JP2677981B2 - Exposure equipment - Google Patents

Exposure equipment

Info

Publication number
JP2677981B2
JP2677981B2 JP8011400A JP1140096A JP2677981B2 JP 2677981 B2 JP2677981 B2 JP 2677981B2 JP 8011400 A JP8011400 A JP 8011400A JP 1140096 A JP1140096 A JP 1140096A JP 2677981 B2 JP2677981 B2 JP 2677981B2
Authority
JP
Japan
Prior art keywords
foreign matter
substrate
prevention film
adhesion prevention
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8011400A
Other languages
Japanese (ja)
Other versions
JPH08279460A (en
Inventor
幸雄 宇都
正孝 芝
良忠 押田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8011400A priority Critical patent/JP2677981B2/en
Publication of JPH08279460A publication Critical patent/JPH08279460A/en
Application granted granted Critical
Publication of JP2677981B2 publication Critical patent/JP2677981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries

Landscapes

  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、縮小投影露光装置
や1:1反射形投影露光装置を用いて、異物付着に起因
する歩留りの低下を防止して異物付着防止膜を付けた枠
を装着した基板に形成された回路パターンを被露光基板
に露光する露光装置に関する。 【0002】 【従来の技術】例えば縮小投影露光装置(以下RAと略
記)では、レチクルやホトマスク等の基板上に形成され
た回路パターンを縮小してウエハ上に転写して1チップ
ずつ露光するため、基板上に異物が存在するとその異物
像が転写され、ウエハ上の全チップが不良となる。従っ
て、露光前の基板上の異物検査が露光工程の歩留りを向
上させる上で不可欠である。この種の装置として関連す
るものには例えば、特開昭57−80546号、特開昭
58−79240号、特開昭59−82727号等が挙
げられる。これらの装置をRAを必要とする大量生産ラ
インでは投資の面で膨大な費用がかかる。 【0003】 【発明が解決しようとする課題】一方、最近では、基板
表面に直接異物が付着しない様に、異物付着防止用のペ
リクル(金属の枠にニトロセルローズの透明薄膜を貼り
付けたもの)を装着している。異物付着防止膜を基板に
装着した後は原則として、基板上への新しい異物の付着
は防止できる。また、異物付着防止膜と基板の表面は離
間しているため、比較的小さな異物が異物付着防止膜上
に存在しても異物像はウエハ上に転写されない。従って
異物付着防止膜を用いた場合の基板洗浄から露光までの
工程は以下の様になる。先ず、基板を洗浄し、回路パタ
ーンの存在表面及び非存在表面にごみ等の異物があるか
否か検査する。ごみ等の異物がなければ、治具利用によ
り異物付着防止膜を装着する。この異物付着防止膜は、
回路パターンの存在面にも装着する。異物付着防止膜を
貼りつけた後、基板の面上に異物があるか否か特開昭5
9−82727号の方式を用いて検査する。異物がなけ
ればカセットに収納し、縮小露光装置に送り露光工程に
入る。 【0004】異物付着防止膜を装着することにより、2
0ないし30μm以下の膜上に付着した異物については
無視することができるため、歩留りを向上させることが
できた。一般に異物付着の確立は異物寸法の2乗に反比
例するとされているため、20ないし30μm以上の異
物付着確立を完全に無視することはできない。従って、
より一層の歩留り向上を目指すためには、異物付着防止
膜上の比較的大きな異物の有無を検査する必要がでてき
た。 【0005】本発明の目的は、露光に使用するレチクル
やフォトマスク等の基板に枠を介して装着した異物付着
防止膜上に露光に支障のある異物をできるかぎり付着さ
せないようにして異物付着防止膜付き基板の使用効率を
高め、しかも露光に際してマガジン内に載置されたカセ
ットから取り出された異物付着防止膜付き基板に対して
異物付着防止膜上の露光に支障のある異物を検査するこ
とによって、常に異物付着防止膜上に露光に支障のある
異物が存在しない状態で、異物付着防止膜付き基板をマ
ガジンから露光位置に搬入可能にして被露光基板に対し
て高歩留りで露光できるようにした露光装置を提供する
ことにある。 【0006】 【課題を解決するための手段】本発明は、上記目的を達
成するために、露光に使用するレチクルやフォトマスク
等の基板に異物付着防止膜を付けた枠を装着した状態で
収納したカセットを載置するマガジンと、該マガジンか
ら露光位置へ至る間に設置され、上記基板に枠を介して
装着された異物付着防止膜上に付着した露光に支障のあ
る大きな異物を上記基板上に形成された回路パターンと
弁別して光学的に検出する異物検出装置と、上記異物付
着防止膜付き基板を、上記マガジン内に載置されたカセ
ットから取り出して上記異物検出装置が設置された位置
を経由して露光位置へと搬送し、上記異物検出装置によ
って異物付着防止膜上に露光に支障のある大きな異物が
検出された場合には、異物付着防止膜付き基板を上記異
物検出装置が設置された位置から上記マガジンに戻して
マガジン内のカセットに収納し、露光位置において露光
が終了した異物付着防止膜付き基板を上記露光位置から
上記マガジンに戻してマガジン内のカセットに収納する
搬送機構と、上記異物検出装置によって異物付着防止膜
上に露光に支障のある大きな異物が検出されないで、上
記搬送機構によって上記露光位置に搬送された異物付着
防止膜付き基板に対して該基板上の回路パターンを投影
露光光学系により被露光基板上に投影露光する投影露光
装置とを備えたことを特徴とする露光装置である。 【0007】また本発明は、上記露光装置において、上
記異物検出装置を、上記異物付着防止膜上に該異物付着
防止膜の一方の幅に亘って帯状の光束を照射する光照射
光学系と、上記基板上に形成された回路パターンのエッ
ジからの散乱光を検出しないように上記光照射光学系に
よって照射された異物付着防止膜上のほぼ帯状の光束の
幅dの中心を通り、且つ異物付着防止膜を通過した光に
よる上記基板面上における帯状の光束と交わらないよう
に検出光軸を上記照射帯状の光束に対して角度ψ以上傾
けて(但し角度ψ=tan~1d/2tなる関係であり、
tは基板表面と異物付着防止膜との間の距離、dは上記
照射帯状の光束の幅である。)配置させて上記光照射光
学系によって照射された帯状の光束による上記異物付着
防止膜上に付着した異物のみからの散乱光を検出する検
出光学系と、上記光照射光学系によって異物付着防止膜
上に該異物付着防止膜の一方の幅に亘って照射された帯
状の光束に対応する受光部を有するリニアセンサからな
り、上記検出光学系によって検出される異物付着防止膜
上に付着した異物のみからの散乱光を受光して信号に変
換する光電変換手段とを備えて構成したことを特徴とす
る。 【0008】 【発明の実施の形態】以下、本発明を図1から第12図
を用いて説明する。図1には、異物付着防止膜上の異物
検査装置を搭載した縮小投影露光装置の第1の実施の形
態の構成を示す。先ず、洗浄後、異物が存在しない状態
で、枠24を介して異物付着防止膜23を装着した基板
39は、カセットに入れた状態でマガジン6に収納され
る。露光工程では基板はカセットから1個ずつ取り出さ
れ、露光後は再び元の位置に戻される。即ち、基板39
はマガジン6内のカセットより矢印5aの方向に引き出
され、搬送アーム3により矢印4aの方向に移動する。
基板39の面面に装着した異物付着防止膜23上の異物
検査は搬送アーム3の上下に設置した上側異物検査装置
1および下側異物検査装置2によって行われる。もし、
異物付着防止膜23上に異物(例えば20〜30μm以
上)が存在すればその基板は元のカセットに戻され、異
物除去が行なわれる。一方、異物が存在しなければ、搬
送アーム3は回転機8によって矢印7aの方向に回転
し、露光位置9に置かれ、露光光学系10を介してウエ
ア(被露光基板)11上に1チップずつ転写される。こ
の基板を用いた露光工程が終了すると、基板39は再び
マガジン6内のカセットに収納される。また、図2は、
本発明に係る第2の実施の形態を示したものである。こ
こで、基板39はモータ13で駆動される例えばベルト
12を用いた搬送機構により搬送される。 【0009】以上説明した本発明に係る実施の形態に用
いる異物検査装置に関する一実施の形態を以下に説明す
る。図3は、フォトマスクやレチクル等の基板39に枠
24を介し貼り付けた異物付着防止膜(ペリクル膜)2
3表面上での異物を検出する装置を示したものである。
これによるとレーザ発振器14からのレーザ光は偏光板
16、集光レンズ15を順次介された後、三角波状信号
によって往復回転振動されているガルバノミラー17で
全反射されたうえ、コリメータレンズ18を介し異物付
着防止膜23の表面上にレーザスポットとなって斜方向
より入射するようになっている。この場合、ガルバノミ
ラー17は三角波状の電気信号で駆動され、一定周期で
回転振動するためレーザスポットは異物付着防止膜23
の表面上をX方向に一定速度で往復走査するが、これに
より直線状の走査線22が形成されるものである。 【0010】一方、異物20からの散乱光21を検出す
る手段は結像レンズ26、遮光板(図示せず)、一次元
のリニアセンサ(CCD,フォトダイオードアレイ等)
を含む自己走査蓄積形の光電変換素子27から成り、レ
ーザスポットの走査線22を斜め上方よりのぞむように
設けられている。即ち、結像レンズ26によって異物付
着膜23の表面上を直線上に走査しているレーザスポッ
トの走査線22の像が光電変換素子27上に結像される
ようになっているものである。したがって、モータ48
と送りネジ49によりガラス基板39を等速でY方向に
随時送りながら異物付着防止膜23表面をその全領域に
亘って走査すれば、走査線22上に異物20が存在する
場合にはその異物20からの散乱光21の強度が蓄積、
検出されるものである。 【0011】ここで図4によりレーザ光照射系について
更に詳細に説明すれば、レーザ発振器14からのレーザ
光は偏光板16を通過後(半導体レーザのような偏光レ
ーザを用いる場合には偏光板は不要)集光レンズ15に
よってガルバノミラー17の表面に集光されるが、この
レーザ光はガルバノミラー17の表面に集光されるが、
このレーザ光はガルバノミラー17の表面で全反射され
たうえコリメータレンズ18に到達するようになってい
る。コリメータレンズ18はガルバノミラー17の回転
中心軸上にその焦点が位置するように設置されているこ
とから、コリメータレンズ18を介されたレーザ光19
は平行光束となり、ガルバノミラー17の回転振動によ
って図示の如く方向35に往復振動する結果、異物付着
防止膜23の表面上を直線状に往復走査することになる
ものである。この場合コリメータレンズ18の焦点距離
をf、レーザ光の振れ角をθ、レーザスポットの走査量
をhとすれば走査量hは以下(数1)式のように表わさ
れる。 h=f・tanθ≒f・θ(θが小さい場合tanθ≒θ) …(数1) ガルバノミラー17の回転速度が一定であるとして、こ
れによって平行収束されたレーザスポットは異物付着防
止膜23の表面上を等速運動することになるものであ
る。 【0012】図5はガルバノミラー17を駆動する信号
としての三角波信号と光電変換素子27の1個当りに係
る光量蓄積時間を表わしたものである。図示のごとく光
電変換素子27の走査時間Tをガルバノミラー17の周
期tに同期して整数倍に設定することによって光電変換
素子27に蓄積される光量をかせいでいるが、これと各
走査位置での走査条件が同一であるということから図6
に示すように異物付着防止膜23の表面上の中心付近に
存在する異物からの散乱光強度と端に存在する異物から
の散乱光強度は同一となり、ほぼ均一な散乱光強度分布
28が得られるものである。したがって、これまでのよ
うに場所によってしきい値レベルを変える必要がなくた
とえ異物付着防止膜23が上下動する場合でも一定しき
い値レベル43のみで安定した異物検出が行ない得るわ
けである。 【0013】図7は異物以外からの散乱光発生要因を示
したものである。異物20からの散乱光21として誤検
出し易いものとしては、異物付着防止膜23を貼り付け
てある枠24からの散乱光31および異物付着防止膜2
3を通過した光がガラス基板39の表面5に形成された
パターン(回路パターン)29に当ることによって発生
する散乱光30が考えられるものとなっている。ところ
で、図8(a),(b)に示すように一般にガラス基板
のような透明物質にレーザ光等の光を斜方向より照射し
た場合、照射角度αによっても異なるが、基板表面5に
対して平行な方向(水平方向)に磁界面が振動する波
(s偏光波)44では反射成分が多く、これとは逆に基
板表面5に対して垂直方向に磁界面が振動する波(p偏
光波)45の場合には透過成分が多くなるという性質が
ある。この事実よりして基板表面5に形成されたパター
ン29からの散乱光の影響を極力防ぐべく偏光板16に
よって異物付着防止膜23に対しs偏光波を照射し、異
物付着防止膜23を通過する光を最小限に抑えることが
望ましいと云える。しかしながら、異物付着防止膜23
を通過した極わずかなレーザ光によっても、パターン2
9からの散乱光は発生するので、図9、図10に示すよ
うに散乱光検出系の光軸42を基板表面5の垂線41よ
りもψだけ傾斜させた状態として設定することによって
パターン29からの散乱光30の発生個所をのぞまない
ようにすることが望ましい。なお、図9は異物付着防止
膜23上を検査している場合での、図10は異物付着防
止膜23と同一機能を持つ比較的厚いガラス基板39表
面を検査している場合でのパターン29からの散乱光3
0の発生状態をそれぞれ示したものである。また、図中
の記号dは照射レーザ光のビーム径を、tはガラス基板
39の板厚または異物付着防止膜23を貼り付けてある
枠24の厚さを、φはψに対する屈折角をそれぞれ示
す。 【0014】何れにしても散乱光検出系がパターン29
からの散乱光30を検出しないための条件はその検出系
の光軸42が基板表面5または異物付着防止膜23の表
面を通過後、屈折または直進してガラス基板39でのパ
ターン形成面との交点が照射レーザ光19のビーム径d
の中に含まれないことである。即ち、次の(数2)式を
満足するψが設定される必要がある。 ψ≧sin~1{nsin(tan~1(d/2t))} …(数2) 但し、nは屈折率を示す。図9に示す場合は、異物付着
防止膜23は薄く直進する関係でnは1とする。このよ
うにnを1としたとき上記(数2)式より角度ψはψ≧
tan~1(d/2t)となり、検出光学系の光軸42と帯
状の光束19のビーム幅dの中心垂直線41とを異物付
着防止膜23上で交わらせたとき、検出光学系の光軸4
2は基板39でのパターン形成面において帯状の光束1
9のビーム幅dの外側に位置することになり、検出光学
系の結像レンズ26へパターン29からの散乱光30が
入射されにくくなり、異物付着防止膜23上に存在する
異物からの散乱光のみが入射されて光電変換素子27に
よって検出することができる。 【0015】しかし、実際には結像レンズ26の収差量
等も影響してくるので、上記した(数2)式で求めた角
度ψより若干変動するが、角度ψはほぼ0°以上20°
以下の範囲内で上記(数2)式を満足させることが必要
である。従って、角度ψがほぼ0°に近い場合には上記
(数2)式を満足させることができないことから、角度
ψは20°に近い方に設定されることは明らかである。
角度ψを20°以下にするのはレーザスポットがコリメ
ータレンズ18によって横方向から直線状に走査して照
射される関係で、異物付着防止膜23上に存在する異物
からの散乱光を検出光学系の結像レンズ26で検出しや
すくするためである。一方、異物付着防止膜23が貼り
付けられている枠24から発生する散乱光31は図11
に示すように、光電変換素子27の結像位置に遮光装置
32を付加設置することによって遮光することが可能で
ある。結像レンズ26近傍に遮光装置を適当に設ける場
合は、枠24からの散乱光31は光電変換素子27で検
出され得ないものである。 【0016】さて、異物検査装置の構成としては、この
他特開昭57−80546号の様なものも考えられる。
また、搬送途中にTVカメラ等を設け、異物付着の可能
性の低い状態で目視観察することも可能である。異物検
査装置の設置場所としては、基板の搬送途中の他、縮小
投影露光装置上に検査ステーションを設け、ここに設置
することも可能である。更に、本発明は縮小投影露光装
置に限らず1:1反射形投影露光装置にも使用できる。 【0017】 【発明の効果】本発明によれば、露光に使用するレチク
ルやフォトマスク等の基板に枠を介して装着した異物付
着防止膜上に露光に支障のある異物が付着する機会を、
マガジンと露光位置との間を搬送機構によって異物付着
防止膜付き基板を搬送する短時間の間に限ることにより
できるかぎり少なくして異物を除去する必要性のある異
物付着防止膜付き基板を殆どなくして異物付着防止膜付
き基板の使用効率を高め、しかも露光に際してマガジン
内に載置されたカセットから取り出された異物付着防止
膜付き基板に対して異物付着防止膜上の露光に支障のあ
る異物を検査することによって、常に異物付着防止膜上
に露光に支障のある異物が存在しない状態で、異物付着
防止膜付き基板をマガジンから露光位置に搬入可能にし
て被露光基板に対して高歩留りで露光することができ、
その結果半導体を効率良く、高歩留まりで生産すること
ができる実用的な効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a reduction projection exposure apparatus or a 1: 1 reflection type projection exposure apparatus to prevent a decrease in yield due to adhesion of foreign matter. The present invention relates to an exposure apparatus that exposes a circuit pattern formed on a substrate on which a frame having a foreign matter adhesion prevention film is attached, onto a substrate to be exposed. 2. Description of the Related Art For example, in a reduction projection exposure apparatus (hereinafter abbreviated as RA), a circuit pattern formed on a substrate such as a reticle or a photomask is reduced, transferred onto a wafer, and exposed one by one. When foreign matter is present on the substrate, the foreign matter image is transferred, and all the chips on the wafer are defective. Therefore, the inspection of foreign matter on the substrate before exposure is indispensable for improving the yield of the exposure process. Examples of related devices of this type include JP-A-57-80546, JP-A-58-79240, and JP-A-59-82727. In a mass production line that requires RA for these devices, huge cost is required in terms of investment. On the other hand, recently, a pellicle for preventing foreign matter from adhering (a transparent thin film of nitrocellulose attached to a metal frame) so that the foreign matter does not directly adhere to the surface of the substrate. I am wearing. After attaching the foreign matter adhesion prevention film to the substrate, in principle, new foreign matter can be prevented from adhering to the substrate. Further, since the foreign matter adhesion prevention film is separated from the surface of the substrate, the foreign matter image is not transferred onto the wafer even if a relatively small foreign matter is present on the foreign matter adhesion prevention film. Therefore, the steps from substrate cleaning to exposure when using the foreign matter adhesion prevention film are as follows. First, the substrate is washed and inspected for foreign matter such as dust on the surface where the circuit pattern is present and the surface where the circuit pattern is not present. If there is no foreign matter such as dust, attach a foreign matter adhesion prevention film by using a jig. This foreign matter adhesion prevention film is
It is also attached to the surface where the circuit pattern exists. Whether or not there is a foreign matter on the surface of the substrate after the foreign matter adhesion prevention film is applied
It inspects using the method of 9-82727. If there is no foreign matter, it is stored in a cassette and sent to a reduction exposure device to start an exposure process. By attaching a foreign matter adhesion prevention film,
Since the foreign matter attached to the film of 0 to 30 μm or less can be ignored, the yield could be improved. Since it is generally said that the establishment of foreign matter adhesion is inversely proportional to the square of the foreign matter size, the establishment of foreign matter adhesion of 20 to 30 μm or more cannot be completely ignored. Therefore,
In order to further improve the yield, it has become necessary to inspect the presence or absence of relatively large foreign matter on the foreign matter adhesion prevention film. An object of the present invention is to attach foreign matter that interferes with exposure as much as possible onto a foreign matter adhesion prevention film mounted on a substrate such as a reticle or photomask used for exposure through a frame.
The efficiency of using the substrate with the foreign matter adhesion prevention film.
The cassette that is raised and is placed in the magazine during exposure.
For substrates with foreign matter adhesion prevention film taken out from the container
Foreign matter adhesion prevention film should be inspected for foreign matter that interferes with exposure.
By doing so, it is possible to carry the substrate with the foreign substance adhesion prevention film from the magazine to the exposure position and to expose the substrate to be exposed with a high yield, in the state where there is always no foreign substance on the foreign substance adhesion prevention film that interferes with the exposure. To provide the exposure apparatus. In order to achieve the above object, the present invention provides a reticle, a photomask or the like used for exposure with a frame having a foreign matter adhesion preventing film attached thereto.
A magazine for placing the accommodated cassette is installed between leading from the magazine to the exposure position, the substrate large objects blocking trouble in exposure deposited on foreign matter adhesion-preventing film mounted via a frame to the substrate With the circuit pattern formed above
A foreign matter detection device that discriminates and optically detects, and a substrate provided with the foreign matter adhesion prevention film are mounted on the cassette mounted in the magazine .
When a large foreign matter that interferes with the exposure is detected on the foreign matter adhesion prevention film by the foreign matter detection apparatus, it is taken out from the container and conveyed to the exposure position via the position where the foreign matter detection apparatus is installed. the foreign matter-preventing film-coated substrate back into the magazine from the position where the foreign material detecting device is installed
Stored in a cassette in the magazine and exposed at the exposure position
From the exposure position
And <br/> transfer mechanism for accommodating the cassette in the magazine back to the magazine, in large objects blocking hinder exposure on foreign matter adhesion-preventing film is not detected by the foreign object detector, the exposure position by the transfer mechanism An exposure apparatus, comprising: a projection exposure apparatus that projects and exposes a circuit pattern on the substrate having a foreign matter adhesion prevention film, which has been conveyed to, onto a substrate to be exposed by a projection exposure optical system. According to the present invention, in the above-described exposure apparatus, the foreign matter detection device includes a light irradiation optical system for irradiating a band-shaped light beam on the foreign matter adhesion prevention film over one width of the foreign matter adhesion prevention film. The scattered light from the edge of the circuit pattern formed on the substrate is detected by the light irradiation optical system so as not to detect scattered light, and passes through the center of the width d of the substantially band-shaped light flux on the foreign matter adhesion prevention film, and adheres the foreign matter. The detection optical axis is tilted by an angle ψ or more with respect to the irradiation band-shaped light beam so that the detection light axis does not intersect with the band-shaped light beam on the surface of the substrate due to the light that has passed through the prevention film (however, the relationship of angle ψ = tan to 1 d / 2t). And
t is the distance between the substrate surface and the foreign matter adhesion prevention film, and d is the width of the irradiation band-shaped light beam. ) A detection optical system for detecting scattered light from only the foreign matter adhered on the foreign matter adhesion prevention film due to the band-shaped light flux radiated and irradiated by the light irradiation optical system; and a foreign matter adhesion prevention film by the light irradiation optical system. A foreign matter adhered on the foreign matter adhesion prevention film, which is composed of a linear sensor having a light receiving portion corresponding to a band-shaped light beam irradiated over one width of the foreign matter adhesion prevention film, and which is detected by the detection optical system. And a photoelectric conversion means for receiving scattered light from the light and converting it into a signal.
You. DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to FIGS. 1 to 12. FIG. 1 shows the configuration of a first embodiment of a reduction projection exposure apparatus equipped with a foreign substance inspection device on a foreign substance adhesion prevention film. First, after cleaning, the substrate 39 having the foreign matter adhesion prevention film 23 attached thereto via the frame 24 is stored in the magazine 6 in a cassette in a state where no foreign matter exists. In the exposure step, the substrates are taken out of the cassette one by one, and after exposure, they are returned to their original positions. That is, the substrate 39
Is pulled out from the cassette in the magazine 6 in the direction of arrow 5a, and is moved in the direction of arrow 4a by the transport arm 3.
The foreign matter inspection on the foreign matter adhesion prevention film 23 mounted on the surface of the substrate 39 is performed by the upper foreign matter inspection apparatus 1 and the lower foreign matter inspection apparatus 2 installed above and below the transfer arm 3. if,
If a foreign substance (for example, 20 to 30 μm or more) is present on the foreign substance adhesion prevention film 23, the substrate is returned to the original cassette and the foreign substance is removed. On the other hand, if there is no foreign matter, the carrier arm 3 is rotated by the rotating machine 8 in the direction of the arrow 7a, placed at the exposure position 9, and one chip is placed on the wear (substrate to be exposed) 11 via the exposure optical system 10. Are transcribed one by one. When the exposure process using this substrate is completed, the substrate 39 is stored in the cassette in the magazine 6 again. Also, FIG.
It shows a second embodiment according to the present invention. Here, the substrate 39 is transported by a transport mechanism that is driven by the motor 13 and uses the belt 12, for example. An embodiment of the foreign matter inspection apparatus used in the embodiment of the present invention described above will be described below. FIG. 3 shows a foreign matter adhesion prevention film (pellicle film) 2 attached to a substrate 39 such as a photomask or a reticle via a frame 24.
3 shows an apparatus for detecting foreign matter on the surface.
According to this, the laser light from the laser oscillator 14 is sequentially passed through the polarizing plate 16 and the condenser lens 15, and then is totally reflected by the galvano mirror 17 that is reciprocally rotated and oscillated by the triangular wave signal, and then the collimator lens 18 is used. A laser spot is formed on the surface of the foreign matter adhesion prevention film 23 via the oblique direction. In this case, the galvanometer mirror 17 is driven by a triangular-wave electric signal and rotationally oscillates at a constant period, so that the laser spot is a foreign matter adhesion prevention film 23.
The surface is scanned reciprocally in the X direction at a constant speed, whereby a linear scanning line 22 is formed. On the other hand, the means for detecting the scattered light 21 from the foreign matter 20 is an imaging lens 26, a light shielding plate (not shown), a one-dimensional linear sensor (CCD, photodiode array, etc.).
, Which is a self-scanning storage type photoelectric conversion element 27, and is provided so that the scanning line 22 of the laser spot can be seen obliquely from above. That is, the image of the scanning line 22 of the laser spot scanning the surface of the foreign matter-attached film 23 in a straight line by the imaging lens 26 is formed on the photoelectric conversion element 27. Therefore, the motor 48
When the glass substrate 39 is constantly fed in the Y direction at a constant speed by the feed screw 49 and the surface of the foreign matter adhesion prevention film 23 is scanned over the entire area, if the foreign matter 20 is present on the scanning line 22, the foreign matter is present. The intensity of scattered light 21 from 20 is accumulated,
It is what is detected. Now, the laser light irradiation system will be described in more detail with reference to FIG. 4. After the laser light from the laser oscillator 14 passes through the polarizing plate 16, (when using a polarized laser such as a semiconductor laser, the polarizing plate is (Unnecessary) Although it is condensed on the surface of the galvano mirror 17 by the condenser lens 15, this laser light is condensed on the surface of the galvano mirror 17,
The laser light is totally reflected on the surface of the galvanometer mirror 17 and reaches the collimator lens 18. Since the collimator lens 18 is installed so that its focal point is located on the rotation center axis of the galvanometer mirror 17, the laser beam 19 transmitted through the collimator lens 18 is used.
Becomes a parallel light flux, and reciprocally vibrates in the direction 35 as shown by the rotational vibration of the galvano mirror 17, and as a result, linearly reciprocally scans on the surface of the foreign matter adhesion prevention film 23. In this case, if the focal length of the collimator lens 18 is f, the deflection angle of the laser beam is θ, and the scanning amount of the laser spot is h, the scanning amount h is expressed by the following equation (1). h = f.tan.theta..apprxeq.f..theta. (tan.theta..apprxeq..theta. when .theta. is small) (Equation 1) Assuming that the rotation speed of the galvanomirror 17 is constant, the laser spot focused in parallel by this is the foreign matter adhesion prevention film 23. It is to move at a constant velocity on the surface. FIG. 5 shows a triangular wave signal as a signal for driving the galvanometer mirror 17 and a light quantity accumulation time per one photoelectric conversion element 27. As shown in the figure, the scanning time T of the photoelectric conversion element 27 is set to an integral multiple in synchronization with the cycle t of the galvano mirror 17, thereby obtaining the light amount accumulated in the photoelectric conversion element 27. Since the scanning conditions of are the same, FIG.
As shown in FIG. 5, the scattered light intensity from the foreign matter existing near the center on the surface of the foreign matter adhesion prevention film 23 and the scattered light intensity from the foreign matter present at the edge are the same, and a substantially uniform scattered light intensity distribution 28 is obtained. It is a thing. Therefore, it is not necessary to change the threshold level depending on the location as in the past, and even if the foreign matter adhesion prevention film 23 moves up and down, stable foreign matter detection can be performed only with the constant threshold level 43. FIG. 7 shows factors that generate scattered light from other than foreign matter. The scattered light 21 from the foreign matter 20 is apt to be erroneously detected as scattered light 31 from the frame 24 to which the foreign matter adhesion preventing film 23 is attached and the foreign matter adhesion preventing film 2
Scattered light 30 generated when the light passing through 3 hits the pattern (circuit pattern) 29 formed on the surface 5 of the glass substrate 39 is considered. By the way, as shown in FIGS. 8A and 8B, in general, when a transparent material such as a glass substrate is obliquely irradiated with light such as a laser beam, it varies with respect to the substrate surface 5 depending on the irradiation angle α. The wave (s-polarized wave) 44 in which the magnetic field surface oscillates in a direction parallel to the horizontal direction (s-polarized wave) has many reflection components. In the case of (wave) 45, there is a property that the transmission component increases. Due to this fact, in order to prevent the influence of scattered light from the pattern 29 formed on the substrate surface 5 as much as possible, the polarizing plate 16 irradiates the foreign matter adhesion prevention film 23 with an s-polarized wave and passes through the foreign matter adhesion prevention film 23. It may be desirable to minimize light. However, the foreign matter adhesion prevention film 23
Pattern 2 even with an extremely small amount of laser light that has passed through
Since scattered light from 9 is generated, by setting the optical axis 42 of the scattered light detection system to be tilted by ψ with respect to the perpendicular 41 of the substrate surface 5 as shown in FIGS. It is desirable not to look at the location where the scattered light 30 is generated. Incidentally, FIG. 9 shows a pattern 29 when inspecting the foreign matter adhesion prevention film 23, and FIG. 10 shows a pattern 29 when inspecting a relatively thick glass substrate 39 surface having the same function as the foreign matter adhesion prevention film 23. Scattered light 3
The generated states of 0 are shown respectively. Further, the symbol d in the drawing is the beam diameter of the irradiation laser light, t is the thickness of the glass substrate 39 or the thickness of the frame 24 to which the foreign matter adhesion prevention film 23 is attached, and φ is the refraction angle with respect to ψ. Show. In any case, the scattered light detection system has the pattern 29.
The condition for not detecting the scattered light 30 from is that after the optical axis 42 of the detection system passes through the substrate surface 5 or the surface of the foreign matter adhesion prevention film 23, it is refracted or goes straight to form a pattern forming surface on the glass substrate 39. The intersection point is the beam diameter d of the irradiation laser beam 19.
Is not included in. That is, it is necessary to set ψ that satisfies the following equation (2). ψ ≧ sin ~ 1 {nsin ( tan ~ 1 (d / 2t))} ... ( Equation 2) where, n is the refractive index. In the case shown in FIG. 9, the foreign matter adhesion prevention film 23 is thin and goes straight, so n is 1. Thus, when n is set to 1, the angle ψ is ψ ≧
tan to 1 (d / 2t), and when the optical axis 42 of the detection optical system and the center vertical line 41 of the beam width d of the band-shaped light beam 19 intersect on the foreign matter adhesion prevention film 23, the light of the detection optical system Axis 4
2 is a band-shaped light beam 1 on the pattern formation surface of the substrate 39.
The scattered light 30 from the pattern 29 is less likely to be incident on the imaging lens 26 of the detection optical system, and the scattered light from the foreign matter existing on the foreign matter adhesion prevention film 23 Only the incident light is incident and can be detected by the photoelectric conversion element 27. However, in reality, the amount of aberration of the imaging lens 26 and the like also affect the angle .psi., Which varies slightly from the angle .psi. Obtained by the above equation (2), but the angle .psi.
It is necessary to satisfy the equation (2) within the following range. Therefore, when the angle ψ is close to 0 °, the above equation (2) cannot be satisfied, so that it is clear that the angle ψ is set to the side close to 20 °.
The angle ψ is set to 20 ° or less because the laser spot is irradiated by being linearly scanned by the collimator lens 18 from the lateral direction, and the scattered light from the foreign matter existing on the foreign matter adhesion prevention film 23 is detected by the optical system. This is for facilitating detection by the image forming lens 26. On the other hand, the scattered light 31 generated from the frame 24 to which the foreign matter adhesion prevention film 23 is attached is shown in FIG.
As shown in, it is possible to block light by additionally installing the light blocking device 32 at the image forming position of the photoelectric conversion element 27. When a light shielding device is appropriately provided near the imaging lens 26, the scattered light 31 from the frame 24 cannot be detected by the photoelectric conversion element 27. As for the structure of the foreign matter inspection device, the structure of Japanese Patent Laid-Open No. 57-80546 may be considered.
It is also possible to provide a TV camera or the like during transportation to visually observe in a state where foreign matter is unlikely to adhere. As the installation location of the foreign matter inspection apparatus, it is also possible to provide an inspection station on the reduction projection exposure apparatus and install it not only while the substrate is being transported. Further, the present invention can be used not only in the reduction projection exposure apparatus but also in the 1: 1 reflection type projection exposure apparatus. According to the present invention, there is an opportunity to attach foreign matter that interferes with exposure onto the foreign matter adhesion preventing film attached to a substrate such as a reticle or photomask used for exposure through a frame .
Foreign matter adhered between the magazine and exposure position by the transport mechanism
By limiting the time during which the substrate with the protective film is transported
Differences that need to be removed as little as possible to remove foreign matter
Almost no substrate with an adhesion prevention film, and an adhesion prevention film
Improves the efficiency of use of the substrate, and magazines for exposure
Prevents adhesion of foreign matter taken out from the cassette placed inside
Exposure to the foreign matter adhesion prevention film on the film-coated substrate may be hindered.
By inspecting for foreign matter that does not interfere with the exposure on the foreign matter adhesion prevention film, the substrate with the foreign matter adhesion prevention film can be carried in from the magazine to the exposure position, and the substrate with the foreign matter adhesion prevention film It can be exposed by yield,
As a result, there is a practical effect that semiconductors can be efficiently produced with a high yield.

【図面の簡単な説明】 【図1】本発明に係る一実施の形態を示す図である。 【図2】本発明に係る別の実施の形態を示す図である。 【図3】本発明による異物検出装置の一実施の形態での
構成を示す図である。 【図4】図3に示す構成におけるレーザ光照射系の動作
を説明するための図である。 【図5】図3に示す構成におけるガルバノミラーの駆動
信号と光電素子の光量蓄積時間との関係を説明するため
の図である。 【図6】本発明に係る異物検出処理を説明するための図
である。 【図7】異物以外からの散乱光発生要因を示す図であ
る。 【図8】(a),(b)は、それぞれ基板表面でのs偏
光波、p偏光波の反射状態を示す図である。 【図9】不要な散乱光を検出不可とする散乱光検出系の
光軸の望ましい設定状態を説明するための図である。 【図10】不要な散乱光を検出不可とする散乱光検出系
の光軸の望ましい設定状態を説明するための図である。 【図11】同じく不要な散乱光を検出不可とする散乱光
検出系の望ましい構成を示す図である。 【符号の説明】 1,2…異物検査装置、3…搬送アーム、10…露光光
学系 14…レーザ発振器、15…集光レンズ、16…偏光板 17…ガルバノミラー、18…コリメータレンズ、26
…結像レンズ 27…光電変換素子、32…遮光装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing one embodiment according to the present invention. FIG. 2 is a diagram showing another embodiment according to the present invention. FIG. 3 is a diagram showing a configuration of an embodiment of a foreign matter detection device according to the present invention. FIG. 4 is a diagram for explaining the operation of the laser light irradiation system in the configuration shown in FIG. 5 is a diagram for explaining a relationship between a drive signal of a galvanometer mirror and a light amount accumulation time of a photoelectric element in the configuration shown in FIG. FIG. 6 is a diagram for explaining foreign matter detection processing according to the present invention. FIG. 7 is a diagram showing factors that generate scattered light from other than foreign matter. 8A and 8B are diagrams showing the reflection states of s-polarized wave and p-polarized wave on the substrate surface, respectively. FIG. 9 is a diagram for explaining a desirable setting state of an optical axis of a scattered light detection system that makes it impossible to detect unnecessary scattered light. FIG. 10 is a diagram for explaining a desirable setting state of an optical axis of a scattered light detection system that makes it impossible to detect unnecessary scattered light. FIG. 11 is a diagram showing a desirable configuration of a scattered light detection system which similarly makes unnecessary scattered light undetectable. [Explanation of Reference Signs] 1, 2 ... Foreign matter inspection device, 3 ... Transport arm, 10 ... Exposure optical system 14 ... Laser oscillator, 15 ... Condensing lens, 16 ... Polarizing plate 17 ... Galvano mirror, 18 ... Collimator lens, 26
... Imaging lens 27 ... Photoelectric conversion element, 32 ... Shading device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/30 502J 514E (56)参考文献 特開 昭57−120936(JP,A) 特開 昭59−82727(JP,A) 特開 昭59−17248(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01L 21/30 502J 514E (56) Reference JP-A-57-120936 (JP, A) JP-A-SHO 59-82727 (JP, A) JP-A-59-17248 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.露光に使用するレチクルやフォトマスク等の基板に
異物付着防止膜を付けた枠を装着した状態で収納したカ
セットを載置するマガジンと、該マガジンから露光位置
へ至る間に設置され、上記基板に枠を介して装着された
異物付着防止膜上に付着した露光に支障のある大きな異
物を上記基板上に形成された回路パターンと弁別して光
学的に検出する異物検出装置と、上記異物付着防止膜付
き基板を、上記マガジン内に載置されたカセットから取
り出して上記異物検出装置が設置された位置を経由して
露光位置へと搬送し、上記異物検出装置によって異物付
着防止膜上に露光に支障のある大きな異物が検出された
場合には、異物付着防止膜付き基板を上記異物検出装置
が設置された位置から上記マガジンに戻してマガジン内
のカセットに収納し、露光位置において露光が終了した
異物付着防止膜付き基板を上記露光位置から上記マガジ
ンに戻してマガジン内のカセットに収納する搬送機構
と、上記異物検出装置によって異物付着防止膜上に露光
に支障のある大きな異物が検出されないで、上記搬送機
構によって上記露光位置に搬送された異物付着防止膜付
き基板に対して該基板上の回路パターンを投影露光光学
系により被露光基板上に投影露光する投影露光装置とを
備えたことを特徴とする露光装置。2.上記異物検出装
置を、上記異物付着防止膜上に該異物付着防止膜の一方
の幅に亘って帯状の光束を照射する光照射光学系と、上
記基板上に形成された回路パターンのエッジからの散乱
光を検出しないように上記光照射光学系によって照射さ
れた異物付着防止膜上のほぼ帯状の光束の幅dの中心を
通り、且つ異物付着防止膜を通過した光による上記基板
面上における帯状の光束と交わらないように検出光軸を
上記照射帯状の光束に対して角度ψ以上傾けて(但し角
度ψ=tan~1d/2tなる関係であり、tは基板表面
と異物付着防止膜との間の距離、dは上記照射帯状の光
束の幅である。)配置させて上記光照射光学系によって
照射された帯状の光束による上記異物付着防止膜上に付
着した異物のみからの散乱光を検出する検出光学系と、
上記光照射光学系によって異物付着防止膜上に該異物付
着防止膜の一方の幅に亘って照射された帯状の光束に対
応する受光部を有するリニアセンサからなり、上記検出
光学系によって検出される異物付着防止膜上に付着した
異物のみからの散乱光を受光して信号に変換する光電変
換手段とを備えて構成したことを特徴とする特許請求の
範囲第1項記載の露光装置。
(57) [Claims] Ca accommodating a frame carrying thereon an adhesion of foreign matter-preventing film to a substrate such as a reticle or photomask used in the exposure while wearing
A set of magazines is placed , and a large foreign substance that is placed between the magazine and the exposure position and is attached to the substrate via the frame through the frame to prevent foreign matter from adhering to the foreign substance adhesion preventing film is attached to the substrate. Light is discriminated from the formed circuit pattern.
Of the foreign matter detection device that detects the biological content and the substrate with the foreign matter adhesion prevention film from the cassette placed in the magazine .
When the foreign matter detection device detects a large foreign matter that interferes with the exposure on the foreign matter adhesion prevention film, the foreign matter is detected and conveyed to the exposure position via the position where the foreign matter detection device is installed. the anti-adhesion film-attached substrate is returned to the magazine from a position where the foreign matter detecting apparatus is installed in the magazine
It was stored in the cassette and the exposure was completed at the exposure position.
Mount the substrate with the foreign matter adhesion prevention film from the exposure position to the
A transport mechanism for storing the cassette in the magazine back to down, in large objects blocking hinder exposure on foreign matter adhesion-preventing film is not detected by the foreign object detection apparatus, the foreign matter that has been transported to the exposing position by the transport mechanism An exposure apparatus comprising: a substrate having an anti-adhesion film; and a projection exposure apparatus that projects and exposes a circuit pattern on the substrate onto a substrate to be exposed by a projection exposure optical system. 2. The foreign matter detection device comprises a light irradiation optical system for irradiating a band-shaped light beam on the foreign matter adhesion prevention film over one width of the foreign matter adhesion prevention film, and an edge of a circuit pattern formed on the substrate. A band-like shape on the surface of the substrate due to the light passing through the center of the width d of the substantially band-shaped light flux on the foreign matter adhesion prevention film irradiated by the light irradiation optical system so as not to detect scattered light and passing through the foreign matter adhesion prevention film. The detection optical axis is inclined at an angle ψ or more with respect to the irradiation band-shaped light flux so that it does not intersect with the light flux of the above (where ψ = tan to 1 d / 2t, where t is the surface of the substrate and the foreign matter adhesion prevention film). The distance between them is d, which is the width of the irradiation band-shaped light flux.) The scattered light from only the foreign matter adhered on the foreign matter adhesion prevention film by the band-shaped light flux irradiated by the light irradiation optical system is arranged. A detection optical system for detecting
The light irradiation optical system comprises a linear sensor having a light receiving portion corresponding to a band-shaped light beam irradiated on the foreign matter adhesion prevention film over one width of the foreign matter adhesion prevention film, and is detected by the detection optical system. The exposure apparatus according to claim 1, further comprising: a photoelectric conversion unit that receives scattered light from only the foreign matter adhered on the foreign matter adhesion prevention film and converts the scattered light into a signal.
JP8011400A 1996-01-26 1996-01-26 Exposure equipment Expired - Lifetime JP2677981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8011400A JP2677981B2 (en) 1996-01-26 1996-01-26 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8011400A JP2677981B2 (en) 1996-01-26 1996-01-26 Exposure equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2197911A Division JPH0711492B2 (en) 1990-07-27 1990-07-27 Foreign matter inspection device

Publications (2)

Publication Number Publication Date
JPH08279460A JPH08279460A (en) 1996-10-22
JP2677981B2 true JP2677981B2 (en) 1997-11-17

Family

ID=11776974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8011400A Expired - Lifetime JP2677981B2 (en) 1996-01-26 1996-01-26 Exposure equipment

Country Status (1)

Country Link
JP (1) JP2677981B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789659B1 (en) * 2005-03-31 2007-12-31 에버테크노 주식회사 Apparatus and Method for Inspecting Polarizing Film
KR100788734B1 (en) * 2005-12-05 2008-01-02 에버테크노 주식회사 Polarizing Film Inspecting Apparatus and Method
JP5171524B2 (en) * 2007-10-04 2013-03-27 株式会社日立ハイテクノロジーズ Device surface defect inspection apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120936A (en) * 1981-01-21 1982-07-28 Hitachi Ltd Step and repeat camera device
JPS5917248A (en) * 1982-07-21 1984-01-28 Hitachi Ltd Inspection system for foreign matter
JPS5982727A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Method and apparatus for detecting foreign matter

Also Published As

Publication number Publication date
JPH08279460A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
JPH0475648B2 (en)
US4669875A (en) Foreign particle detecting method and apparatus
US4342515A (en) Method of inspecting the surface of an object and apparatus therefor
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
JP3827733B2 (en) Surface inspection system and method for distinguishing pits and particles on a wafer surface
JPS58120155A (en) Detecting device for extraneous substance on reticle
KR20080021567A (en) Exposure apparatus and device manufacturing method
JPH0333645A (en) Surface state inspecting apparatus
US6521889B1 (en) Dust particle inspection apparatus, and device manufacturing method using the same
JP3480176B2 (en) Glass substrate front / back defect identification method
JP2677981B2 (en) Exposure equipment
JPH0430574B2 (en)
JP2677982B2 (en) Exposure method
JP4961615B2 (en) Photomask inspection method and apparatus
JPH0711492B2 (en) Foreign matter inspection device
JP2677981C (en)
JPH08304296A (en) Method and system for detecting defect of foreign matter
JPS60222757A (en) Foreign matter detector
JP3336392B2 (en) Foreign matter inspection apparatus and method
JPH06260394A (en) Exposure method and system for semiconductor substrate
JPH07225198A (en) Line inspection method of glass substrate
JPH06103272B2 (en) Method for inspecting foreign matter on mask of X-ray exposure mask
JPS60222756A (en) Foreign matter inspector
JPH0141922B2 (en)
JPH0746079B2 (en) Foreign object detection method and apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term