JP3660920B2 - Machine tool and processing method - Google Patents

Machine tool and processing method Download PDF

Info

Publication number
JP3660920B2
JP3660920B2 JP2002192216A JP2002192216A JP3660920B2 JP 3660920 B2 JP3660920 B2 JP 3660920B2 JP 2002192216 A JP2002192216 A JP 2002192216A JP 2002192216 A JP2002192216 A JP 2002192216A JP 3660920 B2 JP3660920 B2 JP 3660920B2
Authority
JP
Japan
Prior art keywords
tool
contact
axis
measuring sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002192216A
Other languages
Japanese (ja)
Other versions
JP2003019644A (en
Inventor
政行 梨木
正義 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2002192216A priority Critical patent/JP3660920B2/en
Publication of JP2003019644A publication Critical patent/JP2003019644A/en
Application granted granted Critical
Publication of JP3660920B2 publication Critical patent/JP3660920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、工作機械、特にNC旋盤における装置及び加工方法に関するものである。
【0002】
【従来の技術】
従来のNC旋盤では、回転可能なセンサアームに刃先位置計測用センサを装着した機構が採用されている。
【0003】
図12は従来のNC旋盤を示した全体構成図であり、NC装置19より刃先位置計測指令が出るとX軸ボールネジ12及びX軸モータ13が駆動し、タレット7に装着された工具6は移動してあらかじめ主軸中心位置に設定された刃先位置計測用センサ16に接触する。そして、電気信号がONとなりNC装置19に電気信号が伝達され移動を停止する。この時の位置をX軸位置検出用エンコーダ14にて検出し、NC装置19にて主軸中心位置からの工具オフセット量を演算する。この動作を加工前ごとに行い加工精度を維持している。また、刃先位置計測用センサ16はセンサアーム17に装着されており、センサアーム用モータ18により回転可能であり計測を行う時のみ機械内に自動で振り込まれる。なお、工具6は加工物1に応じて複数使用されるため、上述の刃先位置計測も複数の工具について行われる。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来のNC旋盤においては、加工中の切削熱、ビルトインモータ3の発熱等の外乱によりセンサアーム17が変位してしまい、そのため刃先位置計測用センサ16の位置があらかじめ設定してあった主軸中心位置から変位してしまう可能性があった。この変位は、刃先位置計測に誤差が生じて加工精度が劣化する原因となる。特に加工後の計測が困難な部分ではこの影響が大きくなる。
【0005】
また、刃先位置計測による加工前計測のみであるため、加工完了品が許容寸法内で加工されているか確認できず、加工不良製品を多数生産してしまう恐れがある。
【0006】
この発明は上述した事情から成されたものであり、この発明の目的は、加工中の外乱により誤差を生じる事なく刃先の位置を計測し、加工後の製品の監視、工具摩耗量計測も可能な工作機械及び加工方法を提供する事にある。
【0007】
【課題を解決するための手段】
本発明にかかる工作機械は、工具および位置計測用センサを移動させる駆動手段と、上記位置計測用センサの検出部の位置および工具の刃先の位置を検出する位置検出手段と、既知の形状であり主軸に固定された基準物に上記検出部を当接させたときの該検出部の位置と、刃先位置計測用センサに該検出部を当接させたときの該検出部の位置と、に基づいて主軸中心位置に対する上記刃先位置計測用センサの位置を求める校正手段と、を備えることを特徴とする。
【0008】
また、本発明にかかる工作機械では、基準物は、主軸中心線上にあり主軸に固定されたリングであるのが好適である。
【0009】
また、本発明にかかる加工方法は、上記工作機械において、既知の形状であり主軸に固定された基準物に上記検出部を当接させたときの該検出部の位置を検出するステップと、刃先位置計測用センサに該検出部を当接させたときの該検出部の位置を検出するステップと、上記基準物に上記検出部を当接させたときの該検出部の位置、および刃先位置計測用センサに該検出部を当接させたときの該検出部の位置に基づいて、主軸中心位置に対する上記刃先位置計測用センサの位置を校正するステップと、を有し、各工具の刃先の位置を計測することを特徴とする。
【0010】
以上の工作機械および加工方法においては、主軸中心位置に対する刃先位置計測用センサの位置を計測し校正するようにしたので、加工中の外乱により刃先位置計測用センサが変位することにより発生する誤差をなくすことができ、加工後に計測が困難な部分の精度も向上する。また、加工後の加工物の寸法計測も可能であり、加工後の製品の監視もできる。
【0011】
【発明の実施の形態】
図1は本発明に係る工作機械の一実施形態の全体構成図である。工具6はタレット7に装着されZ軸ボールネジ9及びZ軸モータ10によってZ軸方向に駆動し、その位置はZ軸位置検出用エンコーダ11により検出される。また、X軸ボールネジ12及びX軸モータ13によってX軸方向に駆動し、その位置はX軸位置検出用エンコーダ14によって検出されるとともに、X軸位置検出用リニアスケール15によって直線的な位置検出も行われている。なお、この直線的な位置検出手段はリニアスケールに限らずインダクトシンも考えられ、また、Z軸にも適用する事も可能である。また、検出部を先端に有しており、その検出部に当接した刃先位置計測用センサ16の位置を計測する位置計測手段としての位置計測用センサ5は、タレット7に装着されているので、工具6の駆動手段によって移動される。すなわち、Z軸ボールネジ9、Z軸モータ10、X軸ボールネジ12及びX軸モータ13で構成される工具6の駆動手段は、位置計測用センサ5の移動手段でもあり、Z軸位置検出用エンコーダ11、X軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15で構成される工具6の位置検出手段は、位置計測用センサ5の位置検出手段でもある。
【0012】
一方、刃先位置計測用センサ16は、センサアーム17に装着されセンサアーム用モータ18にて計測時にのみ工作機械内へ自動で振り込まれる。これらで構成される刃先位置計測手段は、移動し当接した工具6の刃先のZ軸及びX軸方向位置を計測する。なお、このセンサアーム17の工作機械内への振り込みは手動により行う方法も考えられる。また、加工物1は主軸チャック2にて保持されビルトインモータ3にて回転しその回転角度は回転角度検出用エンコーダ4にて検出される。主軸チャック2は、位置計測用センサ校正用基準物20を装備している。NC装置19は、検出部を位置検出用センサ校正用基準物20へ当接させることにより検出した主軸の位置に対する検出部の位置と、検出部を刃先位置計測用センサ16へ当接させることにより検出した検出部の位置と、に基づいて刃先位置計測用センサ16の位置を求める校正手段である。つまり、NC装置19は、駆動手段で移動した位置計測用センサ5を位置検出用センサ校正用基準物20に当接させることにより位置検出用センサ校正用基準物20のZ軸及びX軸方向の位置を計測し、NC装置19より位置計測用センサ5自身の位置の校正を行う。また、この校正された位置計測用センサ5を駆動手段で移動させ、刃先位置計測用センサ16を当接する事により刃先位置計測用センサ16のZ軸及びX軸方向の位置を計測し、刃先位置計測用センサ16の位置の校正を行う。
【0013】
また、タレット7に工具摩耗量を計測するための基準面であって刃先位置計測用センサ16で計測可能な工具摩耗量計測用共通基準面22を有する工具磨耗量計測手段としての工具摩耗量計測部を装備した場合、NC装置19は、加工前に工具摩耗量計測用共通基準面22及び工具6の刃先を駆動手段で移動させ、刃先位置計測用センサ16に当接させることにより工具摩耗量計測用共通基準面22のZ軸及びX軸方向の位置と工具6の刃先のZ軸及びX軸方向の位置を計測し記憶しておく。そして、加工後に再度工具摩耗量計測用共通基準面22及び工具6の刃先を駆動手段で移動させ、刃先位置計測用センサ16に当接させることにより工具摩耗量計測用共通基準面22のZ軸及びX軸方向の位置と工具6の刃先のZ軸及びX軸方向の位置を計測する。NC装置19は、これらの計測値より工具摩耗量を求める。なお、刃先位置計測用センサ16及び位置計測用センサ5の検出方法は接触式に限らず非接触式のものも考えられる。また接触式のものでもON、OFF検出だけでなく、アナログ検出でセンサの接触後の移動距離も検出できるものであれば更に精度が良くなる。
【0014】
図2は本実施の形態における工作機械の要部の位置関係を示した図である。刃先位置計測用センサ16の主軸中心位置からの距離X16は、加工を行うとともに熱等の外乱の影響でX16E変位する。また、位置計測用センサ5及び工具6を備えたタレット7の中心位置と主軸中心位置の距離X7も同様にX7E変位する。さらに、加工が進むにつれて工具摩耗により工具6のタレット7の中心位置からの距離X6もX6E変位する。
【0015】
図3から図5は本実施の形態におけるタレット7に装着された位置計測用センサ5の位置の校正の方法を説明するために用いる図である。図3は本実施の形態の主軸チャック把握型基準物20aを用いた位置計測用センサ5の位置の校正の方法を説明するために用いる図である。図3左図のように既知の寸法である主軸チャック把握型基準物20aを主軸チャック2で保持し、この主軸チャック把握型基準物20aに、タレット7に装着された位置計測用センサ5を駆動手段で移動させ接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。同様に図3中央図のようにもう一端の位置も計測してNC装置19より主軸チャック把握型基準物20aの寸法が求められる。そして、主軸チャック把握型基準物20aの寸法は既知であるので、位置計測用センサ5の計測結果より位置計測用センサ5を装着したタレット7の主軸中心位置からの距離X7が校正される。また、主軸チャック把握型基準物20aを主軸チャック2で保持する際のチャッキング誤差は、ビルトインモータ3を任意の角度回転させその角度を回転角度検出用エンコーダ4にて検出し、前記と同様に主軸チャック把握型基準物20aの寸法を計測する動作を繰返し行い、その計測値を平均する事により解消する。また、図3ではX軸方向について説明したがZ軸方向についても同様である。なお、主軸チャック把握型基準物20aの既知の寸法部分は外径に限らず内径でもよい。
【0016】
図4は本実施の形態の主軸チャック内蔵型基準物20bを用いた位置計測用センサ5の位置の校正の方法を説明するために用いる図である。図4左図のように既知の寸法である主軸チャック内蔵型基準物20bを主軸チャック2に内蔵し、図4中央図のようにこの主軸チャック内蔵型基準物20bに、タレット7に装着された位置計測用センサ5を駆動手段で図4左図の状態よりX+方向に移動させ、主軸チャック内蔵型基準物20bに接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。続いて、図4右図のように駆動手段でX−方向に移動させ、主軸チャック内蔵型基準物20bに再度接触させる。この接触時のON信号がNC装置19に伝達されると再度移動を停止する。この2度の接触間の移動距離をX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出され、NC装置19により主軸チャック内蔵型基準物20bの寸法が求められる。そして、主軸チャック内蔵型基準物20bの寸法は既知であるので、位置計測用センサ5の計測結果より位置計測用センサ5を装着したタレット7の主軸中心位置からの距離X7が校正される。また、図4ではX軸方向について説明したがZ軸方向についても同様である。なお、主軸チャック内蔵型基準物20bの既知の寸法部分は内径に限らず外径でもよい。
【0017】
図5は本実施の形態の切削可能型基準物20cを用いた位置計測用センサ5の位置の校正の方法を説明するために用いる図である。図5左図のように切削可能型基準物20cを主軸チャック2に装着し、ビルトインモータ3にて主軸チャック2を回転させ、タレット7に装着された工具6を駆動手段で移動させ、切削可能型基準物20cを任意の指令寸法に加工する。続いて、図5中央図のように加工された切削可能型基準物20cに、タレット7に装着された位置計測用センサ5を駆動手段で図5右図のように移動させ接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。そして、切削可能型基準物20cは任意の指令寸法に加工されているので指令寸法と位置計測用センサ5の計測結果より位置計測用センサ5を装着したタレット7の主軸中心位置からの距離X7が校正される。また、図5ではX軸方向について説明したがZ軸方向についても同様である。なお、切削可能型基準物20cの代わりに加工物1を計測する方法も考えられる。
【0018】
図6は本実施の形態の刃先位置計測用センサ16の位置の校正の方法を説明するために用いる図である。前記の図3から図5のように位置を校正され、タレット7に装着された位置計測用センサ5を駆動手段にて図6左図の状態から図6右図のように移動させ刃先位置計測用センサ16に接触させる。この接触の検知は、位置計測用センサ5のON信号と刃先位置計測用センサ16のON信号のOR論理回路となっており、位置計測用センサ5か刃先位置計測用センサ16のどちらかの電気信号がNC装置19に伝達されると移動を停止する。この時の位置はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。そして、NC装置19より刃先位置計測用センサ16の主軸中心位置からの距離X16が校正される。また、図6ではX軸方向について説明したがZ軸方向についても同様である。なお、センサの接触の検知の方法は、上記の方法以外にもどちらかに接触するとセンサの信号が必ず先に出る構造を持つものも考えられる。
【0019】
そして、加工前にタレット7に装着された工具6を駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X6前はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出され、NC装置19に記憶される。続いて、加工後に図3から図6までの方法で刃先位置計測用センサ16の主軸中心位置からの距離X16を校正し、再度タレット7に装着された工具6を駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X6後はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出され、先にNC装置19に記憶しておいた加工前の工具6の位置X6前との差より工具6の工具摩耗量が求められる。なお、上記ではX軸方向について説明したがZ軸方向についても同様である。
【0020】
図7及び図8は本発明の関連技術としてのタレット7に装着された工具6の工具摩耗量計測を刃先位置計測用センサ16の主軸中心位置からの距離X16を校正する事なく行う方法を説明するために用いる図である。図7は工具近傍工具位置基準面21を用いた工具摩耗量計測の方法を説明するために用いる図である。図7左図のように加工前にタレット7に装着された工具近傍工具位置基準面21を駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X21前はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。
【0021】
続いて、図7右図のようにタレット7に装着された工具6を同様に駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X6前はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。そして、工具近傍工具位置基準面21の位置X21前と工具6の位置X6前の差をNC装置19に記憶しておく。続いて、加工後に再度タレット7に装着された工具近傍工具位置基準面21を駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X21後はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。
【0022】
続いて、タレット7に装着された工具6を同様に駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X6後はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。そして、工具近傍工具位置基準面21の位置X21後と工具6の位置X6後の差と先にNC装置19に記憶しておいた加工前の工具近傍工具位置基準面21の位置X21前と工具6の位置X6前の差より工具6の工具摩耗量を求める。なお、工具摩耗量の算出方法については、加工前の工具近傍工具位置基準面21の位置X21前と加工後の工具近傍工具位置基準面21の位置X21後の差と、加工前の工具6の位置X6前と加工後の工具6の位置X6後の差より算出する方法も考えられる。また、図6ではX軸方向について説明したがZ軸方向についても同様である。
【0023】
図8は本発明の関連技術としての工具摩耗量計測用共通基準面22による工具摩耗量計測の方法を説明するために用いる図である。上述図7の方法と同様に図8左図のようにタレット7に装着された工具摩耗量計測用共通基準面22を駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X22前は、X軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。続いて、図8中央図のようにタレット7に装着された工具6を同様に駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X6前はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。そして、工具摩耗量計測用共通基準面22の位置X22前と工具6の位置X6前の差をNC装置19に記憶しておく。
【0024】
続いて、加工後に再度タレット7に装着された工具摩耗量計測用共通基準面22を駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X22後はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。続いて、タレット7に装着された工具6を同様に駆動手段で移動させ刃先位置計測用センサ16に接触させる。この接触時のON信号がNC装置19に伝達されると移動を停止する。この時の位置X6後はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。そして、工具摩耗量計測用共通基準面22の位置X22後と工具6の位置X6後の差と先にNC装置19に記憶しておいた加工前の工具摩耗量計測用共通基準面22の位置X22前と工具6の位置X6前の差より工具6の工具摩耗量を求める。なお、工具摩耗量の算出方法については、加工前の工具摩耗量計測用共通基準面22の位置X22前と加工後の工具摩耗量計測用共通基準面22の位置X22後の差と、加工前の工具6の位置X6前と加工後の工具6の位置X6後の差より算出する方法も考えられる。
【0025】
続いて、タレット7を旋回させて別の工具6aを割り出し、この工具6aに関しても同様に刃先位置計測用センサ16に接触させその位置を検出し工具摩耗量を求める。この方法を順次行いすべての工具について工具摩耗量計測を行う。なお、タレット7の旋回による位置決め誤差は工具摩耗量による誤差X6Eに比較して小さいものとし、工具摩耗量計測用共通基準面22は各工具共通とした。また、図6ではX軸方向について説明したがZ軸方向についても同様である。そして、工具摩耗量計測用共通基準面22の装着位置はタレット7に限らず加工及び工具6の刃先位置計測の邪魔にならない場所でかつ刃先位置計測用センサ16で計測可能な位置であれば任意の場所でよい。
【0026】
図9は本実施の形態の加工後計測の方法を説明するために用いる図である。図9左図のように主軸チャック2で保持された加工後の加工物1にタレット7に装着された位置計測用センサ5を駆動手段で移動させ接触させる。この接触時のON信号はNC装置19に伝達され停止し、この時の位置はX軸位置検出用エンコーダ14及びX軸位置検出用リニアスケール15にて検出される。同様に図9右図のようにもう一端の位置も計測してNC装置19より加工後の加工物1の寸法が求められる。また、図9ではX軸方向について説明したがZ軸方向についても同様である。なお、加工後の加工物1の寸法計測部分は外径に限らず内径でもよい。
【0027】
続いて、図10を用いて本実施の形態のNC旋盤における加工時の動作状況について説明する。図10は本実施の形態を用いたNC旋盤での加工時の動作状況を示すフローチャートである。加工物1が初品であるときは、後述する加工前計測を行い工具オフセット量をNC装置19にて演算し補正する。続いて加工を開始し、あらかじめNC装置19に入力しておいた計測挿入個数に到達するとNC装置19より加工後計測指令が出され、先に図9を用いて説明したように加工物1の計測を行う。そして、計測寸法があらかじめNC装置19に入力しておいた許容寸法範囲外であるときは直ちに加工を停止し、NC装置19にアラーム表示して不良品を多数加工する事がないようにしてある。許容寸法範囲内であるときは、続いて先に図7及び図8で説明した方法で工具摩耗量計測を行う。そして、計測した工具摩耗量があらかじめNC装置19に入力しておいた許容工具摩耗量未満であるときには引き続き加工を行い、許容工具摩耗量以上であるときには、工具交換を行い、初品加工の際と同様に加工前計測を行ってから加工を再開する。なお、加工後計測及び工具摩耗量計測は別々に任意の個数加工後に挿入することができ、挿入も加工個数ではなく加工時間で決める方法も考えられる。
【0028】
図11は本実施の形態の加工前計測の動作状況を示すブロック図である。NC装置19より加工前計測指令が出されると、先に図3から図5を説明したように主軸チャック2に把持されている主軸計測用センサ校正用基準物20を計測し、タレット7に装着した位置計測用センサ5の位置を校正する。続いて先に、図6を用いて説明したように位置を校正した位置計測用センサ5で刃先位置計測用センサ16の位置を計測し位置を校正する。そして、工具6を刃先位置計測用センサ16に接触させ位置を計測し、NC装置19にて工具オフセット量を演算し加工前計測が終了する。
【0029】
なお、加工前計測、加工後計測及び工具摩耗量計測の方法は、加工物1の必要精度及び加工時間限度等に応じて選択可能であり、計測挿入時期についても個別に設定可能である。また、この実施の形態はNC旋盤に限らず他の工作機械にも適用できる。
【0030】
【発明の効果】
以上説明したように、この発明の工作機械及び加工方法によれば、刃先位置計測手段の位置を計測し校正することができるので、加工中の熱等の外乱により発生する誤差をなくすことができ、加工後の計測が困難な部分の精度も向上する。
【0031】
また、加工後の加工物の寸法計測も可能であり、加工後の製品の監視もできる。
【図面の簡単な説明】
【図1】 本発明に係る工作機械の一実施形態の全体構成図である。
【図2】 本実施の形態における工作機械の要部の位置関係を示した図である。
【図3】 本実施の形態の主軸チャック把握型基準物を用いた位置計測用センサの位置の校正の方法を説明するために用いる図である。
【図4】 本実施の形態の主軸チャック内蔵型基準物を用いた位置計測用センサの位置の校正の方法を説明するために用いる図である。
【図5】 本実施の形態の切削可能型基準物を用いた位置計測用センサの位置の校正の方法を説明するために用いる図である。
【図6】 本実施の形態の刃先位置計測用センサの位置の校正の方法を説明するために用いる図である。
【図7】 本発明の関連技術としての工具近傍工具位置基準面を用いた工具摩耗量計測の方法を説明するために用いる図である。
【図8】 本発明の関連技術としての工具摩耗量計測用共通基準面による工具摩耗量計測の方法を説明するために用いる図である。
【図9】 本実施の形態の加工後計測の方法を説明するために用いる図である。
【図10】 本実施の形態のNC旋盤における加工時の動作状況を示したフローチャートである。
【図11】 本実施の形態の加工前計測の動作状況を示すブロック図である。
【図12】 従来のNC旋盤を示した全体構成図である。
【符号の説明】
1 加工物、2 主軸チャック、3 ビルトインモータ、4 回転角度検出用エンコーダ、5 位置計測用センサ、6 工具、7 タレット、8 刃物台、9Z軸ボールネジ、10 Z軸モータ、11 Z軸位置検出用エンコーダ、12X軸ボールネジ、13 X軸モータ、14 X軸位置検出用エンコーダ、15X軸位置検出用リニアスケール、16 刃先位置計測用センサ、17 センサアーム、18 センサアーム回転用モータ、19 NC装置、20 位置計測用センサ校正用基準物、20a 主軸チャック把握型基準物、20b 主軸チャック内蔵型基準物、20c 切削可能型基準物、21 工具近傍工具位置基準面、22 工具摩耗量計測用共通基準面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and a machining method in a machine tool, particularly an NC lathe.
[0002]
[Prior art]
In a conventional NC lathe, a mechanism in which a blade position measuring sensor is mounted on a rotatable sensor arm is employed.
[0003]
FIG. 12 is an overall configuration diagram showing a conventional NC lathe. When a cutting edge position measurement command is issued from the NC device 19, the X-axis ball screw 12 and the X-axis motor 13 are driven, and the tool 6 mounted on the turret 7 moves. Then, the blade edge position measuring sensor 16 set in advance at the spindle center position is contacted. Then, the electric signal is turned on, and the electric signal is transmitted to the NC device 19 to stop the movement. The position at this time is detected by the X-axis position detection encoder 14, and the NC offset is calculated by the NC device 19 from the spindle center position. This operation is performed every time before machining to maintain machining accuracy. The blade edge position measuring sensor 16 is mounted on the sensor arm 17 and can be rotated by the sensor arm motor 18 and is automatically transferred into the machine only when measurement is performed. Since a plurality of tools 6 are used depending on the workpiece 1, the above-described cutting edge position measurement is also performed for a plurality of tools.
[0004]
[Problems to be solved by the invention]
However, in the conventional NC lathe described above, the sensor arm 17 is displaced by disturbances such as cutting heat during processing and heat generated by the built-in motor 3, and therefore the position of the sensor 16 for measuring the blade edge position is set in advance. There was a possibility that the main shaft would be displaced from the center position. This displacement causes an error in the measurement of the blade edge position and causes the processing accuracy to deteriorate. In particular, this influence becomes large in a portion where measurement after processing is difficult.
[0005]
Further, since only the pre-processing measurement by the blade edge position measurement is performed, it is not possible to confirm whether the processed product is processed within the allowable dimensions, and there is a possibility that many processed defective products may be produced.
[0006]
The present invention has been made for the above-mentioned circumstances, and the object of the present invention is to measure the position of the cutting edge without causing an error due to disturbance during machining, and to monitor the product after machining and measure the amount of tool wear. Is to provide a simple machine tool and processing method.
[0007]
[Means for Solving the Problems]
A machine tool according to the present invention has a known shape, a drive unit that moves a tool and a position measurement sensor, a position detection unit that detects the position of the detection unit of the position measurement sensor and the position of the cutting edge of the tool. Based on the position of the detection unit when the detection unit is brought into contact with a reference object fixed to the spindle, and the position of the detection unit when the detection unit is brought into contact with a blade position measurement sensor And a calibration means for obtaining the position of the cutting edge position measuring sensor with respect to the spindle center position.
[0008]
In the machine tool according to the present invention, it is preferable that the reference object is a ring which is on the main axis of the main shaft and is fixed to the main shaft.
[0009]
Further, the machining method according to the present invention includes a step of detecting a position of the detection unit when the detection unit is brought into contact with a reference object having a known shape and fixed to the spindle in the machine tool, and a cutting edge. Detecting the position of the detection unit when the detection unit is brought into contact with the position measurement sensor, and the position of the detection unit when the detection unit is brought into contact with the reference object, and measuring the blade edge position Calibrating the position of the cutting edge position measuring sensor with respect to the spindle center position based on the position of the detecting section when the detecting section is brought into contact with the sensor for measuring, and the position of the cutting edge of each tool It is characterized by measuring.
[0010]
In the above machine tools and machining methods, the position of the blade position measurement sensor with respect to the spindle center position is measured and calibrated. Therefore, an error caused by the displacement of the blade position measurement sensor due to a disturbance during machining occurs. It can be eliminated, and the accuracy of parts that are difficult to measure after processing is improved. In addition, it is possible to measure the dimension of the workpiece after processing, and to monitor the product after processing.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an overall configuration diagram of an embodiment of a machine tool according to the present invention. The tool 6 is mounted on the turret 7 and driven in the Z-axis direction by a Z-axis ball screw 9 and a Z-axis motor 10, and the position thereof is detected by a Z-axis position detecting encoder 11. Further, the X-axis ball screw 12 and the X-axis motor 13 drive in the X-axis direction, and the position is detected by the X-axis position detecting encoder 14 and the linear position detection is also performed by the X-axis position detecting linear scale 15. Has been done. Note that this linear position detection means is not limited to a linear scale, but may be an inductive thin, and can also be applied to the Z axis. Further, the position measuring sensor 5 as a position measuring means that has a detecting portion at the tip and measures the position of the blade edge position measuring sensor 16 in contact with the detecting portion is attached to the turret 7. And moved by the driving means of the tool 6. That is, the driving means of the tool 6 constituted by the Z-axis ball screw 9, the Z-axis motor 10, the X-axis ball screw 12, and the X-axis motor 13 is also a moving means of the position measuring sensor 5, and the Z-axis position detecting encoder 11 The position detecting means of the tool 6 constituted by the X axis position detecting encoder 14 and the X axis position detecting linear scale 15 is also a position detecting means of the position measuring sensor 5.
[0012]
On the other hand, the blade edge position measurement sensor 16 is mounted on the sensor arm 17 and is automatically transferred into the machine tool only at the time of measurement by the sensor arm motor 18. The cutting edge position measuring means constituted by these measures the Z-axis and X-axis direction positions of the cutting edge of the tool 6 that has moved and contacted. A method of manually transferring the sensor arm 17 into the machine tool is also conceivable. The workpiece 1 is held by the spindle chuck 2 and rotated by a built-in motor 3, and the rotation angle is detected by a rotation angle detection encoder 4. The spindle chuck 2 is equipped with a position calibration sensor calibration reference object 20. The NC device 19 makes the position of the detection unit relative to the position of the main shaft detected by bringing the detection unit into contact with the position detection sensor calibration reference object 20 and bringing the detection unit into contact with the cutting edge position measuring sensor 16. It is a calibration means for obtaining the position of the blade edge position measuring sensor 16 based on the detected position of the detection unit. That is, the NC device 19 makes the position measurement sensor calibration reference object 20 in the Z-axis and X-axis directions of the position detection sensor calibration reference object 20 by contacting the position measurement sensor 5 moved by the driving means with the position detection sensor calibration reference object 20. The position is measured, and the position measuring sensor 5 itself is calibrated by the NC device 19. Further, the position measuring sensor 5 calibrated is moved by driving means, and the position of the cutting edge position measuring sensor 16 in the Z-axis and X-axis directions is measured by contacting the cutting edge position measuring sensor 16, and the cutting edge position is determined. The position of the measurement sensor 16 is calibrated.
[0013]
Further, tool wear amount measurement as a tool wear amount measuring means having a reference surface for measuring the tool wear amount on the turret 7 and having a common reference surface 22 for measuring the tool wear amount that can be measured by the sensor 16 for measuring the blade edge position. When equipped, the NC device 19 moves the tool wear amount measurement common reference plane 22 and the cutting edge of the tool 6 by the driving means before machining, and makes the tool wear amount contact with the cutting edge position measurement sensor 16. The Z-axis and X-axis direction positions of the measurement common reference surface 22 and the Z-axis and X-axis direction positions of the cutting edge of the tool 6 are measured and stored. Then, after machining, the tool wear amount measuring common reference surface 22 and the cutting edge of the tool 6 are moved by the driving means and brought into contact with the blade edge position measuring sensor 16 to thereby make the Z axis of the tool wear amount measuring common reference surface 22. The position in the X-axis direction and the position of the cutting edge of the tool 6 in the Z-axis and X-axis directions are measured. The NC device 19 obtains the tool wear amount from these measured values. Note that the detection method of the blade edge position measuring sensor 16 and the position measuring sensor 5 is not limited to the contact type, and a non-contact type may be considered. Further, even if the contact type is capable of detecting not only ON / OFF detection but also the movement distance after contact of the sensor by analog detection, the accuracy is further improved.
[0014]
FIG. 2 is a diagram showing the positional relationship of the main parts of the machine tool in the present embodiment. The distance X16 from the spindle center position of the cutting edge position measuring sensor 16 is displaced by X16E due to the influence of disturbance such as heat while performing machining. Further, the distance X7 between the center position of the turret 7 provided with the position measuring sensor 5 and the tool 6 and the center position of the spindle is similarly displaced by X7E. Furthermore, the distance X6 from the center position of the turret 7 of the tool 6 is also displaced by X6E due to tool wear as machining progresses.
[0015]
FIGS. 3 to 5 are diagrams used for explaining a method of calibrating the position of the position measuring sensor 5 attached to the turret 7 in the present embodiment. FIG. 3 is a diagram used for explaining a method of calibrating the position of the position measuring sensor 5 using the spindle chuck grasping-type reference object 20a of the present embodiment. As shown in the left diagram of FIG. 3, a spindle chuck grasping reference object 20a having a known dimension is held by the spindle chuck 2, and a position measuring sensor 5 mounted on the turret 7 is driven by the spindle chuck grasping reference object 20a. Move and contact by means. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. The position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Similarly, the position of the other end is also measured as shown in the center diagram of FIG. 3, and the dimension of the spindle chuck grasp type reference object 20 a is obtained from the NC device 19. And since the dimension of the spindle chuck grasp type reference object 20a is known, the distance X7 from the spindle center position of the turret 7 to which the position measuring sensor 5 is mounted is calibrated from the measurement result of the position measuring sensor 5. In addition, the chucking error when holding the spindle chuck grasping-type reference object 20a by the spindle chuck 2 is detected by the rotation angle detection encoder 4 by rotating the built-in motor 3 at an arbitrary angle. The measurement is repeated by repeatedly measuring the dimensions of the spindle chuck grasp type reference object 20a and averaging the measured values. Moreover, although FIG. 3 demonstrated the X-axis direction, it is the same also about a Z-axis direction. In addition, the known dimension part of the spindle chuck grasp type reference object 20a is not limited to the outer diameter but may be the inner diameter.
[0016]
FIG. 4 is a diagram used for explaining a method of calibrating the position of the position measuring sensor 5 using the spindle chuck built-in reference object 20b of the present embodiment. As shown in the left figure of FIG. 4, a spindle chuck built-in reference object 20b having a known dimension is built in the spindle chuck 2, and the spindle chuck built-in reference object 20b is mounted on the turret 7 as shown in the center of FIG. The position measuring sensor 5 is moved in the X + direction from the state shown in the left diagram of FIG. 4 by the driving means, and is brought into contact with the spindle chuck built-in reference object 20b. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. The position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Subsequently, as shown in the right diagram of FIG. 4, it is moved in the X-direction by the driving means, and is again brought into contact with the spindle chuck built-in reference object 20 b. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped again. The movement distance between the two contacts is detected by the X-axis position detection encoder 14 and the X-axis position detection linear scale 15, and the NC device 19 determines the dimensions of the spindle chuck built-in reference object 20b. Since the dimension of the spindle chuck built-in reference object 20b is known, the distance X7 from the spindle center position of the turret 7 to which the position measuring sensor 5 is mounted is calibrated from the measurement result of the position measuring sensor 5. Moreover, although FIG. 4 demonstrated the X-axis direction, it is the same also about a Z-axis direction. The known dimension of the spindle chuck built-in reference object 20b is not limited to the inner diameter but may be the outer diameter.
[0017]
FIG. 5 is a diagram used for explaining a method of calibrating the position of the position measuring sensor 5 using the cuttable type reference object 20c of the present embodiment. As shown in the left figure of FIG. 5, the cutable type reference object 20 c is mounted on the spindle chuck 2, the spindle chuck 2 is rotated by the built-in motor 3, and the tool 6 mounted on the turret 7 is moved by the driving means to enable cutting. The mold reference object 20c is processed into an arbitrary command dimension. Subsequently, the position measuring sensor 5 attached to the turret 7 is moved and brought into contact with the cuttable reference 20c processed as shown in the center diagram of FIG. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. The position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Since the cutable mold reference object 20c is machined to an arbitrary command dimension, the distance X7 from the center position of the spindle of the turret 7 to which the position measurement sensor 5 is mounted is determined from the command dimension and the measurement result of the position measurement sensor 5. It is calibrated. Further, although the X-axis direction has been described in FIG. 5, the same applies to the Z-axis direction. In addition, the method of measuring the workpiece 1 instead of the cutable reference material 20c is also conceivable.
[0018]
FIG. 6 is a diagram used for explaining a method of calibrating the position of the blade edge position measuring sensor 16 of the present embodiment. The position is calibrated as shown in FIGS. 3 to 5, and the position measuring sensor 5 mounted on the turret 7 is moved by the driving means from the state shown in the left diagram of FIG. 6 as shown in the right diagram of FIG. The sensor 16 is brought into contact. The detection of this contact is an OR logic circuit of the ON signal of the position measuring sensor 5 and the ON signal of the blade position measuring sensor 16, and the electrical of either the position measuring sensor 5 or the blade position measuring sensor 16 is detected. When the signal is transmitted to the NC device 19, the movement is stopped. The position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the distance X16 from the spindle center position of the cutting edge position measuring sensor 16 is calibrated by the NC device 19. Moreover, although FIG. 6 demonstrated the X-axis direction, it is the same also about a Z-axis direction. In addition to the method described above, a method for detecting the contact of the sensor may have a structure in which the sensor signal is always output first when contact is made.
[0019]
Then, the tool 6 mounted on the turret 7 is moved by the driving means before being processed and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. At this time, the position X6 is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15 and stored in the NC device 19. Subsequently, after machining, the distance X16 from the spindle center position of the cutting edge position measuring sensor 16 is calibrated by the method shown in FIGS. 3 to 6, and the tool 6 mounted on the turret 7 is moved again by the driving means to measure the cutting edge position. The sensor 16 is brought into contact. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After this position X6, it is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15, and is stored in the NC device 19 before the position X6 before the tool 6 before machining. The tool wear amount of the tool 6 is obtained from the difference. In the above description, the X-axis direction is described, but the same applies to the Z-axis direction.
[0020]
7 and 8 illustrate a method for measuring the amount of tool wear of the tool 6 attached to the turret 7 as a related technique of the present invention without calibrating the distance X16 from the spindle center position of the sensor 16 for measuring the blade tip position. It is a figure used in order to do. FIG. 7 is a diagram used for explaining a method of measuring the amount of tool wear using the tool vicinity tool position reference surface 21. As shown in the left diagram of FIG. 7, the tool vicinity tool position reference surface 21 mounted on the turret 7 is moved by a driving unit and brought into contact with the blade edge position measuring sensor 16 before machining. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. At this time, the position X21 is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15.
[0021]
Subsequently, as shown in the right side of FIG. 7, the tool 6 mounted on the turret 7 is similarly moved by the driving means and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. At this time, the position X6 is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the difference between the position X21 before the tool vicinity tool position reference surface 21 and the position X6 before the tool 6 is stored in the NC device 19. Subsequently, the tool vicinity tool position reference surface 21 mounted on the turret 7 again after machining is moved by the driving means and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After this position X21, the position is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15.
[0022]
Subsequently, the tool 6 mounted on the turret 7 is similarly moved by the driving means and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After this position X6, the position is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the difference between the position after the position X21 of the tool vicinity tool position reference surface 21 and the position after the position X6 of the tool 6, and the position before the position X21 of the tool vicinity tool position reference surface 21 before processing stored in the NC device 19 and the tool. The tool wear amount of the tool 6 is obtained from the difference between the position 6 before the position 6. In addition, about the calculation method of the amount of tool wear, the difference between the position X21 before the tool vicinity tool position reference surface 21 before processing and the position X21 after the tool vicinity tool position reference surface 21 after processing, and the tool 6 before processing A method of calculating from the difference between the position X6 before and after the position X6 of the tool 6 after processing is also conceivable. Moreover, although FIG. 6 demonstrated the X-axis direction, it is the same also about a Z-axis direction.
[0023]
FIG. 8 is a diagram used for explaining a method of measuring the amount of tool wear using the common reference surface 22 for measuring the amount of tool wear as a related technique of the present invention. Similar to the method of FIG. 7 described above, the tool wear amount measuring common reference surface 22 mounted on the turret 7 is moved by the driving means and brought into contact with the blade edge position measuring sensor 16 as shown in the left diagram of FIG. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. At this time, the position X22 is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Subsequently, as shown in the center diagram of FIG. 8, the tool 6 mounted on the turret 7 is similarly moved by the driving means and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. At this time, the position X6 is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the difference between the tool wear amount measuring common reference surface 22 before the position X22 and the tool 6 before the position X6 is stored in the NC device 19.
[0024]
Subsequently, the tool wear amount measuring common reference plane 22 mounted on the turret 7 again after the machining is moved by the driving means and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After the position X22 at this time, the position is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Subsequently, the tool 6 mounted on the turret 7 is similarly moved by the driving means and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After this position X6, the position is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the difference between the position X22 after the tool wear amount measurement common reference plane 22 and the position after the position X6 of the tool 6 and the position of the tool wear amount measurement common reference plane 22 before processing stored in the NC device 19 previously. The tool wear amount of the tool 6 is obtained from the difference between the position before X22 and the position before the position X6 of the tool 6. As for the calculation method of the amount of tool wear, the difference between the position X22 of the common reference surface 22 for measuring tool wear before measurement and the position after the position X22 of the common reference surface 22 for measuring tool wear after processing, A method of calculating from the difference between the position X6 of the tool 6 before the position X6 and the position after the position X6 of the tool 6 after processing is also conceivable.
[0025]
Subsequently, the turret 7 is turned to determine another tool 6a, and this tool 6a is similarly brought into contact with the cutting edge position measuring sensor 16 to detect its position, and the amount of tool wear is obtained. This method is sequentially performed to measure the tool wear amount for all the tools. Note that the positioning error due to turning of the turret 7 is small compared to the error X6E due to the amount of tool wear, and the common reference surface 22 for measuring the amount of tool wear is common to each tool. Moreover, although FIG. 6 demonstrated the X-axis direction, it is the same also about a Z-axis direction. The mounting position of the tool wear amount measurement common reference surface 22 is not limited to the turret 7 and may be any position as long as it does not interfere with machining and the cutting edge position measurement of the tool 6 and can be measured by the cutting edge position measuring sensor 16. In place.
[0026]
FIG. 9 is a diagram used for explaining the post-processing measurement method according to the present embodiment. As shown in the left diagram of FIG. 9, the position measuring sensor 5 mounted on the turret 7 is moved and brought into contact with the processed workpiece 1 held by the spindle chuck 2 by the driving means. The ON signal at the time of this contact is transmitted to the NC device 19 and stopped, and the position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Similarly, the position of the other end is also measured as shown in the right figure of FIG. 9, and the dimension of the workpiece 1 after machining is obtained from the NC device 19. Moreover, although FIG. 9 demonstrated the X-axis direction, it is the same also about a Z-axis direction. In addition, the dimension measurement part of the workpiece 1 after processing is not limited to the outer diameter but may be the inner diameter.
[0027]
Next, an operation state at the time of machining in the NC lathe according to the present embodiment will be described with reference to FIG. FIG. 10 is a flowchart showing an operation state at the time of machining on the NC lathe using the present embodiment. When the workpiece 1 is the first product, the pre-processing measurement described later is performed and the tool offset amount is calculated and corrected by the NC device 19. Subsequently, machining is started, and when the number of measured insertions input in advance to the NC device 19 is reached, a post-machining measurement command is issued from the NC device 19 and the workpiece 1 is processed as described above with reference to FIG. Measure. When the measured dimension is outside the allowable dimension range input to the NC device 19 in advance, the machining is immediately stopped and an alarm is displayed on the NC device 19 so that many defective products are not machined. . When it is within the allowable dimension range, the tool wear amount is measured by the method described above with reference to FIGS. When the measured tool wear amount is less than the allowable tool wear amount input to the NC device 19 in advance, the machining is continued. When the measured tool wear amount is equal to or greater than the allowable tool wear amount, the tool is replaced. In the same way as before, measurement is resumed after pre-processing measurement. Note that post-processing measurement and tool wear amount measurement can be inserted separately after processing any number of pieces, and a method of determining insertion not by the number of processing but by the processing time is also conceivable.
[0028]
FIG. 11 is a block diagram showing an operation state of measurement before processing according to the present embodiment. When a pre-machining measurement command is issued from the NC device 19, the spindle calibration sensor calibration reference object 20 held by the spindle chuck 2 is measured and attached to the turret 7 as described above with reference to FIGS. The position of the measured position measuring sensor 5 is calibrated. Subsequently, as described with reference to FIG. 6, the position of the blade edge position measuring sensor 16 is measured by the position measuring sensor 5 whose position is calibrated, and the position is calibrated. Then, the tool 6 is brought into contact with the cutting edge position measuring sensor 16 to measure the position, the NC device 19 calculates the tool offset amount, and the pre-processing measurement ends.
[0029]
In addition, the method of measurement before a process, measurement after a process, and tool wear amount measurement can be selected according to the required precision of the workpiece 1, a process time limit, etc., and the measurement insertion time can also be set individually. Further, this embodiment can be applied not only to the NC lathe but also to other machine tools.
[0030]
【The invention's effect】
As described above, according to the machine tool and the machining method of the present invention, the position of the blade edge position measuring means can be measured and calibrated, so that an error caused by a disturbance such as heat during machining can be eliminated. Also, the accuracy of parts that are difficult to measure after processing is improved.
[0031]
In addition, it is possible to measure the dimension of the workpiece after processing, and to monitor the product after processing.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an embodiment of a machine tool according to the present invention.
FIG. 2 is a diagram showing a positional relationship of main parts of a machine tool in the present embodiment.
FIG. 3 is a diagram used for explaining a method of calibrating the position of a position measuring sensor using a spindle chuck grasping type reference object according to the present embodiment;
FIG. 4 is a diagram used for explaining a method of calibrating the position of a position measuring sensor using a spindle chuck built-in reference object according to the present embodiment;
FIG. 5 is a diagram used for explaining a method of calibrating the position of the position measuring sensor using the cutable reference material according to the present embodiment.
FIG. 6 is a diagram used for explaining a method of calibrating the position of the blade edge position measuring sensor according to the present embodiment;
FIG. 7 is a diagram used for explaining a method of measuring a tool wear amount using a tool vicinity tool position reference surface as a related technique of the present invention.
FIG. 8 is a diagram used to explain a method of measuring tool wear using a common reference surface for measuring tool wear as a related technique of the present invention.
FIG. 9 is a diagram used for explaining a post-processing measurement method according to the present embodiment;
FIG. 10 is a flowchart showing an operation state at the time of machining in the NC lathe according to the present embodiment.
FIG. 11 is a block diagram illustrating an operation state of measurement before processing according to the present embodiment.
FIG. 12 is an overall configuration diagram showing a conventional NC lathe.
[Explanation of symbols]
1 Workpiece, 2 spindle chuck, 3 built-in motor, 4 rotation angle detection encoder, 5 position measurement sensor, 6 tool, 7 turret, 8 turret, 9 Z axis ball screw, 10 Z axis motor, 11 for Z axis position detection Encoder, 12 X-axis ball screw, 13 X-axis motor, 14 X-axis position detection encoder, 15 X-axis position detection linear scale, 16 Cutting edge position measurement sensor, 17 Sensor arm, 18 Sensor arm rotation motor, 19 NC device, 20 Position measurement sensor calibration reference, 20a spindle chuck grasping reference, 20b spindle chuck built-in reference, 20c cutable reference, 21 tool near tool position reference plane, 22 tool wear measurement common reference plane.

Claims (3)

工具および位置計測用センサを移動させる駆動手段と、
前記位置計測用センサの検出部の位置および工具の刃先の位置を検出する位置検出手段と、
既知の形状であり主軸に固定された基準物に前記検出部を当接させたときの該検出部の位置と、刃先位置計測用センサに該検出部を当接させたときの該検出部の位置と、に基づいて主軸中心位置に対する前記刃先位置計測用センサの位置を求める校正手段と、
を備えることを特徴とする工作機械。
Driving means for moving the tool and position measuring sensor;
Position detecting means for detecting the position of the detecting portion of the position measuring sensor and the position of the cutting edge of the tool;
The position of the detection unit when the detection unit is brought into contact with a reference object having a known shape and fixed to the spindle, and the detection unit when the detection unit is brought into contact with a blade edge position measuring sensor. Calibration means for determining the position of the cutting edge position measuring sensor with respect to the spindle center position based on the position; and
A machine tool comprising:
前記基準物は、主軸中心線上にあり主軸に固定されたリングであることを特徴とする請求項1に記載の工作機械。The machine tool according to claim 1, wherein the reference object is a ring that is on a center line of the spindle and is fixed to the spindle. 請求項1または2に記載の工作機械において、
既知の形状であり主軸に固定された基準物に前記検出部を当接させたときの該検出部の位置を検出するステップと、
刃先位置計測用センサに該検出部を当接させたときの該検出部の位置を検出するステップと、
前記基準物に前記検出部を当接させたときの該検出部の位置、および刃先位置計測用センサに該検出部を当接させたときの該検出部の位置に基づいて、主軸中心位置に対する前記刃先位置計測用センサの位置を校正するステップと、
を有し、各工具の刃先の位置を計測することを特徴とする加工方法。
The machine tool according to claim 1 or 2,
Detecting a position of the detection unit when the detection unit is brought into contact with a reference object having a known shape and fixed to the spindle;
Detecting the position of the detection unit when the detection unit is brought into contact with the blade position measurement sensor;
Based on the position of the detection portion when the detection portion is brought into contact with the reference object and the position of the detection portion when the detection portion is brought into contact with a blade edge position measuring sensor Calibrating the position of the cutting edge position measuring sensor;
And measuring the position of the cutting edge of each tool.
JP2002192216A 2002-07-01 2002-07-01 Machine tool and processing method Expired - Fee Related JP3660920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192216A JP3660920B2 (en) 2002-07-01 2002-07-01 Machine tool and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192216A JP3660920B2 (en) 2002-07-01 2002-07-01 Machine tool and processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27584995A Division JP3604473B2 (en) 1995-10-24 1995-10-24 Machine Tools

Publications (2)

Publication Number Publication Date
JP2003019644A JP2003019644A (en) 2003-01-21
JP3660920B2 true JP3660920B2 (en) 2005-06-15

Family

ID=19195524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192216A Expired - Fee Related JP3660920B2 (en) 2002-07-01 2002-07-01 Machine tool and processing method

Country Status (1)

Country Link
JP (1) JP3660920B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109064A1 (en) * 2008-03-05 2009-09-11 Abb Technology Ab A method for compensation tool wear and a machine tool for performing the method
JP2013255982A (en) * 2012-06-14 2013-12-26 Murata Machinery Ltd Machine tool, and correction method of thermal deformation thereof
JP6538503B2 (en) * 2015-09-24 2019-07-03 オークマ株式会社 Geometrical error identification method for machine tool and geometric error identification program
DE102017000072A1 (en) * 2017-01-05 2018-07-05 Liebherr-Verzahntechnik Gmbh Method for automatically determining the geometric dimensions of a tool in a gear cutting machine
JP6574915B1 (en) * 2018-05-15 2019-09-11 東芝機械株式会社 Workpiece processing method and work piece processing machine
JP7196473B2 (en) * 2018-09-05 2022-12-27 日本電産株式会社 Amount of wear estimation system, correction system, anomaly detection system, life detection system, machine tool, and method of estimating amount of wear
CN114833637A (en) * 2022-05-13 2022-08-02 陕西法士特齿轮有限责任公司 Cutter wear detection system and detection method

Also Published As

Publication number Publication date
JP2003019644A (en) 2003-01-21

Similar Documents

Publication Publication Date Title
US10335914B2 (en) Method for determining a position of a work piece in a machine tool
US8494800B2 (en) Method and program for identifying mechanical errors
JP2009034738A (en) Machine tool having function for automatically correcting attachment error by contact detection
CN112775718B (en) Correction value measuring method and correction value measuring system for position measuring sensor of machine tool
KR20130122760A (en) Centering method for optical elements
JP3660920B2 (en) Machine tool and processing method
JPH09253979A (en) Tool edge position measuring device
JP4898290B2 (en) Work transfer device with electric chuck with measurement function
US7191535B2 (en) On-machine automatic inspection of workpiece features using a lathe rotary table
EP0199927B1 (en) Apparatus for checking linear dimensions of mechanical parts
CN112775720B (en) Position measuring method and position measuring system for object of machine tool, and computer readable recording medium
CN110966963B (en) Inertial friction welding coaxiality precision detection device and detection method thereof
JP3604473B2 (en) Machine Tools
CN112828682A (en) Error measurement method for machine tool and machine tool
JP2004322255A (en) Machine tool with straight line position measuring instrument
JP5531640B2 (en) Feed control device for machine tools
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JPH10277889A (en) Cutter tip position measuring device
JPH081405A (en) Device and method for detecting lost motion
JPH08197384A (en) Tip position correction device of rotating tool
JP2019007762A (en) Measurement method using touch probe
JP3781236B2 (en) Grinding machine and grinding method of grinding wheel position
JP2574228Y2 (en) Lathe in-machine measuring device
JPH1133880A (en) Measuring device of nc lathe
JP7300358B2 (en) Tool edge measuring device and machine tool

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees