準距離Eの和から刃
先の振れ最大位置のZ軸加工原点からの距離Fを求め、
求めた距離FとZ軸現在値とを比較して補正値H1 (図
7)を算出して記憶する。次いでステップS17におい
て、N=4かが確認され、この場合はN=1なのでNO
となり、ステップS18においてn+1が行われてN=
2となりステップS1に戻る。
Next, at step S16, the distance F from the Z-axis machining origin of the maximum deflection of the cutting edge is obtained from the sum of the maximum deflection G and the reference distance E of the Z-axis sensor stored in advance.
The calculated distance F is compared with the Z-axis current value to calculate and store the correction value H 1 (FIG. 7). Next, in step S17, it is confirmed whether N = 4. In this case, N = 1, so NO.
Then, in step S18, n + 1 is performed and N =
It becomes 2 and the process returns to step S1.

【0033】引続き第2主軸頭4のエンドミルT2 のX
軸補正値を求めて記憶する2回目のステップS1〜S8
までの動作と、Z軸補正値を求めて記憶する2回目のス
テップS9〜S16までの動作が行われる。こうして第
2主軸頭4のエンドミルT2 の補正値が算出され記憶さ
れてN=2の動作が終わり、ステップS18においてN
=3となる。
Continuing, X of the end mill T 2 of the second spindle head 4
Second step S1 to S8 of obtaining and storing the axis correction value
And the second operation of obtaining and storing the Z-axis correction value in steps S9 to S16. In this way, the correction value of the end mill T 2 of the second spindle head 4 is calculated and stored, and the operation of N = 2 ends, and at step S18 N
= 3.

【0034】続いて3回目のステップS1〜S17の動
作で第3主軸頭5のエンドミルT3のX軸とZ軸の補正
値が算出され記憶されて、N=3の動作が終わり、ステ
ップS18においてN=4となり、4回目のステップS
1において、第4主軸頭6の砥石T4 をX軸センサ16
による所定の測定位置XS4 の近くに位置決めする。
Then, in the third operation of steps S1 to S17, the X-axis and Z-axis correction values of the end mill T 3 of the third spindle head 5 are calculated and stored, and the operation of N = 3 ends, and step S18 N = 4 in the fourth step S
1, the grinding wheel T 4 of the fourth spindle head 6 is attached to the X-axis sensor 16
Position near the predetermined measurement position XS 4 by.

【0035】次いでステップS2において、上台2をX
軸方向マイナス側へ低速で移動し、ステップS3におい
て、X軸センサ16の測定子16aが砥石外周と接触し
たかが確認され、NOの場合はステップS2に戻され、
YESの場合にはステップS4において上台2のX軸移
動が停止される。
Then, in step S2, the upper base 2 is moved to the X position.
It moves to the minus side in the axial direction at a low speed, and in step S3, it is confirmed whether or not the contact point 16a of the X-axis sensor 16 has contacted the outer circumference of the grindstone, and if NO, the process returns to step S2,
If YES, the X-axis movement of the upper table 2 is stopped in step S4.

【0036】次いでステップS5において、N=3以下
かが確認され、この場合はN=4なのでNOとなり、ス
テップS8において、接触時のX軸センサ16のゼロ点
からの値とX軸センサの基準距離Aとの和からX軸加工
原点から砥石T4 外周面までの距離Bを求め、求めた距
離Bと上台2のX軸現在値とを比較してX軸補正値D4
(図7)を求めて記憶する。
Next, in step S5, it is confirmed whether N = 3 or less. In this case, N = 4, and thus NO, and in step S8, the value from the zero point of the X-axis sensor 16 at the time of contact and the reference of the X-axis sensor. The distance B from the X-axis machining origin to the outer peripheral surface of the grindstone T 4 is calculated from the sum of the distance A, and the calculated distance B is compared with the X-axis current value of the upper table 2 to obtain the X-axis correction value D 4
(FIG. 7) is obtained and stored.

【0037】次いでステップS9において、第4主軸頭
6の砥石T4 をZ軸センサ17による測定位置ZS4
近くに位置決めし、ステップS10において、ワーク主
軸台11をZ軸方向マイナス側へ低速で移動し、ステッ
プS11においてZ軸センサ17と接触したかを確認
し、NOの場合にはステップS10に戻り、YESの場
合にはステップS12において、ワーク主軸台11のZ
軸移動を停止し、ステップS13において、N=3以下
かが確認され、この場合はN=4なのでNOとなり、ス
テップS16まで飛んで、接触検出時のZ軸センサ17
のゼロ点からの値とZ軸センサの基準距離Eの和からZ
軸加工原点から砥石T4 先端面までの距離Fを求め、求
めた距離Fとワーク主軸台11のZ軸現在値とを比較し
てZ軸補正値かを算出し、これを記憶する。そしてステ
ップS17において、N=4かが確認され、YESとな
り終わりとなる。
Next, in step S9, the grindstone T 4 of the fourth spindle head 6 is positioned near the measurement position ZS 4 measured by the Z-axis sensor 17, and in step S10 the work spindle stock 11 is moved to the minus side in the Z-axis direction at low speed. After moving, it is confirmed in step S11 whether or not the Z-axis sensor 17 is contacted. If NO, the process returns to step S10. If YES, in step S12, the Z of the work headstock 11 is moved.
The axis movement is stopped, and in step S13, it is confirmed whether N = 3 or less. In this case, N = 4, so NO is reached, and the process jumps to step S16, and the Z-axis sensor 17 at the time of contact detection.
Z from the sum of the value from the zero point of Z and the reference distance E of the Z-axis sensor
The distance F from the axis machining origin to the tip surface of the grindstone T 4 is obtained, and the obtained distance F is compared with the Z-axis current value of the work headstock 11 to calculate a Z-axis correction value, which is stored. Then, in step S17, it is confirmed whether N = 4, and the result is YES, and the process ends.

【0038】但し2回目〜4回目のステップS8におい
て算出するX軸補正値D2 〜D4 は、X軸加工原点から
刃先までの距離Bに基準となる第1主軸頭3からの配置
上のX軸寸法P2 〜P3 を加えた数値と上台2のX軸現
在値との差から求めるものである(図7)。
However, the X-axis correction values D 2 to D 4 calculated in the second to fourth steps S8 are based on the arrangement from the first spindle head 3 which is a reference to the distance B from the X-axis machining origin to the cutting edge. It is obtained from the difference between the value obtained by adding the X-axis dimensions P 2 to P 3 and the X-axis current value of the upper table 2 (FIG. 7).

【0039】また、本実施例の一連の作用は各主軸頭毎
にX軸方向、Z軸方向を順次測定しているが、各主軸頭
のX軸方向の測定を全て終わってからZ軸方向の測定を
行うようにしてもよい。また、本実施例は複数の主軸頭
を有するNC工作機械の例について説明をおこなった
が、単一の主軸頭についても適応可能なことは勿論であ
る。
In the series of operations of this embodiment, the X-axis direction and the Z-axis direction are sequentially measured for each spindle head, but the Z-axis direction is measured after the measurement of each spindle head in the X-axis direction is completed. May be measured. Further, in the present embodiment, an example of an NC machine tool having a plurality of spindle heads has been described, but it goes without saying that a single spindle head is also applicable.

【0040】[0040]

【発明の効果】本発明は上述のとおり構成されているの
で次に記載する効果を奏する。回転工具例えばエンドミ
ルの径方向と軸方向の振れを含む刃先位置を検出して自
動的に刃先位置の補正を行うようにしたので、エンドミ
ルの振れ及び寸法誤差等による加工精度の悪化や、工具
交換時の寸法間違いや取付誤差等による加工上のトラブ
ルが無くなり、事前に測定器等で工具状態を測定する手
間が省けることにより準備時間が短縮できる。
Since the present invention is configured as described above, it has the following effects. Since the tool position is automatically corrected by detecting the tool edge position including the radial and axial runout of the rotating tool, for example, deterioration of machining accuracy due to runout of the end mill and dimensional error, and tool replacement There are no machining problems due to dimensional errors or mounting errors, and the preparation time can be shortened by eliminating the need to measure the tool condition with a measuring instrument in advance.

【0041】また、例えば1回のワーク保持でエンドミ
ルにて加工した面に研削加工を行う場合、エンドミルの
振れを含む刃先位置の検出と同時に、ドレッシングによ
り変わる砥石の切れ刃位置を検出して自動的に補正を行
うようにすれば、エンドミル加工面が正確で、砥石のド
レッシングによる寸法変化に関係なく研削加工面が正確
となるため、連続加工を円滑かつ高精度に行うことが可
能となる。
Further, for example, in the case where the surface machined by the end mill is ground by holding the work once, the cutting edge position of the grindstone which changes depending on the dressing is automatically detected simultaneously with the detection of the blade tip position including the runout of the end mill. If the correction is carried out, the machined surface of the end mill is accurate, and the machined surface is accurate regardless of the dimensional change due to the dressing of the grindstone. Therefore, continuous processing can be smoothly and highly accurately performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の回転工具の刃先位置補正装置
を有するNC工作機械の上面図である。
FIG. 1 is a top view of an NC machine tool having a rotary tool blade position correcting device according to an embodiment of the present invention.

【図2】図1の側面図である。FIG. 2 is a side view of FIG.

【図3】回転工具の刃先位置補正装置の制御システムを
表すブロック線図である。
FIG. 3 is a block diagram showing a control system of a blade edge position correcting device for a rotary tool.

【図4】センサによる回転工具の振れの検出と加工原点
からの距離の関係を表す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between detection of shake of a rotary tool by a sensor and a distance from a processing origin.

【図5】図4のイーイ線矢視断面図である。5 is a cross-sectional view taken along the line EE of FIG.

【図6】刃先の振れを表すグラフ図である。FIG. 6 is a graph showing the deflection of the cutting edge.

【図7】(a)は複数の主軸頭のエンドミルと砥石のX
軸センサによる刃先位置の測定の説明図、(b)は同じ
く複数の主軸頭のエンドミルと砥石のZ軸センサによる
刃先位置測定の説明図である。
FIG. 7 (a) is an X of a plurality of spindle head end mills and a grindstone.
FIG. 6B is an explanatory diagram of measurement of the blade edge position by the axis sensor, and FIG. 8B is an explanatory diagram of blade edge position measurement by the Z axis sensor of the plurality of spindle head end mills and the grindstone.

【図8】本発明の実施例の作用説明用流れ図である。FIG. 8 is a flowchart for explaining the operation of the embodiment of the present invention.

【図9】(a)は従来の技術のNC旋盤におけるバイト
の刃先位置検出の状態を示す上面図、(b)は同じくN
C旋盤におけるエンドミルの先端位置検出の状態を示す
図である。
FIG. 9A is a top view showing a state in which a cutting edge position of a cutting tool is detected in an NC lathe according to a conventional technique, and FIG.
It is a figure which shows the state of the tip position detection of the end mill in a C lathe.

【符号の説明】[Explanation of symbols]

1 ベッド 2 上台 3 第1主軸頭 4 第2主軸頭 5 第3主軸頭 6 第4主軸頭 7,8,9 回転工具用主軸 10 砥石用主軸 11 ワーク主軸台 12 ワーク用主軸 13 チャック 15 測定アーム 16 X軸変位センサ 17 Z軸変位センサ 28 X軸位置検出器 31 Z軸位置検出器 32 X軸センサ出力検出器 33 X軸センサ基準距離記憶部 34 X軸補正値算出部 36 Z軸センサ出力検出部 37 Z軸センサ基準距離記憶部 38 Z軸補正値算出部 T1 ,T2 ,T3 エンドミル(回転工具) T4 砥石(回転工具) W ワーク1 Bed 2 Upper Platform 3 1st Spindle Head 4 2nd Spindle Head 5 3rd Spindle Head 6 4th Spindle Head 7,8,9 Spindle Tool Spindle 10 Grindstone Spindle 11 Work Spindle Base 12 Work Spindle 13 Chuck 15 Measuring Arm 16 X-axis displacement sensor 17 Z-axis displacement sensor 28 X-axis position detector 31 Z-axis position detector 32 X-axis sensor output detector 33 X-axis sensor reference distance storage unit 34 X-axis correction value calculation unit 36 Z-axis sensor output detection Part 37 Z-axis sensor reference distance storage unit 38 Z-axis correction value calculation unit T 1 , T 2 , T 3 End mill (rotary tool) T 4 grindstone (rotary tool) W work

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ワークが取着される移動台と回転工具用
主軸頭との主軸軸線と直角方向のX軸及び主軸軸線方向
のZ軸との相対的軸移動により加工を行うNC工作機械
の回転工具の振れによる変位を含む刃先位置の補正装置
であって、前記移動台に回転工具外周の刃先の振れによ
る径方向の変位量を検出するX軸変位センサと回転工具
先端の刃先の振れによる軸方向の変位量を検出するZ軸
変位センサとを設け、前記X軸変位センサにより検出し
た径方向の変位量から求めた加工側の刃先の振れ最大位
置のX軸加工原点からのX軸距離と振れ検出時のX軸現
在値とを比較してX軸補正値を求める手段と、前記Z軸
変位センサにより検出した軸方向の変位量から求めた加
工側の刃先の振れ最大位置のZ軸原点からのZ軸距離と
振れ検出時のZ軸現在値とを比較してZ軸補正値を求め
る手段とを設け、求めたX軸補正値とZ軸補正値とによ
り加工時のプログラム指令値を補正する手段を設けてな
る回転工具の刃先位置補正装置。
1. An NC machine tool that performs machining by relative axial movement of an X-axis in a direction perpendicular to a spindle axis of a movable table on which a work is attached and a spindle head for a rotary tool and a Z-axis in a spindle axis direction. A correction device for a cutting edge position including a displacement due to a runout of a rotary tool, wherein an X-axis displacement sensor for detecting a radial displacement amount due to a runout of a cutting edge around the rotary tool and a runout of a tip end of the rotary tool on the moving base. An X-axis distance from the X-axis machining origin of the maximum deflection of the cutting edge on the machining side, which is provided with a Z-axis displacement sensor that detects the amount of axial displacement, and is determined from the amount of radial displacement detected by the X-axis displacement sensor. And a current X-axis value at the time of shake detection to obtain an X-axis correction value, and a Z-axis of the maximum run-out position of the cutting edge of the machining side obtained from the amount of axial displacement detected by the Z-axis displacement sensor. Z-axis distance from the origin and Z-axis current when shake is detected A cutting edge position of a rotary tool, which is provided with a means for comparing a current value with a Z-axis correction value, and means for correcting a program command value at the time of machining based on the obtained X-axis correction value and Z-axis correction value. Correction device.
JP03173595A 1995-01-27 1995-01-27 Edge position correction device for rotary tools Expired - Fee Related JP3162936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03173595A JP3162936B2 (en) 1995-01-27 1995-01-27 Edge position correction device for rotary tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03173595A JP3162936B2 (en) 1995-01-27 1995-01-27 Edge position correction device for rotary tools

Publications (2)

Publication Number Publication Date
JPH08197384A true JPH08197384A (en) 1996-08-06
JP3162936B2 JP3162936B2 (en) 2001-05-08

Family

ID=12339303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03173595A Expired - Fee Related JP3162936B2 (en) 1995-01-27 1995-01-27 Edge position correction device for rotary tools

Country Status (1)

Country Link
JP (1) JP3162936B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752031B2 (en) 2000-06-07 2004-06-22 Mori Seiki Co., Ltd. NC machine tool having spindle run-out diagnosing function
JP2007198944A (en) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Deflection measuring instrument, and deflection measuring method
CN102658374A (en) * 2012-05-11 2012-09-12 宁波恒力汽配轴承有限公司 Two-box four-shaft multi-functional numerical control machine tool
US10888966B2 (en) 2019-03-19 2021-01-12 Fanuc Corporation Machine tool
CN115647932A (en) * 2022-11-02 2023-01-31 湖北工业大学 Method for controlling mounting precision of detachable milling head

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922369B (en) * 2012-11-21 2014-08-20 常州市众泰克自动化科技有限公司 Method for configuring alternative and dynamic drive of Z-direction main shafts of numerically-controlled machine tool with multiple Z-direction shafts and system thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752031B2 (en) 2000-06-07 2004-06-22 Mori Seiki Co., Ltd. NC machine tool having spindle run-out diagnosing function
JP2007198944A (en) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Deflection measuring instrument, and deflection measuring method
CN102658374A (en) * 2012-05-11 2012-09-12 宁波恒力汽配轴承有限公司 Two-box four-shaft multi-functional numerical control machine tool
US10888966B2 (en) 2019-03-19 2021-01-12 Fanuc Corporation Machine tool
CN115647932A (en) * 2022-11-02 2023-01-31 湖北工业大学 Method for controlling mounting precision of detachable milling head
CN115647932B (en) * 2022-11-02 2023-07-18 湖北工业大学 Detachable milling head installation precision control method

Also Published As

Publication number Publication date
JP3162936B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JPH0525626B2 (en)
EP0524943A1 (en) Multi-functional measurement system.
JP2000198047A (en) Machine tool
US4417490A (en) Lathe tool calibrator and method
JP3162936B2 (en) Edge position correction device for rotary tools
JP3660920B2 (en) Machine tool and processing method
JPH05318287A (en) Super-precision working machine
JPH06114702A (en) Automatic taper correcting device
JP3283278B2 (en) Automatic lathe
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JP2001269843A (en) Measuring method for center position of rotating tool
JP3604473B2 (en) Machine Tools
JP2597219B2 (en) NC grinding machine
JPH081405A (en) Device and method for detecting lost motion
JPH06138921A (en) Measuring method and automatic correction method for linear interpolation feeding accuracy of numerically controlled machine tool
JPH0248393B2 (en)
JPH08229776A (en) Nc machine tool provided with function of measuring edge point position displacement of tool
JP2782302B2 (en) Non-circular workpiece measurement method
JPH06246589A (en) Noncircular workpiece error correcting method by in-machine measurement
JP3781236B2 (en) Grinding machine and grinding method of grinding wheel position
JPH0550361A (en) Tool center height measuring device
JPS60114445A (en) Neumerical control machine tool
JPS63191552A (en) Numerically controlled (nc) machine tool equipped with measurement probe error compensation function
JPS6133364B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees