JP2003019644A - Machine tools and machining methods - Google Patents
Machine tools and machining methodsInfo
- Publication number
- JP2003019644A JP2003019644A JP2002192216A JP2002192216A JP2003019644A JP 2003019644 A JP2003019644 A JP 2003019644A JP 2002192216 A JP2002192216 A JP 2002192216A JP 2002192216 A JP2002192216 A JP 2002192216A JP 2003019644 A JP2003019644 A JP 2003019644A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- measuring sensor
- contact
- cutting edge
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003754 machining Methods 0.000 title abstract description 54
- 238000000034 method Methods 0.000 title abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 58
- 238000001514 detection method Methods 0.000 claims abstract description 43
- 238000003672 processing method Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 34
- 238000012545 processing Methods 0.000 description 9
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Automatic Control Of Machine Tools (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
(57)【要約】
【課題】 加工中に誤差なく刃先位置を計測し、加工後
の製品の監視、工具摩耗量計測可能な工作機械及び加工
方法を提供する。
【解決手段】 工作機械は、工具6、検出部を有する位
置計測用センサ5を装備したタレット7をX、Z軸方向
に駆動するボールネジ9、12及びモータ10、13
と、タレット7のX、Z軸方向位置を検出する位置検出
用エンコーダ11、14及びX軸位置検出用リニアスケ
ール15と、当接した工具6の刃先のX、Z軸方向位置
を計測する刃先位置計測用センサ16と、検出部を位置
計測用センサ校正用基準物20へ当接させることにより
検出した主軸の位置に対する検出部の位置と検出部を刃
先位置計測用センサ16へ当接させることにより検出し
た検出部の位置とに基づいて刃先位置計測用センサ16
の位置を求めるNC装置19と、工具摩耗量計測用共通
基準面22を有する工具摩耗量計測部とを有し、加工前
後に刃先および加工物の位置を計測する。
(57) [Summary] [PROBLEMS] To provide a machine tool and a machining method capable of measuring the position of a cutting edge without error during machining, monitoring a product after machining, and measuring a tool wear amount. SOLUTION: The machine tool includes ball screws 9 and 12 and motors 10 and 13 for driving a tool 6 and a turret 7 equipped with a position measuring sensor 5 having a detecting unit in X and Z-axis directions.
And the position detecting encoders 11 and 14 for detecting the position of the turret 7 in the X and Z directions and the linear scale 15 for detecting the X direction and the cutting edge for measuring the position of the cutting edge of the tool 6 in the X and Z directions. The position measurement sensor 16 and the position of the detection unit with respect to the position of the spindle detected by bringing the detection unit into contact with the position measurement sensor calibration reference 20 and the detection unit contacting the blade edge position measurement sensor 16. Edge position measurement sensor 16 based on the position of the detection unit detected by
And a tool wear amount measurement unit having a tool wear amount measurement common reference surface 22 for measuring the positions of the cutting edge and the workpiece before and after machining.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、工作機械、特に
NC旋盤における装置及び加工方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a machining method for a machine tool, particularly an NC lathe.
【0002】[0002]
【従来の技術】従来のNC旋盤では、回転可能なセンサ
アームに刃先位置計測用センサを装着した機構が採用さ
れている。2. Description of the Related Art A conventional NC lathe employs a mechanism in which a sensor for measuring a blade edge position is attached to a rotatable sensor arm.
【0003】図12は従来のNC旋盤を示した全体構成
図であり、NC装置19より刃先位置計測指令が出ると
X軸ボールネジ12及びX軸モータ13が駆動し、タレ
ット7に装着された工具6は移動してあらかじめ主軸中
心位置に設定された刃先位置計測用センサ16に接触す
る。そして、電気信号がONとなりNC装置19に電気
信号が伝達され移動を停止する。この時の位置をX軸位
置検出用エンコーダ14にて検出し、NC装置19にて
主軸中心位置からの工具オフセット量を演算する。この
動作を加工前ごとに行い加工精度を維持している。ま
た、刃先位置計測用センサ16はセンサアーム17に装
着されており、センサアーム用モータ18により回転可
能であり計測を行う時のみ機械内に自動で振り込まれ
る。なお、工具6は加工物1に応じて複数使用されるた
め、上述の刃先位置計測も複数の工具について行われ
る。FIG. 12 is an overall configuration diagram showing a conventional NC lathe. When a cutting edge position measurement command is issued from the NC device 19, the X-axis ball screw 12 and the X-axis motor 13 are driven, and the tool mounted on the turret 7 is shown. 6 moves and comes into contact with the blade edge position measuring sensor 16 which is set in advance at the center position of the spindle. Then, the electric signal is turned on, the electric signal is transmitted to the NC device 19, and the movement is stopped. The position at this time is detected by the X-axis position detection encoder 14, and the NC device 19 calculates the tool offset amount from the spindle center position. This operation is performed before machining to maintain machining accuracy. Further, the cutting edge position measuring sensor 16 is attached to the sensor arm 17, can be rotated by the sensor arm motor 18, and is automatically fed into the machine only when performing measurement. Since a plurality of tools 6 are used according to the workpiece 1, the above-mentioned blade edge position measurement is also performed for a plurality of tools.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
た従来のNC旋盤においては、加工中の切削熱、ビルト
インモータ3の発熱等の外乱によりセンサアーム17が
変位してしまい、そのため刃先位置計測用センサ16の
位置があらかじめ設定してあった主軸中心位置から変位
してしまう可能性があった。この変位は、刃先位置計測
に誤差が生じて加工精度が劣化する原因となる。特に加
工後の計測が困難な部分ではこの影響が大きくなる。However, in the above-mentioned conventional NC lathe, the sensor arm 17 is displaced due to disturbances such as cutting heat during machining and heat generation of the built-in motor 3, and therefore the cutting edge position measuring sensor. There was a possibility that 16 positions would be displaced from the preset spindle center position. This displacement causes an error in the measurement of the position of the cutting edge and causes a deterioration in processing accuracy. This effect is particularly large in the part where measurement after processing is difficult.
【0005】また、刃先位置計測による加工前計測のみ
であるため、加工完了品が許容寸法内で加工されている
か確認できず、加工不良製品を多数生産してしまう恐れ
がある。Further, since only the pre-machining measurement by the blade edge position measurement is performed, it is not possible to confirm whether or not the machined product has been machined within the allowable dimension, and there is a possibility that a large number of machined defective products may be produced.
【0006】この発明は上述した事情から成されたもの
であり、この発明の目的は、加工中の外乱により誤差を
生じる事なく刃先の位置を計測し、加工後の製品の監
視、工具摩耗量計測も可能な工作機械及び加工方法を提
供する事にある。The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to measure the position of the cutting edge without causing an error due to disturbance during processing, monitor the product after processing, and measure the amount of tool wear. It is to provide a machine tool capable of measurement and a processing method.
【0007】[0007]
【課題を解決するための手段】本発明にかかる工作機械
は、工具および位置計測用センサを移動させる駆動手段
と、上記位置計測用センサの検出部の位置および工具の
刃先の位置を検出する位置検出手段と、既知の形状であ
り主軸に固定された基準物に上記検出部を当接させたと
きの該検出部の位置と、刃先位置計測用センサに該検出
部を当接させたときの該検出部の位置と、に基づいて主
軸中心位置に対する上記刃先位置計測用センサの位置を
求める校正手段と、を備えることを特徴とする。A machine tool according to the present invention comprises a driving means for moving a tool and a position measuring sensor, a position of a detecting portion of the position measuring sensor and a position of detecting a position of a cutting edge of the tool. A detection means, a position of the detection part when the detection part is brought into contact with a reference object having a known shape and fixed to the main shaft, and a position when the detection part is brought into contact with the blade edge position measurement sensor Calibration means for determining the position of the cutting edge position measuring sensor with respect to the center position of the spindle based on the position of the detecting portion.
【0008】また、本発明にかかる工作機械では、基準
物は、主軸中心線上にあり主軸に固定されたリングであ
るのが好適である。Further, in the machine tool according to the present invention, it is preferable that the reference object is a ring located on the center line of the spindle and fixed to the spindle.
【0009】また、本発明にかかる加工方法は、上記工
作機械において、既知の形状であり主軸に固定された基
準物に上記検出部を当接させたときの該検出部の位置を
検出するステップと、刃先位置計測用センサに該検出部
を当接させたときの該検出部の位置を検出するステップ
と、上記基準物に上記検出部を当接させたときの該検出
部の位置、および刃先位置計測用センサに該検出部を当
接させたときの該検出部の位置に基づいて、主軸中心位
置に対する上記刃先位置計測用センサの位置を校正する
ステップと、を有し、各工具の刃先の位置を計測するこ
とを特徴とする。Further, in the machining method according to the present invention, in the machine tool, a step of detecting the position of the detection part when the detection part is brought into contact with a reference object having a known shape and fixed to the spindle. A step of detecting the position of the detection part when the detection part is brought into contact with the cutting edge position measuring sensor, the position of the detection part when the detection part is brought into contact with the reference object, and A step of calibrating the position of the cutting edge position measuring sensor with respect to the spindle center position based on the position of the detecting part when the detecting part is brought into contact with the cutting edge position measuring sensor; It is characterized by measuring the position of the cutting edge.
【0010】以上の工作機械および加工方法において
は、主軸中心位置に対する刃先位置計測用センサの位置
を計測し校正するようにしたので、加工中の外乱により
刃先位置計測用センサが変位することにより発生する誤
差をなくすことができ、加工後に計測が困難な部分の精
度も向上する。また、加工後の加工物の寸法計測も可能
であり、加工後の製品の監視もできる。In the above machine tool and machining method, the position of the cutting edge position measuring sensor with respect to the center position of the spindle is measured and calibrated, so that it is generated when the cutting edge position measuring sensor is displaced by a disturbance during machining. Error can be eliminated, and the accuracy of the portion that is difficult to measure after processing can be improved. Further, it is possible to measure the size of the processed product and monitor the processed product.
【0011】[0011]
【発明の実施の形態】図1は本発明に係る工作機械の一
実施形態の全体構成図である。工具6はタレット7に装
着されZ軸ボールネジ9及びZ軸モータ10によってZ
軸方向に駆動し、その位置はZ軸位置検出用エンコーダ
11により検出される。また、X軸ボールネジ12及び
X軸モータ13によってX軸方向に駆動し、その位置は
X軸位置検出用エンコーダ14によって検出されるとと
もに、X軸位置検出用リニアスケール15によって直線
的な位置検出も行われている。なお、この直線的な位置
検出手段はリニアスケールに限らずインダクトシンも考
えられ、また、Z軸にも適用する事も可能である。ま
た、検出部を先端に有しており、その検出部に当接した
刃先位置計測用センサ16の位置を計測する位置計測手
段としての位置計測用センサ5は、タレット7に装着さ
れているので、工具6の駆動手段によって移動される。
すなわち、Z軸ボールネジ9、Z軸モータ10、X軸ボ
ールネジ12及びX軸モータ13で構成される工具6の
駆動手段は、位置計測用センサ5の移動手段でもあり、
Z軸位置検出用エンコーダ11、X軸位置検出用エンコ
ーダ14及びX軸位置検出用リニアスケール15で構成
される工具6の位置検出手段は、位置計測用センサ5の
位置検出手段でもある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram of an embodiment of a machine tool according to the present invention. The tool 6 is mounted on the turret 7 by the Z-axis ball screw 9 and the Z-axis motor 10.
It is driven in the axial direction, and its position is detected by the Z-axis position detecting encoder 11. Further, the X-axis ball screw 12 and the X-axis motor 13 are driven in the X-axis direction, and the position is detected by the X-axis position detecting encoder 14, and linear position detection is also performed by the X-axis position detecting linear scale 15. Has been done. Note that this linear position detecting means is not limited to a linear scale, and an inductosyn can be considered, and can also be applied to the Z axis. Further, the position measuring sensor 5 as a position measuring means having a detecting portion at the tip and measuring the position of the blade edge position measuring sensor 16 in contact with the detecting portion is attached to the turret 7. , Is moved by the driving means of the tool 6.
That is, the driving means of the tool 6 constituted by the Z-axis ball screw 9, the Z-axis motor 10, the X-axis ball screw 12 and the X-axis motor 13 is also the moving means of the position measuring sensor 5,
The position detecting means of the tool 6 including the Z-axis position detecting encoder 11, the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15 is also the position detecting means of the position measuring sensor 5.
【0012】一方、刃先位置計測用センサ16は、セン
サアーム17に装着されセンサアーム用モータ18にて
計測時にのみ工作機械内へ自動で振り込まれる。これら
で構成される刃先位置計測手段は、移動し当接した工具
6の刃先のZ軸及びX軸方向位置を計測する。なお、こ
のセンサアーム17の工作機械内への振り込みは手動に
より行う方法も考えられる。また、加工物1は主軸チャ
ック2にて保持されビルトインモータ3にて回転しその
回転角度は回転角度検出用エンコーダ4にて検出され
る。主軸チャック2は、位置計測用センサ校正用基準物
20を装備している。NC装置19は、検出部を位置検
出用センサ校正用基準物20へ当接させることにより検
出した主軸の位置に対する検出部の位置と、検出部を刃
先位置計測用センサ16へ当接させることにより検出し
た検出部の位置と、に基づいて刃先位置計測用センサ1
6の位置を求める校正手段である。つまり、NC装置1
9は、駆動手段で移動した位置計測用センサ5を位置検
出用センサ校正用基準物20に当接させることにより位
置検出用センサ校正用基準物20のZ軸及びX軸方向の
位置を計測し、NC装置19より位置計測用センサ5自
身の位置の校正を行う。また、この校正された位置計測
用センサ5を駆動手段で移動させ、刃先位置計測用セン
サ16を当接する事により刃先位置計測用センサ16の
Z軸及びX軸方向の位置を計測し、刃先位置計測用セン
サ16の位置の校正を行う。On the other hand, the cutting edge position measuring sensor 16 is mounted on the sensor arm 17 and automatically swung into the machine tool by the sensor arm motor 18 only during measurement. The blade edge position measuring means configured by these measures the Z axis and X axis direction positions of the blade edge of the tool 6 that has moved and abutted. It is also possible to manually transfer the sensor arm 17 into the machine tool. Further, the workpiece 1 is held by the spindle chuck 2 and rotated by the built-in motor 3, and the rotation angle thereof is detected by the rotation angle detection encoder 4. The spindle chuck 2 is equipped with a reference object 20 for position measurement sensor calibration. The NC device 19 causes the position of the detection unit relative to the position of the spindle detected by contacting the detection unit with the position detection sensor calibration reference object 20 and the position of the detection unit with the blade edge position measurement sensor 16. Sensor 1 for measuring the position of the blade edge based on the detected position of the detector
It is a calibrating means for obtaining the position of 6. That is, the NC device 1
Reference numeral 9 measures the position of the position detection sensor calibration reference object 20 in the Z-axis and X-axis directions by bringing the position measurement sensor 5 moved by the driving means into contact with the position detection sensor calibration reference object 20. , NC device 19 calibrates the position of position measuring sensor 5 itself. Further, the calibrated position measuring sensor 5 is moved by the driving means, and the blade position measuring sensor 16 is brought into contact therewith to measure the position of the blade position measuring sensor 16 in the Z-axis and X-axis directions, and the blade position is measured. The position of the measuring sensor 16 is calibrated.
【0013】また、タレット7に工具摩耗量を計測する
ための基準面であって刃先位置計測用センサ16で計測
可能な工具摩耗量計測用共通基準面22を有する工具磨
耗量計測手段としての工具摩耗量計測部を装備した場
合、NC装置19は、加工前に工具摩耗量計測用共通基
準面22及び工具6の刃先を駆動手段で移動させ、刃先
位置計測用センサ16に当接させることにより工具摩耗
量計測用共通基準面22のZ軸及びX軸方向の位置と工
具6の刃先のZ軸及びX軸方向の位置を計測し記憶して
おく。そして、加工後に再度工具摩耗量計測用共通基準
面22及び工具6の刃先を駆動手段で移動させ、刃先位
置計測用センサ16に当接させることにより工具摩耗量
計測用共通基準面22のZ軸及びX軸方向の位置と工具
6の刃先のZ軸及びX軸方向の位置を計測する。NC装
置19は、これらの計測値より工具摩耗量を求める。な
お、刃先位置計測用センサ16及び位置計測用センサ5
の検出方法は接触式に限らず非接触式のものも考えられ
る。また接触式のものでもON、OFF検出だけでな
く、アナログ検出でセンサの接触後の移動距離も検出で
きるものであれば更に精度が良くなる。A tool as a tool wear amount measuring means having a common reference surface 22 for measuring the tool wear amount on the turret 7 and which can be measured by the cutting edge position measuring sensor 16 When the wear amount measuring unit is provided, the NC device 19 moves the common reference surface 22 for tool wear amount measurement and the cutting edge of the tool 6 by the driving means before machining and brings them into contact with the cutting edge position measuring sensor 16. The positions of the tool wear amount measurement common reference plane 22 in the Z-axis and X-axis directions and the positions of the cutting edge of the tool 6 in the Z-axis and X-axis directions are measured and stored. Then, after machining, the tool wear amount measurement common reference surface 22 and the cutting edge of the tool 6 are moved again by the driving means and brought into contact with the cutting edge position measurement sensor 16 to make the Z axis of the tool wear amount measurement common reference surface 22. Also, the position in the X-axis direction and the position of the cutting edge of the tool 6 in the Z-axis and X-axis directions are measured. The NC device 19 obtains the tool wear amount from these measured values. The blade edge position measuring sensor 16 and the position measuring sensor 5
The detection method is not limited to the contact type, and a non-contact type may be considered. Further, even if the contact type is used, not only the ON / OFF detection but also the moving distance after the contact of the sensor can be detected by the analog detection, the accuracy is further improved.
【0014】図2は本実施の形態における工作機械の要
部の位置関係を示した図である。刃先位置計測用センサ
16の主軸中心位置からの距離X16は、加工を行うと
ともに熱等の外乱の影響でX16E変位する。また、位
置計測用センサ5及び工具6を備えたタレット7の中心
位置と主軸中心位置の距離X7も同様にX7E変位す
る。さらに、加工が進むにつれて工具摩耗により工具6
のタレット7の中心位置からの距離X6もX6E変位す
る。FIG. 2 is a diagram showing the positional relationship of the essential parts of the machine tool according to the present embodiment. The distance X16 from the center position of the spindle of the blade position measuring sensor 16 is displaced by X16E due to the influence of external disturbance such as heat while machining. Further, the distance X7 between the center position of the turret 7 equipped with the position measuring sensor 5 and the tool 6 and the center position of the spindle is also displaced by X7E. Furthermore, as the machining progresses, tool wear causes tool 6
The distance X6 from the center position of the turret 7 is also displaced by X6E.
【0015】図3から図5は本実施の形態におけるタレ
ット7に装着された位置計測用センサ5の位置の校正の
方法を説明するために用いる図である。図3は本実施の
形態の主軸チャック把握型基準物20aを用いた位置計
測用センサ5の位置の校正の方法を説明するために用い
る図である。図3左図のように既知の寸法である主軸チ
ャック把握型基準物20aを主軸チャック2で保持し、
この主軸チャック把握型基準物20aに、タレット7に
装着された位置計測用センサ5を駆動手段で移動させ接
触させる。この接触時のON信号がNC装置19に伝達
されると移動を停止する。この時の位置はX軸位置検出
用エンコーダ14及びX軸位置検出用リニアスケール1
5にて検出される。同様に図3中央図のようにもう一端
の位置も計測してNC装置19より主軸チャック把握型
基準物20aの寸法が求められる。そして、主軸チャッ
ク把握型基準物20aの寸法は既知であるので、位置計
測用センサ5の計測結果より位置計測用センサ5を装着
したタレット7の主軸中心位置からの距離X7が校正さ
れる。また、主軸チャック把握型基準物20aを主軸チ
ャック2で保持する際のチャッキング誤差は、ビルトイ
ンモータ3を任意の角度回転させその角度を回転角度検
出用エンコーダ4にて検出し、前記と同様に主軸チャッ
ク把握型基準物20aの寸法を計測する動作を繰返し行
い、その計測値を平均する事により解消する。また、図
3ではX軸方向について説明したがZ軸方向についても
同様である。なお、主軸チャック把握型基準物20aの
既知の寸法部分は外径に限らず内径でもよい。FIGS. 3 to 5 are diagrams used for explaining a method of calibrating the position of the position measuring sensor 5 mounted on the turret 7 in the present embodiment. FIG. 3 is a diagram used for explaining a method of calibrating the position of the position measuring sensor 5 using the spindle chuck grasping type reference object 20a of the present embodiment. As shown in the left diagram of FIG. 3, a spindle chuck gripping type reference object 20a having a known dimension is held by the spindle chuck 2,
The position measuring sensor 5 mounted on the turret 7 is moved and brought into contact with the spindle chuck grasping type reference object 20a by a driving means. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. The position at this time is the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 1.
It is detected at 5. Similarly, as shown in the central view of FIG. 3, the position of the other end is also measured and the size of the spindle chuck gripping type reference object 20a is determined by the NC device 19. Since the dimension of the spindle chuck gripping reference object 20a is known, the distance X7 from the spindle center position of the turret 7 on which the position measuring sensor 5 is mounted is calibrated from the measurement result of the position measuring sensor 5. Further, the chucking error when the spindle chuck grasping reference object 20a is held by the spindle chuck 2 is detected by the rotation angle detecting encoder 4 by rotating the built-in motor 3 at an arbitrary angle, and the same as above. This is solved by repeating the operation of measuring the dimensions of the spindle chuck grasping type reference object 20a and averaging the measured values. Further, although the X-axis direction is described in FIG. 3, the same applies to the Z-axis direction. The known dimension of the spindle chuck gripping type reference object 20a is not limited to the outer diameter and may be the inner diameter.
【0016】図4は本実施の形態の主軸チャック内蔵型
基準物20bを用いた位置計測用センサ5の位置の校正
の方法を説明するために用いる図である。図4左図のよ
うに既知の寸法である主軸チャック内蔵型基準物20b
を主軸チャック2に内蔵し、図4中央図のようにこの主
軸チャック内蔵型基準物20bに、タレット7に装着さ
れた位置計測用センサ5を駆動手段で図4左図の状態よ
りX+方向に移動させ、主軸チャック内蔵型基準物20
bに接触させる。この接触時のON信号がNC装置19
に伝達されると移動を停止する。この時の位置はX軸位
置検出用エンコーダ14及びX軸位置検出用リニアスケ
ール15にて検出される。続いて、図4右図のように駆
動手段でX−方向に移動させ、主軸チャック内蔵型基準
物20bに再度接触させる。この接触時のON信号がN
C装置19に伝達されると再度移動を停止する。この2
度の接触間の移動距離をX軸位置検出用エンコーダ14
及びX軸位置検出用リニアスケール15にて検出され、
NC装置19により主軸チャック内蔵型基準物20bの
寸法が求められる。そして、主軸チャック内蔵型基準物
20bの寸法は既知であるので、位置計測用センサ5の
計測結果より位置計測用センサ5を装着したタレット7
の主軸中心位置からの距離X7が校正される。また、図
4ではX軸方向について説明したがZ軸方向についても
同様である。なお、主軸チャック内蔵型基準物20bの
既知の寸法部分は内径に限らず外径でもよい。FIG. 4 is a diagram used for explaining a method of calibrating the position of the position measuring sensor 5 using the spindle chuck built-in reference object 20b of the present embodiment. As shown in the left diagram of FIG. 4, a reference object 20b with a built-in spindle chuck having known dimensions.
4 is built in the spindle chuck 2, and the position measuring sensor 5 mounted on the turret 7 is mounted on the spindle chuck built-in reference object 20b as shown in the central view of FIG. Move the main spindle chuck type reference object 20
Contact b. The ON signal at the time of this contact is the NC device 19
When it is transmitted to, it stops moving. The position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Subsequently, as shown in the right diagram of FIG. 4, the driving means is moved in the X-direction to bring the spindle chuck built-in reference object 20b into contact again. The ON signal at this contact is N
When it is transmitted to the C device 19, the movement is stopped again. This 2
Encoder 14 for X-axis position detection
And the linear scale 15 for X-axis position detection,
The dimensions of the spindle chuck built-in reference object 20b are obtained by the NC device 19. Since the dimension of the reference object 20b with the built-in spindle chuck is known, the turret 7 on which the position measuring sensor 5 is mounted is measured based on the measurement result of the position measuring sensor 5.
The distance X7 from the center position of the spindle is calibrated. Further, although the X-axis direction is described in FIG. 4, the same applies to the Z-axis direction. The known dimension portion of the spindle chuck built-in reference object 20b is not limited to the inner diameter but may be the outer diameter.
【0017】図5は本実施の形態の切削可能型基準物2
0cを用いた位置計測用センサ5の位置の校正の方法を
説明するために用いる図である。図5左図のように切削
可能型基準物20cを主軸チャック2に装着し、ビルト
インモータ3にて主軸チャック2を回転させ、タレット
7に装着された工具6を駆動手段で移動させ、切削可能
型基準物20cを任意の指令寸法に加工する。続いて、
図5中央図のように加工された切削可能型基準物20c
に、タレット7に装着された位置計測用センサ5を駆動
手段で図5右図のように移動させ接触させる。この接触
時のON信号がNC装置19に伝達されると移動を停止
する。この時の位置はX軸位置検出用エンコーダ14及
びX軸位置検出用リニアスケール15にて検出される。
そして、切削可能型基準物20cは任意の指令寸法に加
工されているので指令寸法と位置計測用センサ5の計測
結果より位置計測用センサ5を装着したタレット7の主
軸中心位置からの距離X7が校正される。また、図5で
はX軸方向について説明したがZ軸方向についても同様
である。なお、切削可能型基準物20cの代わりに加工
物1を計測する方法も考えられる。FIG. 5 shows a machinable type reference object 2 according to this embodiment.
It is a figure used in order to demonstrate the method of calibrating the position of the position measurement sensor 5 using 0c. As shown in the left diagram of FIG. 5, the machinable reference object 20c is mounted on the spindle chuck 2, the spindle chuck 2 is rotated by the built-in motor 3, and the tool 6 mounted on the turret 7 is moved by the driving means to perform cutting. The mold reference object 20c is processed into an arbitrary commanded dimension. continue,
Fig. 5 Machinable type reference object 20c machined as shown in the central view
Then, the position measuring sensor 5 mounted on the turret 7 is moved and brought into contact with the driving means as shown in the right side of FIG. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. The position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15.
Since the machinable reference object 20c is machined to an arbitrary command dimension, the distance X7 from the center position of the spindle of the turret 7 equipped with the position measuring sensor 5 is determined from the command dimension and the measurement result of the position measuring sensor 5. Be calibrated. Further, although the X-axis direction is described in FIG. 5, the same applies to the Z-axis direction. A method of measuring the workpiece 1 instead of the machinable type reference object 20c is also conceivable.
【0018】図6は本実施の形態の刃先位置計測用セン
サ16の位置の校正の方法を説明するために用いる図で
ある。前記の図3から図5のように位置を校正され、タ
レット7に装着された位置計測用センサ5を駆動手段に
て図6左図の状態から図6右図のように移動させ刃先位
置計測用センサ16に接触させる。この接触の検知は、
位置計測用センサ5のON信号と刃先位置計測用センサ
16のON信号のOR論理回路となっており、位置計測
用センサ5か刃先位置計測用センサ16のどちらかの電
気信号がNC装置19に伝達されると移動を停止する。
この時の位置はX軸位置検出用エンコーダ14及びX軸
位置検出用リニアスケール15にて検出される。そし
て、NC装置19より刃先位置計測用センサ16の主軸
中心位置からの距離X16が校正される。また、図6で
はX軸方向について説明したがZ軸方向についても同様
である。なお、センサの接触の検知の方法は、上記の方
法以外にもどちらかに接触するとセンサの信号が必ず先
に出る構造を持つものも考えられる。FIG. 6 is a diagram used for explaining a method of calibrating the position of the blade edge position measuring sensor 16 of the present embodiment. The position measurement sensor 5 whose position is calibrated as shown in FIGS. 3 to 5 and mounted on the turret 7 is moved by the driving means from the state shown in the left diagram of FIG. 6 to the right diagram of FIG. The sensor 16 for contact is made to contact. The detection of this contact is
It is an OR logic circuit of the ON signal of the position measuring sensor 5 and the ON signal of the cutting edge position measuring sensor 16, and an electric signal of either the position measuring sensor 5 or the cutting edge position measuring sensor 16 is sent to the NC device 19. When it is transmitted, it stops moving.
The position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the NC device 19 calibrates the distance X16 from the center position of the spindle of the blade position measuring sensor 16. Further, although the X-axis direction is described in FIG. 6, the same applies to the Z-axis direction. In addition to the above methods, the method of detecting the contact of the sensor may have a structure in which the signal of the sensor always comes out first when the sensor contacts either of them.
【0019】そして、加工前にタレット7に装着された
工具6を駆動手段で移動させ刃先位置計測用センサ16
に接触させる。この接触時のON信号がNC装置19に
伝達されると移動を停止する。この時の位置X6前はX
軸位置検出用エンコーダ14及びX軸位置検出用リニア
スケール15にて検出され、NC装置19に記憶され
る。続いて、加工後に図3から図6までの方法で刃先位
置計測用センサ16の主軸中心位置からの距離X16を
校正し、再度タレット7に装着された工具6を駆動手段
で移動させ刃先位置計測用センサ16に接触させる。こ
の接触時のON信号がNC装置19に伝達されると移動
を停止する。この時の位置X6後はX軸位置検出用エン
コーダ14及びX軸位置検出用リニアスケール15にて
検出され、先にNC装置19に記憶しておいた加工前の
工具6の位置X6前との差より工具6の工具摩耗量が求
められる。なお、上記ではX軸方向について説明したが
Z軸方向についても同様である。Then, the tool 6 mounted on the turret 7 is moved by the driving means before machining, and the blade position measuring sensor 16 is moved.
Contact. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. At this time, X is before position X6
It is detected by the axis position detecting encoder 14 and the X-axis position detecting linear scale 15, and is stored in the NC device 19. Subsequently, after machining, the distance X16 from the center position of the spindle of the blade position measuring sensor 16 is calibrated by the method shown in FIGS. 3 to 6, and the tool 6 mounted on the turret 7 is moved again by the driving means to measure the blade position. The sensor 16 for contact is made to contact. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After the position X6 at this time, it is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15, and the position before the position X6 of the tool 6 before machining stored in the NC device 19 is detected. The tool wear amount of the tool 6 is obtained from the difference. In addition, although the X-axis direction has been described above, the same applies to the Z-axis direction.
【0020】図7及び図8は本発明の関連技術としての
タレット7に装着された工具6の工具摩耗量計測を刃先
位置計測用センサ16の主軸中心位置からの距離X16
を校正する事なく行う方法を説明するために用いる図で
ある。図7は工具近傍工具位置基準面21を用いた工具
摩耗量計測の方法を説明するために用いる図である。図
7左図のように加工前にタレット7に装着された工具近
傍工具位置基準面21を駆動手段で移動させ刃先位置計
測用センサ16に接触させる。この接触時のON信号が
NC装置19に伝達されると移動を停止する。この時の
位置X21前はX軸位置検出用エンコーダ14及びX軸
位置検出用リニアスケール15にて検出される。7 and 8 show a tool wear amount measurement of the tool 6 mounted on the turret 7 as a related art of the present invention, a distance X16 from the center position of the spindle of the cutting edge position measuring sensor 16.
FIG. 6 is a diagram used for explaining a method of performing without calibration. FIG. 7 is a diagram used for explaining a method of measuring the tool wear amount using the tool vicinity tool position reference surface 21. As shown in the left diagram of FIG. 7, the tool vicinity tool position reference surface 21 mounted on the turret 7 before machining is moved by the driving means and brought into contact with the cutting edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. The position before the position X21 at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15.
【0021】続いて、図7右図のようにタレット7に装
着された工具6を同様に駆動手段で移動させ刃先位置計
測用センサ16に接触させる。この接触時のON信号が
NC装置19に伝達されると移動を停止する。この時の
位置X6前はX軸位置検出用エンコーダ14及びX軸位
置検出用リニアスケール15にて検出される。そして、
工具近傍工具位置基準面21の位置X21前と工具6の
位置X6前の差をNC装置19に記憶しておく。続い
て、加工後に再度タレット7に装着された工具近傍工具
位置基準面21を駆動手段で移動させ刃先位置計測用セ
ンサ16に接触させる。この接触時のON信号がNC装
置19に伝達されると移動を停止する。この時の位置X
21後はX軸位置検出用エンコーダ14及びX軸位置検
出用リニアスケール15にて検出される。Subsequently, as shown in the right diagram of FIG. 7, the tool 6 mounted on the turret 7 is similarly moved by the driving means and brought into contact with the cutting edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. The position before the position X6 at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. And
The difference between the position X21 of the tool position reference plane 21 near the tool and the position X6 of the tool 6 is stored in the NC device 19. Subsequently, after the machining, the tool vicinity tool position reference surface 21 mounted on the turret 7 is again moved by the driving means and brought into contact with the blade tip position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. Position X at this time
After 21, it is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15.
【0022】続いて、タレット7に装着された工具6を
同様に駆動手段で移動させ刃先位置計測用センサ16に
接触させる。この接触時のON信号がNC装置19に伝
達されると移動を停止する。この時の位置X6後はX軸
位置検出用エンコーダ14及びX軸位置検出用リニアス
ケール15にて検出される。そして、工具近傍工具位置
基準面21の位置X21後と工具6の位置X6後の差と
先にNC装置19に記憶しておいた加工前の工具近傍工
具位置基準面21の位置X21前と工具6の位置X6前
の差より工具6の工具摩耗量を求める。なお、工具摩耗
量の算出方法については、加工前の工具近傍工具位置基
準面21の位置X21前と加工後の工具近傍工具位置基
準面21の位置X21後の差と、加工前の工具6の位置
X6前と加工後の工具6の位置X6後の差より算出する
方法も考えられる。また、図6ではX軸方向について説
明したがZ軸方向についても同様である。Subsequently, the tool 6 mounted on the turret 7 is similarly moved by the driving means and brought into contact with the cutting edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After the position X6 at this time, it is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the difference between after the position X21 of the tool vicinity tool position reference plane 21 and after the position X6 of the tool 6 and before the position X21 of the tool vicinity tool position reference plane 21 before machining stored in the NC device 19 and before the tool The tool wear amount of the tool 6 is obtained from the difference of the position 6 before the position X6. Regarding the method of calculating the tool wear amount, the difference between before the position X21 of the tool vicinity tool position reference plane 21 before machining and after the position X21 of the tool vicinity tool position reference plane 21 after machining, and the tool 6 before machining A method of calculating from the difference between before the position X6 and after the machining after the position X6 of the tool 6 is also conceivable. Further, although the X-axis direction is described in FIG. 6, the same applies to the Z-axis direction.
【0023】図8は本発明の関連技術としての工具摩耗
量計測用共通基準面22による工具摩耗量計測の方法を
説明するために用いる図である。上述図7の方法と同様
に図8左図のようにタレット7に装着された工具摩耗量
計測用共通基準面22を駆動手段で移動させ刃先位置計
測用センサ16に接触させる。この接触時のON信号が
NC装置19に伝達されると移動を停止する。この時の
位置X22前は、X軸位置検出用エンコーダ14及びX
軸位置検出用リニアスケール15にて検出される。続い
て、図8中央図のようにタレット7に装着された工具6
を同様に駆動手段で移動させ刃先位置計測用センサ16
に接触させる。この接触時のON信号がNC装置19に
伝達されると移動を停止する。この時の位置X6前はX
軸位置検出用エンコーダ14及びX軸位置検出用リニア
スケール15にて検出される。そして、工具摩耗量計測
用共通基準面22の位置X22前と工具6の位置X6前
の差をNC装置19に記憶しておく。FIG. 8 is a diagram used to explain a method of measuring the amount of tool wear by the common reference surface 22 for measuring the amount of tool wear as a related technique of the present invention. Similar to the method of FIG. 7 described above, the tool wear amount common reference surface 22 mounted on the turret 7 is moved by the drive means and brought into contact with the blade edge position measurement sensor 16 as shown in the left diagram of FIG. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. Before the position X22 at this time, the X-axis position detection encoder 14 and the X
It is detected by the axis position detecting linear scale 15. Then, the tool 6 attached to the turret 7 as shown in the central view of FIG.
Is similarly moved by the driving means, and the blade position measuring sensor 16
Contact. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. At this time, X is before position X6
It is detected by the axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the difference between the position X22 of the tool wear amount common reference plane 22 and the position X6 of the tool 6 is stored in the NC device 19.
【0024】続いて、加工後に再度タレット7に装着さ
れた工具摩耗量計測用共通基準面22を駆動手段で移動
させ刃先位置計測用センサ16に接触させる。この接触
時のON信号がNC装置19に伝達されると移動を停止
する。この時の位置X22後はX軸位置検出用エンコー
ダ14及びX軸位置検出用リニアスケール15にて検出
される。続いて、タレット7に装着された工具6を同様
に駆動手段で移動させ刃先位置計測用センサ16に接触
させる。この接触時のON信号がNC装置19に伝達さ
れると移動を停止する。この時の位置X6後はX軸位置
検出用エンコーダ14及びX軸位置検出用リニアスケー
ル15にて検出される。そして、工具摩耗量計測用共通
基準面22の位置X22後と工具6の位置X6後の差と
先にNC装置19に記憶しておいた加工前の工具摩耗量
計測用共通基準面22の位置X22前と工具6の位置X
6前の差より工具6の工具摩耗量を求める。なお、工具
摩耗量の算出方法については、加工前の工具摩耗量計測
用共通基準面22の位置X22前と加工後の工具摩耗量
計測用共通基準面22の位置X22後の差と、加工前の
工具6の位置X6前と加工後の工具6の位置X6後の差
より算出する方法も考えられる。Then, after the machining, the tool wear amount common reference surface 22 mounted on the turret 7 is moved again by the driving means and brought into contact with the blade edge position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After the position X22 at this time, it is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the tool 6 mounted on the turret 7 is similarly moved by the driving means to be brought into contact with the blade position measuring sensor 16. When the ON signal at the time of this contact is transmitted to the NC device 19, the movement is stopped. After the position X6 at this time, it is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Then, the difference between the position X22 of the tool wear amount measurement common reference plane 22 and the position after the tool X6 position X6 and the position of the tool wear amount measurement common reference face 22 before machining stored in the NC device 19 in advance. Before X22 and position X of tool 6
The tool wear amount of the tool 6 is obtained from the difference before 6. Regarding the method of calculating the tool wear amount, the difference between before the position X22 of the common reference surface 22 for tool wear amount measurement before machining and after the position X22 of the common reference surface 22 for tool wear amount measurement after machining and before machining A method of calculating the difference between the position before the position X6 of the tool 6 and the position after the position X6 of the tool 6 after machining can be considered.
【0025】続いて、タレット7を旋回させて別の工具
6aを割り出し、この工具6aに関しても同様に刃先位
置計測用センサ16に接触させその位置を検出し工具摩
耗量を求める。この方法を順次行いすべての工具につい
て工具摩耗量計測を行う。なお、タレット7の旋回によ
る位置決め誤差は工具摩耗量による誤差X6Eに比較し
て小さいものとし、工具摩耗量計測用共通基準面22は
各工具共通とした。また、図6ではX軸方向について説
明したがZ軸方向についても同様である。そして、工具
摩耗量計測用共通基準面22の装着位置はタレット7に
限らず加工及び工具6の刃先位置計測の邪魔にならない
場所でかつ刃先位置計測用センサ16で計測可能な位置
であれば任意の場所でよい。Subsequently, the turret 7 is turned to index another tool 6a, and the tool 6a is also brought into contact with the cutting edge position measuring sensor 16 to detect the position thereof to obtain the tool wear amount. This method is sequentially performed and the tool wear amount is measured for all tools. The positioning error due to the turning of the turret 7 is smaller than the error X6E due to the tool wear amount, and the tool wear amount common reference plane 22 is common to all tools. Further, although the X-axis direction is described in FIG. 6, the same applies to the Z-axis direction. The mounting position of the common reference surface 22 for measuring the amount of tool wear is not limited to the turret 7 and may be any position that does not interfere with the processing and measurement of the position of the cutting edge of the tool 6 and can be measured by the cutting edge position measuring sensor 16. Good place.
【0026】図9は本実施の形態の加工後計測の方法を
説明するために用いる図である。図9左図のように主軸
チャック2で保持された加工後の加工物1にタレット7
に装着された位置計測用センサ5を駆動手段で移動させ
接触させる。この接触時のON信号はNC装置19に伝
達され停止し、この時の位置はX軸位置検出用エンコー
ダ14及びX軸位置検出用リニアスケール15にて検出
される。同様に図9右図のようにもう一端の位置も計測
してNC装置19より加工後の加工物1の寸法が求めら
れる。また、図9ではX軸方向について説明したがZ軸
方向についても同様である。なお、加工後の加工物1の
寸法計測部分は外径に限らず内径でもよい。FIG. 9 is a diagram used to explain the method of measurement after processing according to the present embodiment. As shown in the left diagram of FIG. 9, the turret 7 is attached to the processed workpiece 1 held by the spindle chuck 2.
The position measuring sensor 5 mounted on the is moved by the driving means and brought into contact therewith. The ON signal at the time of this contact is transmitted to the NC device 19 and stopped, and the position at this time is detected by the X-axis position detecting encoder 14 and the X-axis position detecting linear scale 15. Similarly, as shown in the right diagram of FIG. 9, the position of the other end is also measured and the size of the processed workpiece 1 is obtained by the NC device 19. Further, although the X-axis direction is described in FIG. 9, the same applies to the Z-axis direction. It should be noted that the dimension measurement portion of the processed workpiece 1 is not limited to the outer diameter and may be the inner diameter.
【0027】続いて、図10を用いて本実施の形態のN
C旋盤における加工時の動作状況について説明する。図
10は本実施の形態を用いたNC旋盤での加工時の動作
状況を示すフローチャートである。加工物1が初品であ
るときは、後述する加工前計測を行い工具オフセット量
をNC装置19にて演算し補正する。続いて加工を開始
し、あらかじめNC装置19に入力しておいた計測挿入
個数に到達するとNC装置19より加工後計測指令が出
され、先に図9を用いて説明したように加工物1の計測
を行う。そして、計測寸法があらかじめNC装置19に
入力しておいた許容寸法範囲外であるときは直ちに加工
を停止し、NC装置19にアラーム表示して不良品を多
数加工する事がないようにしてある。許容寸法範囲内で
あるときは、続いて先に図7及び図8で説明した方法で
工具摩耗量計測を行う。そして、計測した工具摩耗量が
あらかじめNC装置19に入力しておいた許容工具摩耗
量未満であるときには引き続き加工を行い、許容工具摩
耗量以上であるときには、工具交換を行い、初品加工の
際と同様に加工前計測を行ってから加工を再開する。な
お、加工後計測及び工具摩耗量計測は別々に任意の個数
加工後に挿入することができ、挿入も加工個数ではなく
加工時間で決める方法も考えられる。Next, referring to FIG. 10, N of the present embodiment will be described.
The operation status of the C lathe during machining will be described. FIG. 10 is a flow chart showing the operation status during machining on the NC lathe using this embodiment. When the workpiece 1 is the first product, pre-machining measurement described later is performed, and the tool offset amount is calculated and corrected by the NC device 19. Then, the machining is started, and when the number of measured insertions, which has been input to the NC device 19 in advance, is reached, the post-machining measurement command is issued from the NC device 19, and as described above with reference to FIG. Take measurements. Then, when the measured dimension is out of the allowable dimension range which has been input to the NC device 19 in advance, the machining is immediately stopped, and an alarm is displayed on the NC device 19 so that many defective products are not machined. . If it is within the allowable dimension range, then the tool wear amount is measured by the method previously described with reference to FIGS. 7 and 8. Then, when the measured tool wear amount is less than the allowable tool wear amount input in advance to the NC device 19, the machining is continued, and when the measured tool wear amount is equal to or more than the allowable tool wear amount, the tool is replaced, and when the first product is machined. In the same manner as above, perform the pre-processing measurement and then restart the processing. It should be noted that the post-machining measurement and the tool wear amount measurement can be separately inserted after machining an arbitrary number of pieces, and a method of determining the insertion based on the machining time instead of the number of pieces to be machined is also conceivable.
【0028】図11は本実施の形態の加工前計測の動作
状況を示すブロック図である。NC装置19より加工前
計測指令が出されると、先に図3から図5を説明したよ
うに主軸チャック2に把持されている主軸計測用センサ
校正用基準物20を計測し、タレット7に装着した位置
計測用センサ5の位置を校正する。続いて先に、図6を
用いて説明したように位置を校正した位置計測用センサ
5で刃先位置計測用センサ16の位置を計測し位置を校
正する。そして、工具6を刃先位置計測用センサ16に
接触させ位置を計測し、NC装置19にて工具オフセッ
ト量を演算し加工前計測が終了する。FIG. 11 is a block diagram showing an operating condition of pre-machining measurement according to the present embodiment. When the pre-machining measurement command is issued from the NC device 19, the spindle measurement sensor calibration reference object 20 gripped by the spindle chuck 2 is measured as previously described with reference to FIGS. 3 to 5, and is attached to the turret 7. The position of the measured position measuring sensor 5 is calibrated. Subsequently, the position of the cutting edge position measuring sensor 16 is measured by the position measuring sensor 5 whose position is calibrated as described above with reference to FIG. 6, and the position is calibrated. Then, the tool 6 is brought into contact with the cutting edge position measuring sensor 16 to measure the position, the NC device 19 calculates the tool offset amount, and the pre-machining measurement ends.
【0029】なお、加工前計測、加工後計測及び工具摩
耗量計測の方法は、加工物1の必要精度及び加工時間限
度等に応じて選択可能であり、計測挿入時期についても
個別に設定可能である。また、この実施の形態はNC旋
盤に限らず他の工作機械にも適用できる。The methods of pre-machining measurement, post-machining measurement and tool wear amount measurement can be selected according to the required accuracy of the workpiece 1 and the machining time limit, and the measurement insertion timing can also be set individually. is there. Further, this embodiment can be applied not only to the NC lathe but also to other machine tools.
【0030】[0030]
【発明の効果】以上説明したように、この発明の工作機
械及び加工方法によれば、刃先位置計測手段の位置を計
測し校正することができるので、加工中の熱等の外乱に
より発生する誤差をなくすことができ、加工後の計測が
困難な部分の精度も向上する。As described above, according to the machine tool and the machining method of the present invention, the position of the blade edge position measuring means can be measured and calibrated, so that an error caused by a disturbance such as heat during machining can occur. Can be eliminated, and the accuracy of the portion that is difficult to measure after processing can be improved.
【0031】また、加工後の加工物の寸法計測も可能で
あり、加工後の製品の監視もできる。Further, it is possible to measure the size of the processed product and monitor the processed product.
【図1】 本発明に係る工作機械の一実施形態の全体構
成図である。FIG. 1 is an overall configuration diagram of an embodiment of a machine tool according to the present invention.
【図2】 本実施の形態における工作機械の要部の位置
関係を示した図である。FIG. 2 is a diagram showing a positional relationship of main parts of the machine tool according to the present embodiment.
【図3】 本実施の形態の主軸チャック把握型基準物を
用いた位置計測用センサの位置の校正の方法を説明する
ために用いる図である。FIG. 3 is a diagram used for explaining a method of calibrating the position of the position measuring sensor using the spindle chuck grasping type reference object of the present embodiment.
【図4】 本実施の形態の主軸チャック内蔵型基準物を
用いた位置計測用センサの位置の校正の方法を説明する
ために用いる図である。FIG. 4 is a diagram used for explaining a method of calibrating the position of the position measuring sensor using the spindle chuck built-in reference object of the present embodiment.
【図5】 本実施の形態の切削可能型基準物を用いた位
置計測用センサの位置の校正の方法を説明するために用
いる図である。FIG. 5 is a diagram used for explaining a method of calibrating the position of the position measuring sensor using the machinable reference object of the present embodiment.
【図6】 本実施の形態の刃先位置計測用センサの位置
の校正の方法を説明するために用いる図である。FIG. 6 is a diagram used for explaining a method for calibrating the position of the blade edge position measuring sensor according to the present embodiment.
【図7】 本発明の関連技術としての工具近傍工具位置
基準面を用いた工具摩耗量計測の方法を説明するために
用いる図である。FIG. 7 is a diagram used for explaining a method of measuring a tool wear amount using a tool vicinity reference position surface of a tool as a related technique of the present invention.
【図8】 本発明の関連技術としての工具摩耗量計測用
共通基準面による工具摩耗量計測の方法を説明するため
に用いる図である。FIG. 8 is a diagram used for explaining a method for measuring the amount of tool wear by a common reference surface for measuring the amount of tool wear as a related technique of the present invention.
【図9】 本実施の形態の加工後計測の方法を説明する
ために用いる図である。FIG. 9 is a diagram used for explaining a method of post-machining measurement according to the present embodiment.
【図10】 本実施の形態のNC旋盤における加工時の
動作状況を示したフローチャートである。FIG. 10 is a flowchart showing an operation state during machining in the NC lathe according to the present embodiment.
【図11】 本実施の形態の加工前計測の動作状況を示
すブロック図である。FIG. 11 is a block diagram showing an operating condition of pre-machining measurement according to the present embodiment.
【図12】 従来のNC旋盤を示した全体構成図であ
る。FIG. 12 is an overall configuration diagram showing a conventional NC lathe.
1 加工物、2 主軸チャック、3 ビルトインモー
タ、4 回転角度検出用エンコーダ、5 位置計測用セ
ンサ、6 工具、7 タレット、8 刃物台、9Z軸ボ
ールネジ、10 Z軸モータ、11 Z軸位置検出用エ
ンコーダ、12X軸ボールネジ、13 X軸モータ、1
4 X軸位置検出用エンコーダ、15X軸位置検出用リ
ニアスケール、16 刃先位置計測用センサ、17 セ
ンサアーム、18 センサアーム回転用モータ、19
NC装置、20 位置計測用センサ校正用基準物、20
a 主軸チャック把握型基準物、20b 主軸チャック
内蔵型基準物、20c 切削可能型基準物、21 工具
近傍工具位置基準面、22 工具摩耗量計測用共通基準
面。1 workpiece, 2 spindle chuck, 3 built-in motor, 4 rotation angle encoder, 5 position measuring sensor, 6 tools, 7 turret, 8 turret, 9 Z axis ball screw, 10 Z axis motor, 11 Z axis position detection Encoder, 12 X-axis ball screw, 13 X-axis motor, 1
4 X-axis position detection encoder, 15 X-axis position detection linear scale, 16 Blade edge position measurement sensor, 17 Sensor arm, 18 Sensor arm rotation motor, 19
NC device, 20 Position measurement sensor calibration reference material, 20
a spindle chuck grasping type reference object, 20b spindle chuck built-in type reference object, 20c machinable type reference object, 21 tool near tool position reference surface, 22 common reference surface for tool wear amount measurement.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C001 KA02 KA05 KB01 TA02 TB02 TB03 TC09 TD02 3C029 AA21 CC01 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 3C001 KA02 KA05 KB01 TA02 TB02 TB03 TC09 TD02 3C029 AA21 CC01
Claims (3)
る駆動手段と、 前記位置計測用センサの検出部の位置および工具の刃先
の位置を検出する位置検出手段と、 既知の形状であり主軸に固定された基準物に前記検出部
を当接させたときの該検出部の位置と、刃先位置計測用
センサに該検出部を当接させたときの該検出部の位置
と、に基づいて主軸中心位置に対する前記刃先位置計測
用センサの位置を求める校正手段と、 を備えることを特徴とする工作機械。1. A driving means for moving a tool and a position measuring sensor, a position detecting means for detecting a position of a detecting portion of the position measuring sensor and a position of a cutting edge of the tool, and a known shape fixed to a spindle. Center of the spindle based on the position of the detection part when the detection part is brought into contact with the standard reference and the position of the detection part when the detection part is brought into contact with the blade edge position measurement sensor. A machine tool comprising: a calibration unit that determines the position of the cutting edge position measuring sensor with respect to the position.
に固定されたリングであることを特徴とする請求項1に
記載の工作機械。2. The machine tool according to claim 1, wherein the reference object is a ring that is on the center line of the spindle and is fixed to the spindle.
いて、 既知の形状であり主軸に固定された基準物に前記検出部
を当接させたときの該検出部の位置を検出するステップ
と、 刃先位置計測用センサに該検出部を当接させたときの該
検出部の位置を検出するステップと、 前記基準物に前記検出部を当接させたときの該検出部の
位置、および刃先位置計測用センサに該検出部を当接さ
せたときの該検出部の位置に基づいて、主軸中心位置に
対する前記刃先位置計測用センサの位置を校正するステ
ップと、 を有し、各工具の刃先の位置を計測することを特徴とす
る加工方法。3. The machine tool according to claim 1, further comprising: a step of detecting the position of the detection part when the detection part is brought into contact with a reference object having a known shape and fixed to the spindle. A step of detecting the position of the detection part when the detection part is brought into contact with the blade position measuring sensor, the position of the detection part when the detection part is brought into contact with the reference object, and the cutting edge Calibrating the position of the cutting edge position measuring sensor with respect to the center position of the spindle based on the position of the detecting part when the detecting part is brought into contact with the position measuring sensor, and the cutting edge of each tool. A processing method characterized by measuring the position of.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002192216A JP3660920B2 (en) | 2002-07-01 | 2002-07-01 | Machine tool and processing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002192216A JP3660920B2 (en) | 2002-07-01 | 2002-07-01 | Machine tool and processing method |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27584995A Division JP3604473B2 (en) | 1995-10-24 | 1995-10-24 | Machine Tools |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003019644A true JP2003019644A (en) | 2003-01-21 |
| JP3660920B2 JP3660920B2 (en) | 2005-06-15 |
Family
ID=19195524
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002192216A Expired - Fee Related JP3660920B2 (en) | 2002-07-01 | 2002-07-01 | Machine tool and processing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3660920B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009109064A1 (en) * | 2008-03-05 | 2009-09-11 | Abb Technology Ab | A method for compensation tool wear and a machine tool for performing the method |
| JP2013255982A (en) * | 2012-06-14 | 2013-12-26 | Murata Machinery Ltd | Machine tool, and correction method of thermal deformation thereof |
| JP2017061012A (en) * | 2015-09-24 | 2017-03-30 | オークマ株式会社 | Geometric error identification method and geometric error identification program for machine tools |
| JP2018108640A (en) * | 2017-01-05 | 2018-07-12 | リープヘル−フェアツァーンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method of automatically measuring external dimensions of gear cutter tool |
| CN110877233A (en) * | 2018-09-05 | 2020-03-13 | 日本电产株式会社 | Wear loss estimation system, wear loss estimation method, correction system, abnormality detection system, and life detection system |
| CN112105998A (en) * | 2018-05-15 | 2020-12-18 | 芝浦机械株式会社 | Method for processing workpiece and processing machine for workpiece |
| CN114833637A (en) * | 2022-05-13 | 2022-08-02 | 陕西法士特齿轮有限责任公司 | Cutter wear detection system and detection method |
-
2002
- 2002-07-01 JP JP2002192216A patent/JP3660920B2/en not_active Expired - Fee Related
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009109064A1 (en) * | 2008-03-05 | 2009-09-11 | Abb Technology Ab | A method for compensation tool wear and a machine tool for performing the method |
| JP2013255982A (en) * | 2012-06-14 | 2013-12-26 | Murata Machinery Ltd | Machine tool, and correction method of thermal deformation thereof |
| JP2017061012A (en) * | 2015-09-24 | 2017-03-30 | オークマ株式会社 | Geometric error identification method and geometric error identification program for machine tools |
| JP2018108640A (en) * | 2017-01-05 | 2018-07-12 | リープヘル−フェアツァーンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method of automatically measuring external dimensions of gear cutter tool |
| JP7321665B2 (en) | 2017-01-05 | 2023-08-07 | リープヘル-フェアツァーンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for automatic measurement of external dimensions of gear cutting machine tools |
| CN112105998A (en) * | 2018-05-15 | 2020-12-18 | 芝浦机械株式会社 | Method for processing workpiece and processing machine for workpiece |
| CN112105998B (en) * | 2018-05-15 | 2024-02-13 | 芝浦机械株式会社 | Method for processing workpiece and processing machine for workpiece |
| CN110877233A (en) * | 2018-09-05 | 2020-03-13 | 日本电产株式会社 | Wear loss estimation system, wear loss estimation method, correction system, abnormality detection system, and life detection system |
| CN110877233B (en) * | 2018-09-05 | 2021-12-07 | 日本电产株式会社 | Wear loss estimation system, wear loss estimation method, correction system, abnormality detection system, and life detection system |
| CN114833637A (en) * | 2022-05-13 | 2022-08-02 | 陕西法士特齿轮有限责任公司 | Cutter wear detection system and detection method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3660920B2 (en) | 2005-06-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7530878B2 (en) | Grinding machine with a concentricity correction system | |
| JP4653824B2 (en) | A machine tool system that measures the shape of a measurement object using an on-machine measuring device | |
| CN101130227B (en) | Machining unit | |
| CN112775718B (en) | Correction value measuring method and correction value measuring system for position measuring sensor of machine tool | |
| CN107303644B (en) | Method and system for measuring position of object on machine tool | |
| JP2000512378A (en) | Multifunctional measuring device | |
| CN112775720B (en) | Position measuring method and position measuring system for object of machine tool, and computer readable recording medium | |
| EP3647891B1 (en) | Feed shaft and worm gear abnormality determination system | |
| JPH09253979A (en) | Tool edge position measuring device | |
| JP3660920B2 (en) | Machine tool and processing method | |
| JP3604473B2 (en) | Machine Tools | |
| JP2002273642A (en) | Ball screw feed drive correcting method, and ball screw feed drive device | |
| EP0199927A1 (en) | Apparatus for checking linear dimensions of mechanical parts | |
| JP4884091B2 (en) | Shape measuring instruments | |
| JPH09155693A (en) | Cutting center Y-axis blade edge measuring device | |
| JP5531640B2 (en) | Feed control device for machine tools | |
| JP4898290B2 (en) | Work transfer device with electric chuck with measurement function | |
| JPH081405A (en) | Device and method for detecting lost motion | |
| JP2004322255A (en) | Machine tool with straight line position measuring instrument | |
| JPH0895625A (en) | Backlash measurement/correction device for machining of spherical or circular arc surface | |
| JP4580048B2 (en) | Automatic measuring method and automatic measuring apparatus for ball end mill tool | |
| JPH10277889A (en) | Cutter tip position measuring device | |
| JPH08197384A (en) | Tip position correction device of rotating tool | |
| JP2574228Y2 (en) | Lathe in-machine measuring device | |
| JP3781236B2 (en) | Grinding machine and grinding method of grinding wheel position |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050315 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050318 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| LAPS | Cancellation because of no payment of annual fees |