JP2680354B2 - Manufacturing method of multilayer ceramic electronic component - Google Patents

Manufacturing method of multilayer ceramic electronic component

Info

Publication number
JP2680354B2
JP2680354B2 JP17378688A JP17378688A JP2680354B2 JP 2680354 B2 JP2680354 B2 JP 2680354B2 JP 17378688 A JP17378688 A JP 17378688A JP 17378688 A JP17378688 A JP 17378688A JP 2680354 B2 JP2680354 B2 JP 2680354B2
Authority
JP
Japan
Prior art keywords
ceramic
electronic component
layer
firing
lead oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17378688A
Other languages
Japanese (ja)
Other versions
JPH0225012A (en
Inventor
洋八 山下
修 古川
秀之 金井
精一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17378688A priority Critical patent/JP2680354B2/en
Publication of JPH0225012A publication Critical patent/JPH0225012A/en
Application granted granted Critical
Publication of JP2680354B2 publication Critical patent/JP2680354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、積層セラミック電子部品の製造方法に関わ
り、特に、酸化鉛を含むペロブスカイト構造を有するセ
ラミック層を備えた積層セラミック電子部品の製造方法
に関する。
The present invention relates to a method for manufacturing a monolithic ceramic electronic component, and in particular, a monolithic ceramic including a ceramic layer having a perovskite structure containing lead oxide. The present invention relates to a method of manufacturing an electronic component.

(従来の技術) IC、LSIの発達に伴い、電子機器の小型軽量化、高信
頼性化、高周波化、低コスト化が急速に広がっている。
これらの要求に答えるために積層セラミックコンデンサ
等の積層セラミック電子部品が広く用いられている。
(Prior Art) With the development of ICs and LSIs, miniaturization and weight reduction, high reliability, high frequency, and cost reduction of electronic devices are rapidly spreading.
In order to meet these requirements, monolithic ceramic electronic components such as monolithic ceramic capacitors are widely used.

例えば、積層セラミックコンデンサは厚さ15〜100μ
mのセラミック誘電体層と厚さ2〜3μmの内部電極と
が交互に積重ねられて一体焼成されたものである。この
コンデンサの全静電容量(C)は次式で表される。
For example, a monolithic ceramic capacitor has a thickness of 15 to 100μ.
m ceramic dielectric layers and internal electrodes having a thickness of 2 to 3 μm are alternately stacked and integrally fired. The total capacitance (C) of this capacitor is expressed by the following equation.

C=εrεo(n−1)S/t、 ここで、εrはセラミック誘電体層の比誘電率、εo
真空の誘電率、nは電極数、tは誘電体層の1層当りの
厚さである。
C = ε r ε o (n−1) S / t, where ε r is the relative permittivity of the ceramic dielectric layer, ε o is the vacuum permittivity, n is the number of electrodes, and t is 1 of the dielectric layer. It is the thickness per layer.

この式から分る様に、小型、大容量の積層セラミック
コンデンサを得るためにはεrの大きな材料で、しか
も、厚みの薄いセラミック誘電体層を形成すれば良い。
As can be seen from this equation, in order to obtain a small-sized, large-capacity monolithic ceramic capacitor, it suffices to form a ceramic dielectric layer having a large ε r and a small thickness.

ところで、このセラミック誘電体層の材料としては、
もっぱら、BaTiO3を主体とするセラミックが用いられて
きた。しかしながら、積層数の増加と誘電体層の薄層化
に伴い、BaTiO3を用いたセラミックコンデンサにはいく
つかの問題点が現れている。このなかで最も大きな問題
点は、誘電率のバイアス電圧依存性、即ち、直流電圧に
よる容量の大幅な減少である。例えば、誘電率が10,00
0、1層厚み25μm、定格25V、容量1μFのF特性積層
セラミックコンデンサに定格電圧が印加された場合に
は、その実効容量は70%ダウンの0.3μFしか得られな
い。また、誘電率が10,000を越える様なBaTiO3系積層コ
ンデンサは比誘電率の温度特性も大きく−30℃〜+85℃
の範囲では60〜80%ダウンの値になってしまう。さら
に、このBaTiO3系積層コンデンサでは、容量が時間とと
もに減少する傾向が著しく、1年間で20〜25%も減少し
てしまう。これらの特性上の問題点の他にBaTiO3は通常
1350℃以上の高温度で焼成されるため、同時焼成される
内部電極には、この温度で酸化、または誘電体と反応し
ない白金、パラジウムおよびそれらの合金等の貴金属を
使用せざるを得ず、大容量においては特にコスト高にな
る欠点がある。
By the way, as the material of this ceramic dielectric layer,
Exclusively, ceramic mainly composed of BaTiO 3 have been used. However, with the increase in the number of laminated layers and the thinner dielectric layer, some problems have appeared in the ceramic capacitor using BaTiO 3 . The most serious problem among them is the dependency of the dielectric constant on the bias voltage, that is, the large reduction in capacitance due to the DC voltage. For example, the dielectric constant is 10,00
When a rated voltage is applied to an F-characteristic multilayer ceramic capacitor having a thickness of 25 μm per layer, a rated voltage of 25 V, and a capacitance of 1 μF, the effective capacitance is only 0.3 μF, which is 70% down. Moreover, the temperature characteristics of the relative permittivity of the BaTiO 3 -based multilayer capacitor with a permittivity of over 10,000 are large at -30 ℃ to + 85 ℃.
In the range of, the value will be 60-80% down. Furthermore, in this BaTiO 3 -based multilayer capacitor, the capacity tends to decrease with time, and the capacity decreases by 20 to 25% in one year. In addition to these characteristic problems, BaTiO 3 is usually
Since it is fired at a high temperature of 1350 ° C or higher, noble metals such as platinum, palladium and their alloys which do not react with the dielectric at this temperature must be used for the internal electrodes that are fired at the same time. The large capacity has a drawback that the cost becomes particularly high.

これらのBaTiO3系積層コンデンサの欠点を改良するた
めに、ペロブスカイト構造ABO3のAサイトにBaの代わり
にPbを用い、BサイトにTiの代わりに複合ペロブスカイ
ト化合物(RELAXOR)が広く研究されている。表1に積
層コンデンサ用としてこれまでに研究された代表的な材
料を示す。
In order to improve the drawbacks of these BaTiO 3 -based multilayer capacitors, Pb is used instead of Ba at the A site of the perovskite structure ABO 3 and a composite perovskite compound (RELAXOR) is replaced by B at the B site, which has been widely studied. . Table 1 shows typical materials that have been studied so far for multilayer capacitors.

なお、この表において、FEは強誘電体、AFは反強誘電
体を示し、BaTiO3はこれらの複合ペロブスカイト化合物
を含むものではないが、比較のために掲載してある。
In this table, FE indicates a ferroelectric substance, AF indicates an antiferroelectric substance, and BaTiO 3 does not include these complex perovskite compounds, but they are shown for comparison.

これらの材料は、800〜1100℃の低温で焼成できるた
めに比較的安価なAg/Pb合金やNi,Cu等を内部電極とする
ことができる。また、誘電率が大きいにも拘らず、その
温度変化が小さく、誘電率の直流バイアス特性に優れる
等の特徴があるために、最近特に注目されている。例え
ば、米国特許第3,472,777号、米国特許第4,078,938号お
よび米国特許第4,265,668号等に示されたものが知られ
ている。
Since these materials can be fired at a low temperature of 800 to 1100 ° C, relatively inexpensive Ag / Pb alloy, Ni, Cu or the like can be used as the internal electrodes. Further, it has recently attracted particular attention because of its characteristics such that its temperature change is small despite its large permittivity, and it has excellent DC bias characteristics of permittivity. For example, those shown in US Pat. No. 3,472,777, US Pat. No. 4,078,938 and US Pat. No. 4,265,668 are known.

これらの誘電体材料を用いた積層セラミックコンデン
サの積層体を一体焼成する場合、通常、BaTiO3系積層セ
ラミックコンデンサと同様に、Al2O3,MgO,ZrO2等を夫々
主成分としたセラミック製のセッターまたはこれらのフ
ァイバーからなる軽量セッター上に焼成前の積層体を配
置し、段積みし、このセッターをさや等の中に設置し
て、密閉または開放状態でこの積層体を焼成していた。
この方法はBaTiO3系積層セラミックコンデンサを焼成す
るのには、安定した特性を有する素子が得られ、しかも
焼成された素子の特性のばらつきもなく、有効なもので
ある。しかしながら、この方法を用いて、表1に示され
た酸化鉛を含みペロブスカイト構造を有する積層セラミ
ックコンデンサを製造した場合、その容量が所定の値よ
り30%以上と著しく低下し、しかも、各コンデンサによ
り容量のばらつきが生じ、歩留りが低下した。
If integrally firing the laminate of the multilayer ceramic capacitor using the dielectric material, usually similar to the BaTiO 3 based multilayer ceramic capacitor, Al 2 O 3, MgO, ceramic having a ZrO 2 or the like and each main component The laminated body before firing was placed on the setter or the lightweight setter made of these fibers, stacked, and the setter was placed in a sheath or the like, and the laminated body was fired in a closed or open state. .
This method is effective for firing a BaTiO 3 -based multilayer ceramic capacitor, because an element having stable characteristics can be obtained and there is no variation in the characteristics of the fired element. However, when a monolithic ceramic capacitor containing lead oxide shown in Table 1 and having a perovskite structure is manufactured by using this method, its capacity is significantly reduced to 30% or more from a predetermined value, and further The capacity varied, and the yield decreased.

(発明が解決しようとする課題) 従来の酸化鉛を含むペロブスカイト構造を有するセラ
ミック誘電体層を備えた積層セラミック電子部品の製造
方法、例えば、積層セラミックコンデンサの製造方法は
コンデンサの容量が所定の値より30%以上と著しく低下
し、しかも、各コンデンサにより容量のばらつきが生
じ、歩留りが低下していた。
(Problems to be Solved by the Invention) A conventional method for manufacturing a monolithic ceramic electronic component including a ceramic dielectric layer having a perovskite structure containing lead oxide, for example, a method for manufacturing a monolithic ceramic capacitor, has a capacitance of a predetermined value. It was significantly reduced to 30% or more, and moreover, each capacitor caused variations in capacitance, resulting in reduced yield.

本発明の目的は、容量の低下がなく、しかも容量のば
らつきがない等の安定した特性を有するコンデンサ等の
酸化鉛を含むペロブスカイト構造を有するセラミック層
を備えた積層セラミック電子部品の製造方法を提供する
ことにある。
An object of the present invention is to provide a method of manufacturing a laminated ceramic electronic component including a ceramic layer having a perovskite structure containing lead oxide, such as a capacitor having stable characteristics such as no reduction in capacitance and no variation in capacitance. To do.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、原料調整後所定形状に形成されたセラミッ
ク層と内部電極とを相互に積重なる様に複数積層して積
層体とし、この積層体を所定の条件で焼成して酸化鉛を
含むペロブスカイト構造を有するセラミック層を備えた
焼結素子とし、この焼結素子の内部電極と電気的に接続
される一対の外部電極を焼結素子に設ける積層セラミッ
ク電子部品の製造方法において、前記積層体を、少なく
とも表面が、酸化鉛を含むペロブスカイト構造である基
板上に載置して、焼成することを特徴とする積層セラミ
ック電子部品の製造方法である。さらに、この方法にお
いては、前記積層体が、少なくとも表面が前記セラミッ
ク層と実質的に同一の成分を有する基板上に載置されて
焼成される。
(Means for Solving the Problems) According to the present invention, a ceramic body formed into a predetermined shape after adjusting raw materials and a plurality of internal electrodes are laminated so as to be stacked on each other to form a laminated body, and the laminated body is subjected to predetermined conditions. A laminated ceramic electronic component in which a sintered element including a ceramic layer having a perovskite structure containing lead oxide is fired by the method described above, and a pair of external electrodes electrically connected to the internal electrodes of the sintered element are provided in the sintered element. In the method of manufacturing a multilayer ceramic electronic component, the multilayer body is placed on a substrate having at least a surface having a perovskite structure containing lead oxide and fired. Further, in this method, the laminate is placed on a substrate having at least a surface having substantially the same composition as the ceramic layer and fired.

本発明は、特に30から70wt%と多量の酸化鉛を含むペ
ロブスカイト構造を有するセラミック層を備えた積層セ
ラミックコンデンサの製造方法に有効であり、この様な
場合従来は、セラミック層に含まれていた酸化鉛が焼成
中にAl2O3やZrO2を主成分とするセッターに吸収されて
しまい、焼成されたセラミック層中に含有される酸化鉛
の含有量が所定量以下に低下するために、容量の低下や
容量のはらつきが生じることを見出した。この吸収現象
はAl2O3やZrO2を主成分とするセッターを用いた場合に
顕著に現れることも分かった。しかも、積層体のセラミ
ック層から失われる酸化鉛は焼成中に蒸発により失われ
るものもあるが、密閉状態で焼成しても同様に酸化鉛の
消失現象が生じることから、そのほとんどはセッターに
吸収されてしまうと理解できる。
INDUSTRIAL APPLICABILITY The present invention is particularly effective for a method for producing a monolithic ceramic capacitor provided with a ceramic layer having a perovskite structure containing a large amount of lead oxide of 30 to 70 wt%, and in such a case, it was conventionally included in the ceramic layer. Since lead oxide is absorbed by the setter containing Al 2 O 3 or ZrO 2 as a main component during firing, the content of lead oxide contained in the fired ceramic layer decreases to a predetermined amount or less, It has been found that the capacity decreases and the capacity fluctuates. It was also found that this absorption phenomenon appears remarkably when a setter containing Al 2 O 3 or ZrO 2 as a main component is used. Moreover, lead oxide lost from the ceramic layer of the laminated body may be lost by evaporation during firing, but even if firing in a sealed state, the phenomenon of lead oxide disappearance occurs, and most of it is absorbed by the setter. You can understand when it is done.

本発明の製造方法においては、焼成前の積層体を上記
の表面層を少なくとも備えた基板上に載置して焼成する
ので、この表面層がバリヤーとして働き、焼成中に積層
体のセラミック層中に含まれる酸化鉛がセッターに吸収
されない。そのために、焼成後のセラミック層中の酸化
鉛の含有量が低下することがなく、容量の低下や容量の
ばらつきが生じない。
In the production method of the present invention, since the laminate before firing is placed on the substrate having at least the above surface layer and fired, this surface layer acts as a barrier, and the ceramic layer The lead oxide contained in is not absorbed by the setter. Therefore, the content of lead oxide in the ceramic layer after firing does not decrease, and the decrease in capacity and the variation in capacity do not occur.

本発明においては、積層体が載置される基板の少なく
とも表面は酸化鉛を好ましくは30〜70wt%含むペロブス
カイト構造を有するものであれば、Al2O3等のセラミッ
ク基板の表面に焼成して形成された膜状のものでも良
く、または、焼結した粉末を基板の表面に敷き詰めたも
のでも良い。また、この表面層は30μm以上の厚さを有
することが望ましく、その厚さが30μm未満の場合はバ
リヤーとしての作用が期待できない。膜状の表面層の場
合、その厚さが200μmを超えると、表面層が材料の異
なる基板から剥離したり、割れたりするおそれがある。
さらに、この表面層は積層体のセラミック層と実質的に
同一の成分を有するものが、不純物の観点から、特に、
好ましい。
In the present invention, if at least the surface of the substrate on which the laminate is mounted has a perovskite structure containing preferably 30 to 70 wt% of lead oxide, it is baked on the surface of a ceramic substrate such as Al 2 O 3. The formed film may be used, or the sintered powder may be spread on the surface of the substrate. Further, it is desirable that this surface layer has a thickness of 30 μm or more, and if the thickness is less than 30 μm, the action as a barrier cannot be expected. In the case of a film-shaped surface layer, if the thickness exceeds 200 μm, the surface layer may be peeled or cracked from a substrate made of a different material.
Further, this surface layer has substantially the same components as the ceramic layer of the laminate, from the viewpoint of impurities, in particular,
preferable.

また、積層体が載置される基板は、基板自体が酸化鉛
を、好ましくは30〜70wt%含むペロブスカイト構造を有
するセラミックからなる基板でも良い。
The substrate on which the laminated body is placed may be a substrate made of ceramic having a perovskite structure containing lead oxide, preferably 30 to 70 wt%.

本発明による積層セラミック電子部品のセラミック層
は30〜70wt%の酸化鉛を含む場合に効果的である。酸化
鉛の含有量がこの範囲を外れると、セラミック層の誘電
率が低くなり、好ましくない。また、本発明の焼成温度
は800〜1300℃の範囲が好ましく、焼成温度が800℃未満
の場合は、セラミック層の焼成が不十分となり所定の特
性が得られず、また、焼成温度が1300℃を超えると焼成
中にセラミック層と内部電極とが反応する。
The ceramic layer of the multilayer ceramic electronic component according to the present invention is effective when it contains 30 to 70 wt% of lead oxide. If the content of lead oxide is out of this range, the dielectric constant of the ceramic layer becomes low, which is not preferable. Further, the firing temperature of the present invention is preferably in the range of 800 to 1300 ° C, and when the firing temperature is less than 800 ° C, the firing of the ceramic layer is insufficient and the predetermined characteristics cannot be obtained, and the firing temperature is 1300 ° C. If it exceeds, the ceramic layer reacts with the internal electrode during firing.

(実施例) 以下、本発明の実施例について図面を参照して説明す
る。第1図は本発明の実施例を説明するための積層体を
セッター内に配置した状態を示す斜視図であり、第2図
は本発明の実施例により製造された積層セラミックコン
デンサを示す一部を切り欠いた斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a state in which a laminated body for explaining an embodiment of the present invention is arranged in a setter, and FIG. 2 is a part showing a laminated ceramic capacitor manufactured according to the embodiment of the present invention. It is the perspective view which notched.

実施例1 まず、セラミック層の組成として、 Pb0.95Ba0.05(Mg1.3Nb2.3)0.5(Zn1.3Nb2.3)0.5O3 (以下A組成という)となる様に、原料であるPbO,BaCO
3,Mg2CO3,Nb2O5,ZnO,SrCO3等の酸化物、炭酸化物を正
確に秤量し、これらを800〜860℃の温度で仮焼後、ボー
ルミルで粉砕してセラミック粉末を得た。このセラミッ
ク粉末を高速回転する撹拌羽根を有するホモジナイズミ
キサーで35wt%のトリクロロエタン中に分散させ、その
後に、5wt%のアクリル樹脂と1〜2wt%のフタル酸エス
テルを加えて良く混合してスラリーを作成した。このス
ラリーをポリエステルフィルム上に流してドクターブレ
ード法にて厚さ30μmのグリーンシートを作成した。
Example 1 First, as a composition of a ceramic layer, PbO, BaCO which is a raw material so that Pb 0.95 Ba 0.05 (Mg 1.3 Nb 2.3 ) 0.5 (Zn 1.3 Nb 2.3 ) 0.5 O 3 (hereinafter referred to as A composition) is obtained.
Accurately weigh oxides and carbonates such as 3 , Mg 2 CO 3 , Nb 2 O 5 , ZnO, and SrCO 3 , calcinate them at a temperature of 800 to 860 ℃, and pulverize them with a ball mill to obtain a ceramic powder. Obtained. Disperse this ceramic powder in 35 wt% trichloroethane with a homogenizing mixer with a high speed rotating stirring blade, then add 5 wt% acrylic resin and 1-2 wt% phthalate ester and mix well to make a slurry. did. This slurry was poured onto a polyester film to prepare a 30 μm thick green sheet by the doctor blade method.

つぎに、このポリエステルフィルムからセラミック層
を剥離し、100×100mmの所定の大きさに打抜き、その後
にこのセラミック層の一方の表面にAg/Pdからなる内部
電極をスクリーン印刷し、乾燥後、このセラミック層と
内部電極とが交互に積重なる様に金型内に積層し、これ
に250kg/cm2の圧力で80℃で10分間熱プレスし、これを
所定の大きさに裁断して積層セラミックコンデンサの生
チップである積層体を得た。
Next, the ceramic layer is peeled from the polyester film, punched to a predetermined size of 100 × 100 mm, after which an internal electrode made of Ag / Pd is screen-printed on one surface of the ceramic layer, and after drying, this The ceramic layers and the internal electrodes are laminated in a mold so that they are stacked alternately, and hot pressed at a pressure of 250 kg / cm 2 at 80 ° C. for 10 minutes, and cut into a predetermined size to produce a laminated ceramic. A laminated body which is a raw chip of the capacitor was obtained.

第1図に示す様に、この積層体(1)を100×50×2mm
の寸法を有し、積層体(1)のセラミック層と実質的に
同一組成のスラリーを用いて焼成され、Pb0.95Ba0.05(M
g1.3Nb2.3)0.5(Zn1.3Nb2.3)0.5O3の組成でペロブスカイ
ト構造を有する基板(2)上に100個並べ、この基板
(2)をAl2O3製の磁器セッター(3)内に配置して、3
50℃で10時間脱脂した後、1000℃3時間焼成して、焼結
素子を得た。この焼結素子に内部電極を共通接続する外
部電極を形成して積層セラミックコンデンサを得た。こ
のコンデンサ(4)は、第2図に示した様に、酸化鉛
(PbO)を含みペロブスカイト構造を有するセラミック
層(5)とAg/Pdからなる内部電極(6)とが交互に積
層された焼結素子(7)およびこの焼結素子(7)の複
数の内部電極(6)を夫々共通に電気的に接続する一対
の外部電極(8)から構成される。このコンデンサ
(4)は製造に際して容量値は50V,1μFに設定した。
As shown in Fig. 1, this laminate (1) is 100 x 50 x 2 mm.
Of Pb 0.95 Ba 0.05 (M
100 g 1.3 Nb 2.3 ) 0.5 (Zn 1.3 Nb 2.3 ) 0.5 O 3 on a substrate (2) having a perovskite structure, and the substrates (2) are placed in a porcelain setter (3) made of Al 2 O 3 . Place it in 3
After degreasing at 50 ° C. for 10 hours, firing was performed at 1000 ° C. for 3 hours to obtain a sintered element. External electrodes commonly connected to internal electrodes were formed on this sintered element to obtain a monolithic ceramic capacitor. In this capacitor (4), as shown in FIG. 2, ceramic layers (5) containing lead oxide (PbO) and having a perovskite structure and internal electrodes (6) made of Ag / Pd were alternately laminated. It is composed of a sintered element (7) and a pair of external electrodes (8) for electrically connecting commonly a plurality of internal electrodes (6) of the sintered element (7). The capacitance value of this capacitor (4) was set to 50 V and 1 μF at the time of manufacture.

実施例2 セラミック層の組成として、Pb0.50Sr0.50[(Zn1.3Nb
2.3)0.95Ti0.05]O3(以下B組成という)となる様に、
実施例1と同様に形成された積層体を、実施例1と同様
な寸法を有し、Pb0.50Sr0.50[(Zn1.3Nb2.3)0.95Ti0.05]
O3の組成でペロブスカイト構造を有する基板上に並べ
て、この基板をAl2O3製の磁器セッター内に配置して、3
50℃で10時間脱脂した後、1100℃で3時間焼成して、焼
結素子を得た。この焼結素子に外部電極を形成して同様
な積層セラミックコンデンサを得た。
Example 2 As the composition of the ceramic layer, Pb 0.50 Sr 0.50 [(Zn 1.3 Nb
2.3 ) 0.95 Ti 0.05 ] O 3 (hereinafter referred to as B composition)
A laminated body formed in the same manner as in Example 1 has the same dimensions as in Example 1 and has Pb 0.50 Sr 0.50 [(Zn 1.3 Nb 2.3 ) 0.95 Ti 0.05 ].
It is arranged on a substrate having a composition of O 3 and having a perovskite structure, and this substrate is placed in a porcelain setter made of Al 2 O 3 , and
After degreasing at 50 ° C. for 10 hours, firing was performed at 1100 ° C. for 3 hours to obtain a sintered element. External electrodes were formed on this sintered element to obtain a similar monolithic ceramic capacitor.

実施例3 セラミック層の組成として、A組成となる様に、実施
例1と同様に形成された積層体を、表面にA組成を有す
る表面層が形成されたAl2O3製のセッター内に並べて、
実施例1と同様に焼結素子を製造し、さらに、同様な積
層セラミックコンデンサを得た。
Example 3 As the composition of the ceramic layer, the laminated body formed in the same manner as in Example 1 so as to have the A composition was placed in an Al 2 O 3 setter having a surface layer having the A composition formed on the surface thereof. Line up,
A sintered element was manufactured in the same manner as in Example 1, and a similar monolithic ceramic capacitor was obtained.

実施例4 セラミック層の組成として、B組成となる様に、実施
例2と同様に形成された積層体を、表面にB組成を有す
る表面層が形成されたマグネシア製のセッター内に並べ
て、実施例2と同様に焼結素子を製造し、さらに、同様
な積層セラミックコンデンサを得た。
Example 4 As the composition of the ceramic layer, the laminated body formed in the same manner as in Example 2 was arranged in a magnesia setter having a surface layer having the B composition formed on the surface thereof. A sintered element was manufactured in the same manner as in Example 2, and a similar monolithic ceramic capacitor was obtained.

実施例5 セラミック層の組成として、A組成となる様に、実施
例1と同様に形成された積層体を、表面にA組成を有す
る表面層が形成されたスピネル製のセッター内に並べ
て、実施例1と同様に焼結素子を製造し、さらに、同様
な積層セラミックコンデンサを得た。
Example 5 As the composition of the ceramic layer, the laminated body formed in the same manner as in Example 1 so as to have the A composition was arranged in a spinel setter having a surface layer having the A composition formed on the surface thereof. A sintered element was manufactured in the same manner as in Example 1, and further a similar monolithic ceramic capacitor was obtained.

実施例6 セラミック層の組成として、B組成となる様に、実施
例2と同様に形成された積層体を、表面にB組成を有す
る表面層が形成されたジルコニア製のセッター内に並べ
て、実施例2と同様に焼結素子を製造し、さらに、同様
な積層セラミックコンデンサを得た。
Example 6 As a composition of a ceramic layer, a laminate formed in the same manner as in Example 2 so as to have a B composition was arranged in a zirconia setter having a surface layer having a B composition formed on the surface thereof. A sintered element was manufactured in the same manner as in Example 2, and a similar monolithic ceramic capacitor was obtained.

これらの積層セラミックコンデンサの容量等の特性を
測定して、その結果を第2表に示した。比較例として、
Al2O3、マグネシア、スピネル、ジルコニアからなるセ
ッター内に直接積層体を並べて、実施例1および実施例
2と同様にセラミック層がA組成およびB組成を有する
積層セラミックコンデンサを製造し、その特性の測定結
果を第2表に示した。
The characteristics such as capacitance of these laminated ceramic capacitors were measured, and the results are shown in Table 2. As a comparative example,
The laminated body was directly arranged in a setter made of Al 2 O 3 , magnesia, spinel, and zirconia to manufacture a laminated ceramic capacitor having a ceramic composition of A composition and B composition in the same manner as in Example 1 and Example 2. The measurement results of are shown in Table 2.

なお、この表において、表面処理の有無の欄の、例え
ば「有、A組成」はA組成を有する表面層を形成するた
めのスラリーをセッターの表面に塗布して、これを積層
体の焼成温度と同じ温度で焼き付けたものを意味し、ま
た「無」はこの表面層が形成されていないものを意味す
る。
In this table, in the column of presence or absence of surface treatment, for example, “Yes, A composition” means that a slurry for forming a surface layer having A composition is applied to the surface of a setter, and this is applied to the firing temperature of the laminate. Means the one baked at the same temperature, and "none" means that the surface layer is not formed.

この表から明らかな様に、酸化鉛を30〜70wt%含むペ
ロブスカイト構造を有する基板上またはこの基板と同様
な組成を備えた表面層によりコートされたAl2O3等から
なる磁器セッター上で積層体を焼成した場合は、誘電損
失が小さく、容量のばらつきおよび耐圧のばらつきが小
さい積層セラミックコンデンサが得られる。
As is clear from this table, it is laminated on a substrate having a perovskite structure containing 30 to 70 wt% of lead oxide or on a porcelain setter made of Al 2 O 3 etc. coated with a surface layer having the same composition as this substrate. When the body is fired, it is possible to obtain a monolithic ceramic capacitor having a small dielectric loss and a small variation in capacitance and variation in withstand voltage.

積層セラミックコンデンサのセラミック層および焼成
に際して積層体が載置される基板または磁器セッターに
形成される表面層の組成としては、上記実施例で説明し
た他に、PbTiO3,PbZrO3,Pb(TiZr)O3、Pb(Fe1.2Nb1.2)
O3,Pb(Mg1.3Nb2.3)O3,Pb(Mg1.2W1.2)O3,Pb(Ni1.3Nb
2.3)O3に対しても、本発明は同様に適用できる。
As the composition of the ceramic layer of the monolithic ceramic capacitor and the surface layer formed on the substrate or the porcelain setter on which the laminated body is placed during firing, in addition to those described in the above examples, PbTiO 3 , PbZrO 3 , Pb (TiZr) O 3 , Pb (Fe 1.2 Nb 1.2 )
O 3 , Pb (Mg 1.3 Nb 2.3 ) O 3 , Pb (Mg 1.2 W 1.2 ) O 3 , Pb (Ni 1.3 Nb
2.3 ) The present invention can be similarly applied to O 3 .

また、上記実施例は積層体をグリーンシート法により
形成した場合につき説明したが、印刷積層法により形成
した場合にも本発明は適用できる。
Further, in the above embodiment, the case where the laminate is formed by the green sheet method has been described, but the present invention can be applied to the case where the laminate is formed by the printing lamination method.

以上は積層セラミックコンデンサの実施例について説
明したが、この他の酸化鉛を、好ましくは30〜70wt%含
むペロブスカイト構造を有するセラミック層を備えた積
層型アクチュエータ用電歪素子や圧電素子等の積層セラ
ミック電子部品にも本発明は適用できる。
Although the embodiments of the monolithic ceramic capacitor have been described above, other monolithic ceramics such as electrostrictive elements and piezoelectric elements for a monolithic actuator having a ceramic layer having a perovskite structure containing preferably 30 to 70 wt% of lead oxide. The present invention can be applied to electronic components.

〔発明の効果〕〔The invention's effect〕

以上述べた様に、本発明によれば、容量の低下や容量
のばらつきがなく、しかも誘電損失が小さい等の安定し
た特性を有する積層セラミックコンデンサ等の積層セラ
ミック電子部品が得られる製造方法を提供することがで
きる。
As described above, according to the present invention, there is provided a manufacturing method capable of obtaining a monolithic ceramic electronic component such as a monolithic ceramic capacitor having stable characteristics such as a reduction in capacitance and a variation in capacitance and a small dielectric loss. can do.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を説明するための積層体をセッ
ター内に配置した状態を示す斜視図であり、第2図は本
発明の実施例により製造された積層セラミックコンデン
サを示す一部を切り欠いた斜視図である。 1……積層体 2……基板 3……磁器セッター 4……積層セラミックコンデンサ 5……セラミック層 6……内部電極 7……焼結素子 8……外部電極
FIG. 1 is a perspective view showing a state in which a laminated body for explaining an embodiment of the present invention is arranged in a setter, and FIG. 2 is a part showing a laminated ceramic capacitor manufactured according to the embodiment of the present invention. It is the perspective view which notched. 1 ... Laminated body 2 ... Substrate 3 ... Porcelain setter 4 ... Multilayer ceramic capacitor 5 ... Ceramic layer 6 ... Internal electrode 7 ... Sintered element 8 ... External electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料調整後所定形状に形成されたセラミッ
ク層と内部電極とを交互に積み重なるように複数積層し
て積層体とし、この積層体を所定の条件で焼成して酸化
鉛を含むペロブスカイト構造を有するセラミック層を備
えた焼結素子とし、この焼結素子の内部電極と電気的に
接続される一対の外部電極を焼結素子に設ける積層セラ
ミック電子部品の製造方法において、前記積層体を、少
なくとも表面が、酸化鉛を含むペロブスカイト構造であ
る基板上に載置して、焼成することを特徴とする積層セ
ラミック電子部品の製造方法。
1. A perovskite containing lead oxide is prepared by laminating a plurality of ceramic layers and internal electrodes formed in a predetermined shape after the raw material is adjusted so as to be alternately stacked, and firing the laminated body under predetermined conditions. In a method of manufacturing a laminated ceramic electronic component, which is a sintered element including a ceramic layer having a structure, and a pair of external electrodes electrically connected to internal electrodes of the sintered element are provided in the sintered element, A method for manufacturing a multilayer ceramic electronic component, comprising: placing on a substrate having at least a surface having a perovskite structure containing lead oxide and firing the substrate.
【請求項2】前記積層体を焼成する際に使用する基板の
少なくとも表面が前記セラミック層と実質的に同一の成
分を有することを特徴とする請求項第1記載の積層セラ
ミック電子部品の製造方法。
2. The method for producing a monolithic ceramic electronic component according to claim 1, wherein at least a surface of a substrate used for firing the laminate has substantially the same composition as that of the ceramic layer. .
JP17378688A 1988-07-14 1988-07-14 Manufacturing method of multilayer ceramic electronic component Expired - Fee Related JP2680354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17378688A JP2680354B2 (en) 1988-07-14 1988-07-14 Manufacturing method of multilayer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17378688A JP2680354B2 (en) 1988-07-14 1988-07-14 Manufacturing method of multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JPH0225012A JPH0225012A (en) 1990-01-26
JP2680354B2 true JP2680354B2 (en) 1997-11-19

Family

ID=15967125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17378688A Expired - Fee Related JP2680354B2 (en) 1988-07-14 1988-07-14 Manufacturing method of multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2680354B2 (en)

Also Published As

Publication number Publication date
JPH0225012A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
EP0534378B1 (en) Non-reducible dielectric ceramic composition
EP2000445B1 (en) Method of manufacturing a dielectric porcelain
EP2267808A1 (en) Piezoelectric/electrostrictive element and manufacturing method thereof
JP2762309B2 (en) Dielectric ceramic composition and electronic component using the same
JPH0222806A (en) Laminated ceramic capacitor
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
JPWO2004026789A1 (en) Piezoelectric ceramic composition, piezoelectric element, and manufacturing method thereof
JP4321526B2 (en) Dielectric porcelain composition and electronic component using the same
JP2680354B2 (en) Manufacturing method of multilayer ceramic electronic component
EP1224154A1 (en) Piezoelectric ceramic compositions and methods for production thereof
CN114823135A (en) Dielectric composition and electronic component
JP3317246B2 (en) Composite ceramic and composite ceramic element
EP0486827B1 (en) Dielectric material and capacitor made from the same
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP7169069B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
EP0841310A1 (en) Dielectric ceramic composition
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
KR900005443B1 (en) Thick film capacitor
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPS6234707B2 (en)
JP2005035843A (en) Piezoelectric ceramics, sintering aid, and laminated piezoelectric element
JP2642390B2 (en) Thick film capacitors
JPS63136507A (en) Ceramic capacitor
JP2895056B1 (en) Porcelain composition and multilayer ceramic capacitor
JPH0793225B2 (en) Ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees