JP2678393B2 - Chip capacitor manufacturing method - Google Patents

Chip capacitor manufacturing method

Info

Publication number
JP2678393B2
JP2678393B2 JP2082930A JP8293090A JP2678393B2 JP 2678393 B2 JP2678393 B2 JP 2678393B2 JP 2082930 A JP2082930 A JP 2082930A JP 8293090 A JP8293090 A JP 8293090A JP 2678393 B2 JP2678393 B2 JP 2678393B2
Authority
JP
Japan
Prior art keywords
thin film
layer
rod
shaped portion
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2082930A
Other languages
Japanese (ja)
Other versions
JPH03285313A (en
Inventor
昭夫 佐々木
栄作 宮内
晃 小野寺
博 池田
信也 吉原
賢一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2082930A priority Critical patent/JP2678393B2/en
Publication of JPH03285313A publication Critical patent/JPH03285313A/en
Application granted granted Critical
Publication of JP2678393B2 publication Critical patent/JP2678393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プリント基板にチップ状電子部品として装
着するのに適したリードのないチップコンデンサの製造
方法に関する。
TECHNICAL FIELD The present invention relates to a method of manufacturing a leadless chip capacitor suitable for mounting as a chip-shaped electronic component on a printed circuit board.

(従来の技術) 従来のチップコンデンサは、未焼成の誘電体シートを
積層加圧した後、チップ形状に切断してから焼成し、焼
成後の各チップに対してAg−Pd材の印刷焼き付けにより
端部電極を形成し、その上に電気めっきを施す製法であ
る。
(Prior Art) A conventional chip capacitor is obtained by stacking and pressing unfired dielectric sheets, cutting them into chip shapes, firing them, and printing and baking Ag-Pd material on each fired chip. This is a manufacturing method in which end electrodes are formed and electroplating is performed thereon.

この種の厚膜技術と電気めっきとにより端部電極を構
成するものは本出願人提案の特開昭62−274614号で提案
されている。
A method of forming an end electrode by this kind of thick film technique and electroplating is proposed in Japanese Patent Laid-Open No. 62-274614 proposed by the present applicant.

第10図に従来製法によるチップコンデンサの外形を示
す。この場合、端部電極15Aは内部容量電極を有するチ
ップ状誘電体板16Aの端部を取り巻くように形成される
ことになる。
Figure 10 shows the external shape of a chip capacitor manufactured by the conventional method. In this case, the end electrode 15A is formed so as to surround the end of the chip-shaped dielectric plate 16A having the internal capacitance electrode.

(発明が解決しようとする課題) ところで、従来のごとき端部電極をAg−Pd材の厚膜で
構成する場合、その厚さの管理が面倒であり、外形寸法
のばらつきが発生しやすい嫌いがあり、また材料費も高
くなる欠点があった。また、製法上も未焼成のセラミッ
ク誘電体シートをチップ状に切断してから焼成するた
め、端部電極の形成工程が面倒となる嫌いがある。さら
に、Ag−Pd材による厚膜電極の上に電気めっきを施した
後の外観選別は個別のチップにばらばらに分離した状態
であるため、人手に頼らざるを得ず、外観選別の自動化
には適さない問題もあった。
(Problems to be solved by the invention) By the way, when an end electrode such as a conventional one is made of a thick film of Ag-Pd material, it is difficult to manage the thickness, and there is a tendency that variation in external dimensions easily occurs. There is also a drawback that the material cost is high. Also, in terms of the manufacturing method, since the unfired ceramic dielectric sheet is cut into chips and then fired, the step of forming the end electrodes may be troublesome. Furthermore, since the appearance selection after electroplating on the thick film electrode made of Ag-Pd material is in a state where it is separated into individual chips, it is inevitable to rely on human hands and it is not possible to automate the appearance selection. There were also problems that were not suitable.

本発明は、上記の点に鑑み、端部電極を薄膜技術によ
る金属薄膜とその上に形成される金属めっきとにより構
成することによって、製品寸法精度のばらつきをなく
し、なおかつ端部電極の形成や外観選別を効率的に実施
可能としたチップコンデンサの製造方法を提供すること
を目的とする。
In view of the above points, the present invention eliminates the variation in product dimensional accuracy by forming the end electrodes by a metal thin film by thin film technology and metal plating formed thereon, and further, formation of the end electrodes and An object of the present invention is to provide a method for manufacturing a chip capacitor that enables efficient appearance selection.

(課題を解決するための手段) 上記目的を達成するために、本発明のチップコンデン
サの製造方法は、所要の容量電極を設けた未焼成セラミ
ック誘電体シートを積層、加圧処理して未焼成の積層セ
ラミック基板を作製し、該未焼成の積層セラミック基板
にスリット穴を形成することで平行な前記スリット穴間
に棒状部を形成後、焼成して、前記棒状部に前記容量電
極が設けられた穴あきセラミック誘電体基板とし、該穴
あきセラミック誘電体基板の前記棒状部の端部を略コ字
状に囲むように前記誘電体基板に対して付着性の良い最
下層の薄膜層及び該最下層の薄膜層の上層側に設けられ
た低抵抗の薄膜層とを少なくとも有する複数層構造の金
属薄膜を薄膜技術により形成し、かつ耐はんだ性のめっ
き層と、はんだ付着性の良い最上層のめっき層とを有す
る複数層構造の金属めっき膜を前記金属薄膜上に形成す
ることで前記容量電極に接続する端部電極を形成した
後、前記棒状部を複数個に切断分離するものである。
(Means for Solving the Problems) In order to achieve the above object, a method for manufacturing a chip capacitor according to the present invention is such that an unfired ceramic dielectric sheet provided with a required capacitance electrode is laminated, pressure-treated and unfired. Of the monolithic ceramic substrate and forming slit holes in the unfired laminated ceramic substrate to form rod-shaped portions between the parallel slit holes, followed by firing, and the capacitance electrodes are provided on the rod-shaped portions. And a bottom thin film layer having good adhesion to the dielectric substrate so as to surround the end of the rod-shaped portion of the perforated ceramic dielectric substrate in a substantially U-shape, and A metal thin film having a multi-layer structure having at least a low resistance thin film layer provided on the upper side of the lowermost thin film layer is formed by a thin film technique, and a soldering resistant plating layer and a solder bonding uppermost layer. Plating A metal plating film having a multi-layer structure having a layer is formed on the metal thin film to form an end electrode connected to the capacitance electrode, and then the rod-shaped portion is cut into a plurality of pieces.

(作用) 本発明においては、イオンプレーティング、スパッ
タ、P−CVD等による薄膜技術による金属薄膜と金属め
っき膜により端部電極を構成しており、端部電極の厚み
の管理を高精度で行うことが容易で、製品形状のばらつ
きを少なくすることができる。そして、前記金属薄膜を
セラミック誘電体基板に対して付着性の良い最下層の薄
膜層と、該最下層の薄膜層の上層側に設けられた低抵抗
の薄膜層とを少なくとも有する複数層構造とし、前記金
属めっき膜を耐はんだ性のめっき層と、はんだ付着性の
良い最上層のめっき層とを有する複数層構造としたの
で、端部電極としての誘電体基板への付着性、導電性、
はんだ耐食性、及びはんだ付着性を十分確保できる。ま
た、棒状部を一体に有する穴あき誘電体基板を使用し、
この基板の状態において、薄膜技術による金属薄膜の形
成及び電気めっきや無電解めっき等による金属めっき膜
の作成を行うことにより、端部電極形成のための製造工
程を簡略化することができる。さらに、各棒状部を各チ
ップに切断分離した状態においても相互の位置関係をそ
のまま維持した状態で画像処理等により外観選別を行う
ことで外観選別の自動化を図り、製造工程の連続化、オ
ンライン化が可能となる。
(Operation) In the present invention, the end electrode is composed of the metal thin film and the metal plating film by the thin film technology such as ion plating, sputtering, P-CVD, etc., and the thickness of the end electrode is controlled with high accuracy. This makes it easy to reduce variations in product shape. Then, the metal thin film has a multi-layer structure having at least a lowermost thin film layer having good adhesion to the ceramic dielectric substrate and a low resistance thin film layer provided on the upper side of the lowermost thin film layer. Since the metal plating film has a multi-layer structure having a solder-resistant plating layer and a solder-adhesive uppermost plating layer, adhesion to a dielectric substrate as an end electrode, conductivity,
Sufficient solder corrosion resistance and solder adhesion can be secured. Also, using a perforated dielectric substrate that integrally has a rod-shaped portion,
In this state of the substrate, a metal thin film is formed by a thin film technique and a metal plated film is formed by electroplating, electroless plating, or the like, so that the manufacturing process for forming the end electrodes can be simplified. Furthermore, even when each rod-shaped part is cut and separated into chips, the appearance is selected by image processing while maintaining the mutual positional relationship, and automation of appearance selection is achieved, and the manufacturing process is made continuous and online. Is possible.

(実施例) 以下、本発明に係るチップコンデンサの製造方法の実
施例を図面に従って説明する。
(Example) Hereinafter, an example of a method for manufacturing a chip capacitor according to the present invention will be described with reference to the drawings.

第1図はチップコンデンサの製造工程を示す工程図で
ある。まず、導体ペーストの印刷等により所要の内部容
量電極パターンを設けた未焼成セラミック誘電体シート
を受け入れ、積層工程1において積層し、スタック(プ
レス)工程2において一様に加圧処理して未焼成の積層
セラミック誘電体基板を作製する。その後、スリット形
成工程3において、第2図に示す如く、未焼成の積層セ
ラミック誘電体基板10にレーザー加工等によりスリット
穴11を形成して平行なスリット穴間に棒状部12を形成
し、その後焼成工程4において未焼成の積層セラミック
誘電体基板10を焼成し、第3図のごときスリット穴11を
複数個形成することにより、複数個の棒状部12を一体化
したセラミック誘電体基板20を作成する。その際、各チ
ップに分離する際の切断代ZとなるV乃至U字状溝を前
記スタック工程2もしくはスリット形成工程3において
予め形成しておいて焼成するようにしても良い。
FIG. 1 is a process diagram showing a manufacturing process of a chip capacitor. First, an unfired ceramic dielectric sheet provided with a required internal capacitance electrode pattern by printing a conductor paste or the like is received, laminated in the laminating step 1, and uniformly pressed in the stacking (pressing) step 2 to be unfired. To produce a laminated ceramic dielectric substrate. Then, in the slit forming step 3, as shown in FIG. 2, slit holes 11 are formed in the unfired laminated ceramic dielectric substrate 10 by laser processing or the like to form rod-shaped portions 12 between the parallel slit holes, and thereafter. In firing step 4, the unfired monolithic ceramic dielectric substrate 10 is fired to form a plurality of slit holes 11 as shown in FIG. 3, thereby forming a ceramic dielectric substrate 20 in which a plurality of rod-shaped portions 12 are integrated. To do. At that time, a V to U-shaped groove, which serves as a cutting margin Z when the chips are separated, may be formed in advance in the stacking step 2 or the slit forming step 3 and baked.

第4図は各棒状部12の断面を示すものであり、内部容
量電極21が相互に対向しなおかつ内部容量電極21の一方
の端部が棒状部12の端面に露出していることを示してい
る。
FIG. 4 shows a cross section of each rod-shaped portion 12, showing that the internal capacitance electrodes 21 are still facing each other and one end of the internal capacitance electrode 21 is exposed on the end face of the rod-shaped portion 12. There is.

その後、端部電極成膜工程5において、第5図のよう
に端部電極の下地となる金属薄膜22の成膜をスパッタに
より前記穴あきセラミック誘電体基板20の状態で行い、
各棒状部12の両端部を略コ字状に囲む如く金属薄膜22を
形成する。ここで、金属薄膜22は内部容量電極21の端部
に接続するもので、例えば2層構造であって、セラミッ
ク誘電体基板に直接被着形成される最下層がセラミック
に付着性の良いNiCr,Ti又はCrのスパッタ膜、上層が低
抵抗のCuスパッタ膜である。
Then, in an end electrode film forming step 5, as shown in FIG. 5, a metal thin film 22 as a base of the end electrode is formed by sputtering in the state of the perforated ceramic dielectric substrate 20,
The metal thin film 22 is formed so as to surround both ends of each rod-shaped portion 12 in a substantially U-shape. Here, the metal thin film 22 is to be connected to the end portion of the internal capacitance electrode 21, and has a two-layer structure, for example, and the bottom layer directly formed on the ceramic dielectric substrate is NiCr, which has good adhesion to the ceramic. The Ti or Cr sputtered film and the upper layer is a low resistance Cu sputtered film.

さらに、電気めっき工程6において穴あきセラミック
誘電体基板20のままで各棒状部12の金属薄膜22上に電気
めっきを施し、第6図の如く金属めっき膜23を金属薄膜
22上に直接被着形成して端部電極15を構成する。ここ
で、金属めっき膜23は金属薄膜22上に直接被着形成され
る下層が耐はんだ性(はんだの拡散防止及びはんだ耐熱
性)のNiめっき膜、外部に露出する最上層がはんだ付着
性の良いPb−Sn又はSnめっき膜である。
Further, in the electroplating step 6, electroplating is performed on the metal thin film 22 of each rod-shaped portion 12 with the perforated ceramic dielectric substrate 20 as it is, and the metal plating film 23 is formed as shown in FIG.
The end electrodes 15 are formed by directly depositing on 22. Here, in the metal plating film 23, the lower layer directly formed on the metal thin film 22 is a Ni plating film having solder resistance (solder diffusion prevention and solder heat resistance), and the uppermost layer exposed to the outside is solder adhesion. It is a good Pb-Sn or Sn plating film.

その後、穴あきセラミック誘電体基板20を粘着シート
の上に載置し、切断工程7においてダイシングソー等を
利用して前記切断代Z(第3図及び第5図参照)の部分
で各棒状部12を切断し、第7図のように複数個のチップ
状誘電体16に切断分離する。但し、裏面の粘着テープに
より相互の平面的な位置関係は変わらないようにしてお
き、この状態において次の外観選別工程8において、画
像処理を利用して外観選別を自動的に行う。画像処理に
より外観不良と判定されたものは選別除去される。外観
が良品と判定されたものが製品となる。
After that, the perforated ceramic dielectric substrate 20 is placed on an adhesive sheet, and in the cutting step 7, each rod-shaped portion is used at the cutting margin Z (see FIGS. 3 and 5) using a dicing saw or the like. 12 is cut and divided into a plurality of chip-shaped dielectrics 16 as shown in FIG. However, the mutual planar positional relationship is not changed by the adhesive tape on the back surface, and in this state, in the next appearance selection step 8, the appearance selection is automatically performed using image processing. Those that are determined to have a poor appearance by image processing are selectively removed. Products that are judged to be good in appearance are products.

第8図及び第9図は上記製法により得られた完成品の
チップコンデンサであり、相互に対向して静電容量を構
成するための内部容量電極21を有するチップ状誘電体板
16の端部を、略コ字状に囲むように薄膜技術による金属
薄膜22とこれを被覆する金属めっき膜23とからなる端部
電極15を設けた構造となる。但し、第9図の斜視図から
明らかなように、端部電極15はチップ状誘電体16の側面
を覆わない形状となっている。このことは端部電極15と
して薄膜技術による金属薄膜及び金属めっき膜の組み合
わせを採用したことと相俟って製品寸法のばらつきを縮
小することができる利点となる。
FIG. 8 and FIG. 9 show a finished chip capacitor obtained by the above manufacturing method, and a chip-shaped dielectric plate having internal capacitance electrodes 21 facing each other to form a capacitance.
The structure is such that an end electrode 15 composed of a metal thin film 22 by a thin film technique and a metal plating film 23 covering the metal thin film 22 is provided so as to surround the end of 16 in a substantially U-shape. However, as is apparent from the perspective view of FIG. 9, the end electrode 15 has a shape that does not cover the side surface of the chip-shaped dielectric 16. This is an advantage that the variation in product size can be reduced in combination with the fact that the combination of the metal thin film and the metal plating film by the thin film technology is adopted as the end electrode 15.

なお、上記実施例では、金属薄膜22を2層のスパッタ
膜で形成したが、最下層をNiCrのスパッタ膜、中間層を
CuNiのスパッタ膜、上層をCuのスパッタ膜とした3層構
造とし、金属めっき膜23の下層をNi、最上層をPb−Snと
することも可能である。
In the above embodiment, the metal thin film 22 was formed of a two-layer sputtered film, but the bottom layer was a NiCr sputtered film and the intermediate layer was a sputtered film.
It is also possible to have a three-layer structure in which a CuNi sputtered film and an upper layer are Cu sputtered films, and the lower layer of the metal plating film 23 is Ni and the uppermost layer is Pb-Sn.

また、電気めっきの代わりに無電解めっきにより金属
めっき膜を形成しても良い。
Further, the metal plating film may be formed by electroless plating instead of electroplating.

また、スパッタの代わりにイオンプレーティング、ス
パッタ、P−CVD等で金属薄膜を形成してもよい。
Further, the metal thin film may be formed by ion plating, sputtering, P-CVD or the like instead of sputtering.

さらに、誘電体基板の表面に静電容量を構成するため
の外部容量電極を形成しても差し支えない。
Further, an external capacitance electrode for forming an electrostatic capacitance may be formed on the surface of the dielectric substrate.

また、チップ状誘電体上にインダクタ、マイクロチッ
プビーズ、ワイドバンドチョーク等を搭載して複合部品
とすることもできる。
Further, an inductor, a microchip bead, a wide band choke, etc. may be mounted on the chip-shaped dielectric material to form a composite component.

(発明の効果) 以上説明したように、本発明によれば、端部電極を薄
膜技術による金属薄膜とその上に被着形成された金属め
っき膜とで構成し、さらに前記金属薄膜を前記誘電体板
に対して付着性の良い最下層の薄膜層と、該最下層の薄
膜層の上層側に設けられた低抵抗の薄膜層とを少なくと
も有する複数層構造とし、前記金属めっき膜を耐はんだ
性のめっき層と、はんだ付着性の良い最上層のめっき層
とを有する複数層構造としたので、端部電極としての誘
電体板への付着性、導電性、はんだ耐食性、及びはんだ
付着性を十分確保でき、しかも、製品寸法のばらつきを
小さくして、搭載率の向上を図ることができ、さらに小
型チップにも十分対応できる。また、Ag−Pdペーストを
端部電極に使用する必要がなく、電極材料費の削減を図
ることができる。また、製造に際しては穴あき誘電体基
板を利用した基板処理工法を採用でき、工程の連続化が
可能であって、基板の状態にて端部電極の形成が可能で
あり、端部電極の形成工程が簡略化されるとともに、基
板から各チップに切断後も相互のチップの位置関係をそ
のまま保持した状態で外観選別を行うことによって、外
観選別の自動化を図ることができる。
(Effects of the Invention) As described above, according to the present invention, the end electrode is composed of a metal thin film by a thin film technique and a metal plating film deposited thereon, and further, the metal thin film is the dielectric film. A multi-layer structure having at least a lowermost thin film layer having good adhesion to a body plate and a low resistance thin film layer provided on the uppermost side of the lowermost thin film layer, wherein the metal plating film is solder-resistant. Since it has a multi-layer structure with a conductive plating layer and the uppermost plating layer with good solder adhesion, the adhesion to the dielectric plate as the end electrode, conductivity, solder corrosion resistance, and solder adhesion In addition, it is possible to sufficiently secure the product size, reduce the variation in product size, improve the mounting rate, and sufficiently support small chips. Further, it is not necessary to use the Ag-Pd paste for the end electrodes, and the electrode material cost can be reduced. In addition, in manufacturing, a substrate processing method using a perforated dielectric substrate can be adopted, the process can be made continuous, the end electrodes can be formed in the state of the substrate, and the end electrodes can be formed. In addition to simplifying the process, the appearance selection can be automated by performing the appearance selection while maintaining the mutual positional relationship between the chips even after cutting the substrate into the chips.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の製造工程を示す工程図、第2
図はスリット形成工程を説明する斜視図、第3図は実施
例で使用する穴あきセラミック誘電体基板を示す平面
図、第4図はセラミック誘電体基板の棒状部の横断面
図、第5図は端部電極成膜工程を示す平面図、第6図は
同横断面図、第7図は切断工程を説明する平面図、第8
図は完成品のチップコンデンサを示す正面図、第9図は
同斜視図、第10図は従来のチップコンデンサを示す斜視
図である。 1……積層工程、2……スタック工程、3……スリット
形成工程、4……焼成工程、5……端部電極成膜工程、
6……電気めっき工程、7……切断工程、10……未焼成
の積層セラミック誘電体基板、11……スリット穴、12…
…棒状部、15……端部電極、16……チップ状誘電体板、
20……穴あきセラミック誘電体基板、21……内部容量電
極、22……金属薄膜、23……金属めっき膜。
FIG. 1 is a process diagram showing a manufacturing process of an embodiment of the present invention, and FIG.
FIG. 4 is a perspective view for explaining the slit forming process, FIG. 3 is a plan view showing a perforated ceramic dielectric substrate used in the embodiment, FIG. 4 is a cross-sectional view of a rod-shaped portion of the ceramic dielectric substrate, and FIG. Is a plan view showing an end electrode film forming step, FIG. 6 is a cross-sectional view of the same, FIG. 7 is a plan view illustrating a cutting step, and FIG.
FIG. 9 is a front view showing a finished chip capacitor, FIG. 9 is a perspective view thereof, and FIG. 10 is a perspective view showing a conventional chip capacitor. 1 ... Laminating process, 2 ... Stacking process, 3 ... Slit forming process, 4 ... Firing process, 5 ... End electrode film forming process,
6 ... Electroplating process, 7 ... Cutting process, 10 ... Unfired monolithic ceramic dielectric substrate, 11 ... Slit hole, 12 ...
… Rod-shaped part, 15 …… End electrode, 16… Chip-shaped dielectric plate,
20 …… Perforated ceramic dielectric substrate, 21 …… Internal capacitance electrode, 22 …… Metal thin film, 23 …… Metal plating film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野寺 晃 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 池田 博 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 吉原 信也 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 斉藤 賢一 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 平1−21912(JP,A) 特開 昭62−195111(JP,A) 特公 昭60−7363(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Onodera 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Hiroshi Ikeda 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK (72) Inventor Shinya Yoshihara 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Kenichi Saito 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation ( 56) References JP-A 1-221912 (JP, A) JP-A 62-195111 (JP, A) JP-B 60-7363 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所要の容量電極を設けた未焼成セラミック
誘電体シートを積層、加圧処理して未焼成の積層セラミ
ック基板を作製し、該未焼成の積層セラミック基板にス
リット穴を形成することで平行な前記スリット穴間に棒
状部を形成後、焼成して、前記棒状部に前記容量電極が
設けられた穴あきセラミック誘電体基板とし、該穴あき
セラミック誘電体基板の前記棒状部の端部を略コ字状に
囲むように前記誘電体基板に対して付着性の良い最下層
の薄膜層及び該最下層の薄膜層の上層側に設けられた低
抵抗の薄膜層とを少なくとも有する複数層構造の金属薄
膜を薄膜技術により形成し、かつ耐はんだ性のめっき層
と、はんだ付着性の良い最上層のめっき層とを有する複
数層構造の金属めっき膜を前記金属薄膜上に形成するこ
とで前記容量電極に接続する端部電極を形成した後、前
記棒状部を複数個に切断分離することを特徴とするチッ
プコンデンサの製造方法。
1. A method for stacking unfired ceramic dielectric sheets provided with required capacitance electrodes, applying pressure treatment to produce an unfired laminated ceramic substrate, and forming slit holes in the unfired laminated ceramic substrate. After forming a rod-shaped portion between the slit holes parallel to each other, it is fired to form a perforated ceramic dielectric substrate in which the capacitance electrode is provided on the rod-shaped portion, and the end of the rod-shaped portion of the perforated ceramic dielectric substrate. A plurality of at least a thin film layer of the lowermost layer having good adhesion to the dielectric substrate and a low resistance thin film layer provided on the upper side of the thin film layer of the lowermost layer so as to surround the portion in a substantially U shape. A metal thin film having a layer structure is formed by a thin film technique, and a metal plating film having a multi-layer structure having a solder resistant plating layer and a top plating layer having good solder adhesion is formed on the metal thin film. With the capacitance electrode After the formation of the end electrodes to be connected, the manufacturing method of the chip capacitor, which comprises cutting and separating the rod-shaped portion into a plurality.
JP2082930A 1990-03-31 1990-03-31 Chip capacitor manufacturing method Expired - Fee Related JP2678393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082930A JP2678393B2 (en) 1990-03-31 1990-03-31 Chip capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082930A JP2678393B2 (en) 1990-03-31 1990-03-31 Chip capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JPH03285313A JPH03285313A (en) 1991-12-16
JP2678393B2 true JP2678393B2 (en) 1997-11-17

Family

ID=13787953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082930A Expired - Fee Related JP2678393B2 (en) 1990-03-31 1990-03-31 Chip capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JP2678393B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748317B2 (en) * 2006-08-31 2011-08-17 Tdk株式会社 Terminal electrodes and electronic components
KR101973442B1 (en) * 2017-07-11 2019-04-29 삼성전기주식회사 Multilayer ceramic capacitor and method for fabricating the same
US11011313B2 (en) 2017-07-11 2021-05-18 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722064B2 (en) * 1986-02-21 1995-03-08 京セラ株式会社 Chip type laminated porcelain capacitors

Also Published As

Publication number Publication date
JPH03285313A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
EP0637828B1 (en) Multilayer electronic component, method of manufacturing the same and method of measuring characteristics of the same
US9916921B2 (en) Resistor and method for making same
JPH1092643A (en) Manufacture of laminated chip inductor
JPH1167554A (en) Laminated coil component and its manufacture
JP2678393B2 (en) Chip capacitor manufacturing method
JP2000124007A (en) Chip thermistor and method of producing the same
JP4604553B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JPS5924535B2 (en) Laminated composite parts
JPH05267025A (en) Manufacture of chip part and manufacture of electronic part
JP3460620B2 (en) Manufacturing method of ceramic laminated electronic component
US4756928A (en) Method of forming electrodes of an electronic component of chip type for connecting to the external
JPH1126284A (en) Chip electronic component and its manufacture
JP2946261B2 (en) Manufacturing method of laminated electronic components
JP2668375B2 (en) Circuit component electrode manufacturing method
JPH0714745A (en) Production of multilayer ceramic electronic component
JPH07105302B2 (en) Chip inductor manufacturing method
JPH0945830A (en) Chip electronic component
JPH0380501A (en) Chip resistor and manufacture thereof
JP4504577B2 (en) Manufacturing method of chip resistor
JPH07106134A (en) Chip filter part
JP4059967B2 (en) Chip-type composite functional parts
JPH01283809A (en) Chip type electronic parts
JPS59228711A (en) Method of producing porcelain condenser
JPH07101830B2 (en) Ceramic filter manufacturing method
JPH046200Y2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees