JPH06103272B2 - Method for inspecting foreign matter on mask of X-ray exposure mask - Google Patents

Method for inspecting foreign matter on mask of X-ray exposure mask

Info

Publication number
JPH06103272B2
JPH06103272B2 JP948288A JP948288A JPH06103272B2 JP H06103272 B2 JPH06103272 B2 JP H06103272B2 JP 948288 A JP948288 A JP 948288A JP 948288 A JP948288 A JP 948288A JP H06103272 B2 JPH06103272 B2 JP H06103272B2
Authority
JP
Japan
Prior art keywords
mask
foreign matter
light
pattern
organic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP948288A
Other languages
Japanese (ja)
Other versions
JPH01185434A (en
Inventor
良彦 山内
伸幸 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP948288A priority Critical patent/JPH06103272B2/en
Priority to US07/298,574 priority patent/US4965454A/en
Publication of JPH01185434A publication Critical patent/JPH01185434A/en
Publication of JPH06103272B2 publication Critical patent/JPH06103272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4702Global scatter; Total scatter, excluding reflections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/473Compensating for unwanted scatter, e.g. reliefs, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線露光用マスク(ホトマスク)のマスク上異
物検査方法、特に半導体などの露光に使用するX線露光
用マスク上の極微小異物の検出に使用するマスク上異物
検査方法に関するものである。
The present invention relates to a method for inspecting foreign matter on a mask of an X-ray exposure mask (photomask), and in particular, extremely minute foreign matter on an X-ray exposure mask used for exposure of semiconductors and the like. The present invention relates to a method for inspecting foreign matter on a mask used for detecting the.

〔従来の技術〕[Conventional technology]

半導体ではマスク上のパターンをウエハに繰返して露出
するので、マスク上に異物があると、露光されたパター
ンはすべて不良になる。
In a semiconductor, the pattern on the mask is repeatedly exposed on the wafer, so if there is a foreign substance on the mask, all the exposed patterns become defective.

この問題を解決する一つの方法として、従来の技術で
は、小泉他,評価システム「最新半導体工場自動化シス
テム総合技術集成」別刷,342p,サイエンスフオーラム刊
(昭和59年7月25日発行)に開示されている如く、マス
ク上にペリクルと呼ばれる透明薄膜を設けて、マスク上
のパターンに直接異物が付着するのを防止している。
As one method of solving this problem, the conventional technology is disclosed in Koizumi et al., Evaluation System “Latest Semiconductor Factory Automation System Comprehensive Technology Compilation”, Reprint, 342p, published by Science Forum (issued July 25, 1984). As described above, a transparent thin film called a pellicle is provided on the mask to prevent foreign matters from directly adhering to the pattern on the mask.

また、他の方法として、異物を検出するために、特開昭
59−186324号公報に開示されている如く、光透過性の板
状基体の一方から光ビームを照射し、その板状物体に付
着した異物から生じる散乱光を検出して、異物の有無を
検査する方法があり、これによつてマスク上のパターン
の影響を受けずに異物だけを検査することを可能にして
いる。
In addition, as another method, in order to detect a foreign substance, the method disclosed in
As disclosed in Japanese Patent Laid-Open No. 59-186324, a light beam is emitted from one of the light-transmissive plate-shaped substrates, and scattered light generated from the particles adhered to the plate-shaped object is detected to inspect for the presence of the particles. There is a method of doing so, which makes it possible to inspect only foreign matters without being affected by the pattern on the mask.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前述のペリクルを用いる方法は、異物の付着を減少させ
ることはできるが、異物の付着を皆無とすることはでき
ないので、ペリクル上の異物の検査が必要となるが、ペ
リクルがマスクのパターン面に接近して設けられている
場合には、下のパターンが邪魔になつて、ペリクル上の
異物の検出はできない。
Although the method using the pellicle described above can reduce the adherence of foreign matter, it cannot completely eliminate the adherence of foreign matter. Therefore, it is necessary to inspect the foreign matter on the pellicle. If they are provided close to each other, the pattern below interferes with the detection of foreign matter on the pellicle.

また、特開昭59−186324号公報に開示されている方法の
検出可能な最小異物は2μmでこれ以下の異物の検出は
できない。
Further, the minimum detectable foreign matter in the method disclosed in Japanese Patent Laid-Open No. 59-186324 is 2 μm, and a foreign matter smaller than this cannot be detected.

しかし、今後の超々LSIの露光に使用されるX線マスク
の場合には、マスクとウエハとの間隔を30μm以下にし
なければならないため、ペリクルの使用は困難であり、
また露光の際、欠陥の原因となる異物寸法は0.15μm程
度であるため、特開昭59−186324号公報に開示されてい
る方法も適用することができない。
However, in the case of an X-ray mask used for the exposure of ultra-ultra LSI in the future, the pellicle is difficult to use because the distance between the mask and the wafer must be 30 μm or less.
Further, since the size of the foreign matter that causes defects during exposure is about 0.15 μm, the method disclosed in JP-A-59-186324 cannot be applied.

本発明の目的は上述の如くペリクルの使用が困難である
X線露光用マスク上の極微小異物の検出、特に、表面に
被着させた膜上に凹凸がある場合の異物の検出を可能と
する方法を提供することにある。
An object of the present invention is to enable detection of extremely small foreign matter on an X-ray exposure mask for which it is difficult to use a pellicle as described above, and particularly to detect foreign matter when there is unevenness on the film deposited on the surface. To provide a way to do.

〔課題を解決するための手段〕[Means for Solving the Problems]

前述の課題を解決するためにとられた発明の主なるもの
の一つの構成は、X線を用いて半導体等にパターンを露
光するためのX線露光用マスクのマスク上異物検査方法
において、前記X線露光用マスクの前記パターン上に該
パターンの露光に用いるX線の波長領域以外の特定の波
長領域の光を殆んど吸収する膜厚を最小膜厚とする有機
膜を塗布してあり、該有機膜に前記特定領域の波長のP
偏光を入射角をブリユースター角として照射し散乱光の
有無を検出して異物の検出を行なうことを特徴とし、他
の一つの構成は前記X線露光用マスクの前記パターンの
基材が前記パターンの露光に用いるX線の波長領域以外
の特定の波長領域の光を殆んど吸収する膜厚を最小膜厚
とする第1の有機膜を主要構成材料とし、前記パターン
上に該第1の有機膜と同様の第2の有機膜が塗布してあ
り、前記基材側には前記特定領域の波長の光を入射角を
垂直として照射し、前記パターン側には前記特定領域の
波長のP偏光を入射角をブリユースター角として照射
し、散乱光の有無を検出して異物の検出を行なうことを
特徴とするものである。
One of the main configurations of the invention taken to solve the above-mentioned problems is to provide a method for inspecting foreign matter on a mask of an X-ray exposure mask for exposing a pattern on a semiconductor or the like by using X-rays, wherein An organic film having a minimum film thickness that almost absorbs light in a specific wavelength region other than the X-ray wavelength region used for the exposure of the pattern is applied onto the pattern of the line exposure mask, P of the wavelength of the specific region is added to the organic film.
It is characterized in that polarized light is radiated at an incident angle of Brewster's angle to detect the presence or absence of scattered light to detect foreign matter. In another configuration, the base material of the pattern of the X-ray exposure mask is The first organic film having a minimum film thickness that almost absorbs light in a specific wavelength region other than the X-ray wavelength region used for exposing the pattern is used as a main constituent material, and the first organic film is formed on the pattern. A second organic film similar to the organic film is applied, the base material side is irradiated with light of the wavelength of the specific region with the incident angle being vertical, and the pattern side of the wavelength of the specific region is irradiated. It is characterized by irradiating P-polarized light at an incident angle of Brewster's angle and detecting the presence or absence of scattered light to detect a foreign substance.

〔作用〕[Action]

本発明では、パターン付マスク上に特定の領域の波長の
光を吸収する有機膜を塗布し、特定波長の光を照射し有
機膜表面からの散乱光を検出するので、照射した特定の
領域の波長の光は、有機膜により吸収され、マスク上の
パターンには到達しない。従つて、マスク上のパターン
による散乱光を生じない。
In the present invention, an organic film that absorbs light having a wavelength in a specific region is applied onto a patterned mask, and light scattered at a specific wavelength is detected to detect scattered light from the surface of the organic film. Light of a wavelength is absorbed by the organic film and does not reach the pattern on the mask. Therefore, scattered light due to the pattern on the mask is not generated.

一方有機膜上に異物があると、照射光は異物により強く
散乱されるため、有機膜表面からの散乱光を常時検出す
れば、異物検出が可能となる。
On the other hand, if there is a foreign substance on the organic film, the irradiation light is strongly scattered by the foreign substance. Therefore, if the scattered light from the surface of the organic film is constantly detected, the foreign substance can be detected.

しかし、有機膜表面に凹凸がある場合には、異物散乱光
と共に凹凸での正反射光が検出される。第3図はこのよ
うな場合の露光状態の説明図で、1はX線マスク、2は
集光器、3は検出器、4は照明光を示しており、X線マ
スク1は支持材1a,基材1b(第1層),1c(第2層)パタ
ーン1d,有機膜1eよりなつており、5は異物、6及び7
はそれぞれ異物5及び有機膜1eからの散乱光を示してい
る。そして、照明光4が入射した場合、異物5と有機膜
1eから散乱光6及び7を発生するので、異物と凹凸の弁
別ができず誤検出を招く。
However, when the surface of the organic film has irregularities, specularly reflected light on the irregularities is detected together with the foreign substance scattered light. FIG. 3 is an explanatory view of an exposure state in such a case, where 1 is an X-ray mask, 2 is a condenser, 3 is a detector, and 4 is illumination light, and the X-ray mask 1 is a support 1a. , Substrate 1b (first layer), 1c (second layer) pattern 1d, organic film 1e, 5 is a foreign matter, 6 and 7
Indicates scattered light from the foreign matter 5 and the organic film 1e, respectively. Then, when the illumination light 4 enters, the foreign matter 5 and the organic film
Since the scattered lights 6 and 7 are generated from 1e, it is not possible to discriminate between the foreign matter and the unevenness, resulting in erroneous detection.

そこで、本発明では、有機膜表面に凹凸がある場合はP
偏光ブリユースター角度で照射する方法を用いている。
従つて、有機膜表面での正反射光成分は零にすることが
でき、異物散乱光のみを検出することが可能となる。基
材側は有機膜表面に凹凸がないので、垂直落射照明で異
物の検出が可能である。
Therefore, in the present invention, when the organic film surface has irregularities, P
A method of irradiating with a polarized Brewster angle is used.
Therefore, the specular reflection light component on the surface of the organic film can be made zero, and only the foreign substance scattered light can be detected. Since there is no unevenness on the surface of the organic film on the side of the base material, it is possible to detect foreign matter by vertical epi-illumination.

〔実施例〕〔Example〕

以下、実施例について説明する。 Examples will be described below.

第1図は、一実施例の実施状態の説明図、第2図は一実
施例の実施に使用されるX線露光用マスクのマスク上異
物検査装置の説明図であり、ブリユースター角照明と落
射照明とを同時に行なう場合が示してある。これらの図
で、第3図と同一部分には同一符号が付してある。8は
ブリユースター角照明部、9は落射照明部を示してい
る。
FIG. 1 is an explanatory view of an implementation state of one embodiment, and FIG. 2 is an illustration of an on-mask foreign matter inspection device for an X-ray exposure mask used in the implementation of one embodiment. And the case of performing epi-illumination at the same time. In these figures, the same parts as those in FIG. 3 are designated by the same reference numerals. Reference numeral 8 indicates a Brewster's angle illumination unit, and 9 indicates an epi-illumination unit.

X線マスク1は、例えばSiからなる支持材1aに支持され
ている、BNよりなる基材1b(第1層)と、例えばPIQ(P
olyimide isoindroquinazolinedione)よりなる基材1c
(第2層)との複合体上に形成されている。例えばAuよ
りなるパターン1dを、例えばPIQよりなる有機膜1eで被
覆して構成され、一軸ステージ10上のホルダ部11上に固
定される。
The X-ray mask 1 includes a base material 1b (first layer) made of BN and a PIQ (P
Base material 1c consisting of olyimide isoindroquinazolinedione)
It is formed on a composite with (second layer). For example, the pattern 1d made of Au is covered with the organic film 1e made of PIQ, for example, and is fixed on the holder portion 11 on the uniaxial stage 10.

なお、有機膜として用いるPIQには、膜厚5μm以下、
0.5μm以上のものが用いられる。
The PIQ used as the organic film has a film thickness of 5 μm or less,
The one having a thickness of 0.5 μm or more is used.

ブリユースター照明部8は、波長380nm以下の光を発生
するレーザ発振器12,ビームエクスパンダ13,集光レンズ
14を有し、ガルバミラー15によつて一軸ステージ10の移
動方向16と垂直方向に偏向走査される光(ブリユースタ
ー角照明光)17をX線マスク1にブリユースター角で入
射させるためのブリユースター角照明用ミラー18とX線
マスク1の有機膜1e上の異物5で散乱した光19を集光す
る集光器20と、集光器20で集光した光を検出する検出器
3を有している。
The Brewster illumination unit 8 includes a laser oscillator 12, a beam expander 13, and a condenser lens that generate light with a wavelength of 380 nm or less.
In order to make the light 17 (Brewster angle illuminating light) 17 that has a scanning direction 14 and is deflected and scanned by the galva mirror 15 in the direction perpendicular to the moving direction 16 of the uniaxial stage 10 at the Brewster angle. Concentrator 20 for condensing the light 19 scattered by the foreign substance 5 on the organic film 1e of the X-ray mask 1, and the detection for detecting the light condensed by the concentrator 20 It has a container 3.

落射照明部9は、第2図では図示を省略してあるが、ブ
リユースター角照明部8と同様にして発生し一軸ステー
ジ10の移動方向16と垂直方向に偏向走査される光(照明
光)21をX線マスク1に直角方向から入射させるように
なつており、X線マスク1上の異物22で散乱した光23を
集光する集光器24と、集光器24で集光した光を検出する
検出器25を有している。
Although not shown in FIG. 2, the epi-illumination unit 9 emits light (illumination light) that is generated in the same manner as the Brewster angle illumination unit 8 and is deflected and scanned in a direction perpendicular to the moving direction 16 of the uniaxial stage 10. ) 21 is made to enter the X-ray mask 1 from a right angle direction, and a light collector 24 that collects the light 23 scattered by the foreign matter 22 on the X-ray mask 1 and a light collector 24 It has a detector 25 for detecting light.

このマスク上異物検査方法を用いてX線露光用マスクを
検査するには、PIQが塗布されているX線マスク1を一
軸ステージ10上のホルダ部11にパターン1d側を上にして
載置し、パターン1d側はブリユースター角照明部8にお
いて、基材側は落射照明部9において一軸ステージ10の
移動と連動して走査すると、パターン側の有機膜1e上、
基材1b(第1層)上にそれぞれ異物5,22が存在する場合
には、異物5及び22で散乱した光19及び23は、それぞれ
集光器20及び24により集光され、それぞれ、検出器3及
び25で検出することができる。
In order to inspect an X-ray exposure mask using this on-mask foreign matter inspection method, the PIQ-coated X-ray mask 1 is placed on the holder portion 11 on the uniaxial stage 10 with the pattern 1d side facing up. When the pattern 1d side is scanned in the Brewster's angle illumination section 8 and the substrate side is scanned in the epi-illumination section 9 in conjunction with the movement of the uniaxial stage 10, on the organic film 1e on the pattern side,
When the foreign substances 5 and 22 are present on the substrate 1b (first layer), the lights 19 and 23 scattered by the foreign substances 5 and 22 are collected by the light collectors 20 and 24, respectively, and detected. It can be detected with instruments 3 and 25.

この際、ブリユースター角照明光17及び照明光21には波
長380nm以下の光が用いられる。
At this time, light having a wavelength of 380 nm or less is used as the Brewster angle illumination light 17 and the illumination light 21.

PIQの分光透過率は、横軸及び縦軸をそれぞれ波長(n
m)及び透過率(%)で示した第4図から明らかな如
く、380nm以下の光では透過率が極めて小さくなる性質
を有している。一方、X線のように更に短い波長(1〜
20nm)のものに対しては、PIQの透過率は100%に近い値
を有している。
The spectral transmittance of PIQ is the wavelength (n
As is clear from FIG. 4 showing m) and transmittance (%), the transmittance is extremely small for light of 380 nm or less. On the other hand, even shorter wavelengths (1-
For 20 nm), the PIQ transmittance has a value close to 100%.

従つて、X線マスク1の上に第1図に示す如く、有機膜
1eとして、PIQを塗布しておけば、空中の異物5は、こ
のPIQ膜の上に付着する。そして、異物検査に当つて
は、波長380nm以下の光を照射すると、PIQ膜に当つた光
はPIQ膜に吸収されて散乱光を生じないが、PIQ膜上の異
物22に当つた光は散乱光23を生ずるので、散乱光23を散
乱光検出器25で検出するだけで異物の検出が可能とな
る。
Therefore, as shown in FIG. 1, an organic film is formed on the X-ray mask 1.
If PIQ is applied as 1e, the foreign matter 5 in the air adheres to the PIQ film. Then, in the foreign matter inspection, when light with a wavelength of 380 nm or less is irradiated, the light hitting the PIQ film is absorbed by the PIQ film and does not generate scattered light, but the light hitting the foreign material 22 on the PIQ film is scattered. Since the light 23 is generated, the foreign matter can be detected only by detecting the scattered light 23 with the scattered light detector 25.

すなわち、基材1b(第1層)側は、基材1b+1cの厚さが
十分に厚いため基材1b+1cの表面に凹凸はない。従つ
て、基材側は落射照明部9を用いて異物検出を行なえば
良い。
That is, on the side of the base material 1b (first layer), since the base material 1b + 1c is sufficiently thick, the surface of the base material 1b + 1c has no unevenness. Therefore, the foreign material may be detected using the epi-illumination unit 9 on the substrate side.

一方、パターン1d側はパターン1dの段差により有機膜1e
表面に凹凸が生じており、前述(第3図参照)の如く、
異物散乱光6,表面凹凸散乱光7共に検出器3に到達する
ため、凹凸と異物との区別が不可能となるが、この実施
例においては、P偏光ブリユースター角度での照明検出
を行なうので、表面凹凸による正反射光を殆んど零にす
ることができ、異物の散乱光のみを検出することが可能
となる。すなわち、ブリユースター角照明光17で照明さ
れたPIQ表面は、表面反射が零となり、異物5より発生
した散乱光19のみが、集光器20を介して検出器3によつ
て検出される。
On the other hand, the organic film 1e is formed on the pattern 1d side due to the step of the pattern 1d.
As the surface has irregularities, as described above (see FIG. 3),
Since both the foreign matter scattered light 6 and the surface unevenness scattered light 7 reach the detector 3, it is impossible to distinguish between the unevenness and the foreign matter. In this embodiment, however, the illumination is detected at the P-polarized Brewster angle. Therefore, the specularly reflected light due to the surface irregularities can be made almost zero, and only the scattered light of the foreign matter can be detected. That is, the PIQ surface illuminated with the Brewster's angle illumination light 17 has zero surface reflection, and only the scattered light 19 generated from the foreign matter 5 is detected by the detector 3 via the condenser 20. .

次に、第5図及び第6図を用いて原理を説明する。26及
び27はそれぞれ屈折率n及びn′なる媒質、28,29及び3
0はそれぞれ強度EpのP偏光入射光、強度Rpの反射光,
屈折光、i1及びi2はそれぞれ入射角及び屈折角を示して
おり、第6図は横軸,縦軸にそれぞれ入射角i1(度)及
がとつてある。
Next, the principle will be described with reference to FIGS. 5 and 6. 26 and 27 are mediums having refractive indices n and n ', 28, 29 and 3 respectively.
0 is P-polarized incident light of intensity Ep, reflected light of intensity Rp,
Refracted light, i 1 and i 2 respectively indicate the incident angle and the refraction angle, and in FIG. 6, the horizontal axis and the vertical axis respectively show the incident angle i 1 (degree) and There is

屈折率の違う物質に偏光をもつた光が入射する場合、反
射光30の強度Rpは入射角i1に依存し、EpとRpの比はフレ
ネルの式より、 但しn<n′ となる。
When polarized light is incident on a substance having a different refractive index, the intensity Rp of the reflected light 30 depends on the incident angle i 1 , and the ratio of Ep and Rp is given by Fresnel's equation. However, n <n '.

そこで、P偏光照明を行ない、有機膜としてPIQを使用
した場合、PIQの屈折率は1.8,空気の屈折率は1である
から、n=1,n′=1.8として、(1)式を用いてEpとRp
の比を計算すると第6図が得られる。この図からi1=61
°のときEpとRpの比は零になる。また61°±5°の範囲
内ではEpとRpの比を0.5%以下に抑えることができる。
Therefore, when PQ polarized illumination is performed and PIQ is used as the organic film, the refractive index of PIQ is 1.8 and the refractive index of air is 1. Therefore, n = 1, n ′ = 1.8 is used and equation (1) is used. Ep and Rp
When the ratio of is calculated, FIG. 6 is obtained. From this figure i 1 = 61
When °, the ratio of Ep and Rp becomes zero. Further, within the range of 61 ° ± 5 °, the ratio of Ep and Rp can be suppressed to 0.5% or less.

従つて、n′=1.8の屈折率を持つ有機膜を用いた場
合、P偏光照明の照射角度を61°に設定すれば、その有
機膜の凹凸の影響を受けずに異物散乱光を検出すること
ができる。
Therefore, when an organic film having a refractive index of n '= 1.8 is used, if the irradiation angle of P-polarized illumination is set to 61 °, the foreign substance scattered light is detected without being affected by the unevenness of the organic film. be able to.

この実施例の方法を用いることにより、マスク上のパタ
ーンの影響、及び表面有機膜の凹凸の影響を受けずに、
0.15μm以下の微小異物の検出ができ、露光時の欠陥を
著しく低減することが可能となるのでLSI製品歩留り向
上に大きな効果がある。
By using the method of this embodiment, without being affected by the pattern on the mask and the unevenness of the surface organic film,
It is possible to detect minute foreign particles of 0.15 μm or less, and it is possible to significantly reduce defects during exposure, which is very effective in improving the yield of LSI products.

〔発明の効果〕〔The invention's effect〕

本発明のX線露光用のマスク上異物検査方法は、ペリク
ルの使用が困難であるX線露光用マスク上の極小異物の
検出、特に、表面に被着させた膜上に凹凸がある場合の
異物の検出を可能とする方法を提供するもので、産業上
の効果の大なるものである。
The method for inspecting foreign matter on a mask for X-ray exposure according to the present invention detects extremely small foreign matter on a mask for X-ray exposure, which makes it difficult to use a pellicle, and particularly when unevenness is present on a film deposited on the surface. It provides a method that enables detection of foreign matter, and has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のX線露光用マスク上異物検査方法の一
実施例の実施状態の説明図、第2図は第1図の実施例の
実施に使用される装置の説明図、第3図は有機膜表面に
凹凸がある場合の露光状態の説明図、第4図は第1図の
X線露光用マスクで用いるPIQの分光透過率を示す線
図、第5図は本発明のX線露光用マスク上異物検査方法
の原理の説明図、第6図は同じく線図である。 1…X線マスク、1a…支持材、1b,1c…基材、1d…パタ
ーン、1e…有機膜、3,25…検出器、5,22…異物、8…ブ
リユースター角照明部、9…落射照明部、17…ブリユー
スター角照明光、21…照明光。
FIG. 1 is an explanatory view of an implementation state of an embodiment of the method for inspecting foreign matter on a mask for X-ray exposure of the present invention, FIG. 2 is an illustration of an apparatus used for implementing the embodiment of FIG. 1, and FIG. The figure is an explanatory view of the exposure state when the organic film surface has irregularities, FIG. 4 is a diagram showing the spectral transmittance of PIQ used in the X-ray exposure mask of FIG. 1, and FIG. 5 is the X of the present invention. FIG. 6 is a diagram for explaining the principle of the method for inspecting foreign matter on a mask for line exposure, and FIG. DESCRIPTION OF SYMBOLS 1 ... X-ray mask, 1a ... Support material, 1b, 1c ... Base material, 1d ... Pattern, 1e ... Organic film, 3,25 ... Detector, 5,22 ... Foreign matter, 8 ... Brewster angle illumination part, 9 … Epi-illumination unit, 17… Brewster angle illumination light, 21… Illumination light.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】X線を用いて半導体等にパターンを露光す
るためのX線露光用マスクのマスク上異物検査方法にお
いて、前記X線露光用マスの前記パターン上に該パター
ンの露光に用いるX線の波長領域以外の特定の波長領域
の光を殆んど吸収する膜厚を最小膜厚とする有機膜を塗
布してあり、該有機膜に前記特定領域の波長のP偏光を
入射角をブリュースター角として照射し散乱光の有無を
検出して異物の検出を行なうことを特徴とするX線露光
用マスクのマスク上異物検査方法。
1. A method for inspecting foreign matter on a mask of an X-ray exposure mask for exposing a pattern on a semiconductor or the like using X-rays, wherein X used for exposing the pattern on the pattern of the X-ray exposure mass. An organic film having a minimum film thickness that almost absorbs light in a specific wavelength region other than the line wavelength region is applied, and the P-polarized light having a wavelength in the specific region is incident on the organic film at an incident angle. A method for inspecting foreign matter on a mask for an X-ray exposure mask, which comprises irradiating as a Brewster angle and detecting the presence or absence of scattered light to detect foreign matter.
【請求項2】前記有機膜が、膜厚5μm以下、0.5μm
以上のPIQで、前記特定の範囲の領域の光の波長が380nm
以下の波長である特許請求の範囲第1項記載のX線露光
用マスクのマスク上異物検査方法。
2. The organic film has a film thickness of 5 μm or less, 0.5 μm
With the above PIQ, the wavelength of light in the specific range is 380 nm
The method for inspecting foreign matter on a mask for an X-ray exposure mask according to claim 1, which has the following wavelengths.
【請求項3】X線を用いて半導体等にパターンを露光す
るためのX線露光用マスクのマスク上異物検査方法にお
いて、前記X線露光用マスクの前記パターンの基材が前
記パターンの露光に用いるX線の波長領域以外の特定の
波長領域の光を殆んど吸収する膜厚を最小膜厚とする第
1の有機膜を主要構成材料とし、前記パターン上に該第
1の有機膜と同様の第2の有機膜が塗布してあり、前記
基材側には前記特定領域の波長の光を入射角を垂直とし
て照射し、前記パターン側には前記特定領域の波長のP
偏光を入射角をブリュースター角として照射し、散乱光
の有無を検出して異物の検出を行なうことを特徴とする
X線露光用マスクのマスク上異物検査方法。
3. A method for inspecting foreign matter on a mask of an X-ray exposure mask for exposing a pattern to a semiconductor or the like using X-rays, wherein a base material of the pattern of the X-ray exposure mask is used for the exposure of the pattern. A first organic film having a minimum film thickness that almost absorbs light in a specific wavelength region other than the wavelength region of the X-ray used is used as a main constituent material, and the first organic film is formed on the pattern. A similar second organic film is applied, and light having a wavelength of the specific region is irradiated on the base material side with a vertical incident angle, and P of the wavelength of the specific region is applied to the pattern side.
A mask foreign matter inspection method for an X-ray exposure mask, which comprises irradiating polarized light with an incident angle of Brewster's angle and detecting the presence or absence of scattered light to detect foreign matter.
【請求項4】前記有機膜が、膜厚5μm以下、0.5μm
以上のPIQで、前記特定の範囲の領域の光の波長が380nm
以下の波長である特許請求の範囲第3項記載のX線露光
用マスクのマスク上異物検査方法。
4. The organic film, wherein the film thickness is 5 μm or less, 0.5 μm
With the above PIQ, the wavelength of light in the specific range is 380 nm
The method for inspecting foreign matter on a mask of an X-ray exposure mask according to claim 3, which has the following wavelengths.
JP948288A 1988-01-21 1988-01-21 Method for inspecting foreign matter on mask of X-ray exposure mask Expired - Lifetime JPH06103272B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP948288A JPH06103272B2 (en) 1988-01-21 1988-01-21 Method for inspecting foreign matter on mask of X-ray exposure mask
US07/298,574 US4965454A (en) 1988-01-21 1989-01-18 Method and apparatus for detecting foreign particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP948288A JPH06103272B2 (en) 1988-01-21 1988-01-21 Method for inspecting foreign matter on mask of X-ray exposure mask

Publications (2)

Publication Number Publication Date
JPH01185434A JPH01185434A (en) 1989-07-25
JPH06103272B2 true JPH06103272B2 (en) 1994-12-14

Family

ID=11721465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP948288A Expired - Lifetime JPH06103272B2 (en) 1988-01-21 1988-01-21 Method for inspecting foreign matter on mask of X-ray exposure mask

Country Status (1)

Country Link
JP (1) JPH06103272B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112871A (en) * 2004-10-13 2006-04-27 Sumco Corp Inspection method of semiconductor substrate, and its inspection device
SG176552A1 (en) * 2009-06-19 2012-01-30 Kla Tencor Tech Corp Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks
JP5777068B2 (en) * 2013-03-01 2015-09-09 レーザーテック株式会社 Mask evaluation device
JP5686394B1 (en) * 2014-04-11 2015-03-18 レーザーテック株式会社 Pellicle inspection device
DE102017205212A1 (en) * 2017-03-28 2018-10-04 Carl Zeiss Smt Gmbh Method for detecting particles on the surface of an object, wafer and mask blank

Also Published As

Publication number Publication date
JPH01185434A (en) 1989-07-25

Similar Documents

Publication Publication Date Title
JP3253177B2 (en) Surface condition inspection device
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
JPH0583901B2 (en)
JPS58120155A (en) Detecting device for extraneous substance on reticle
JP3259331B2 (en) Surface condition inspection device
JPH07209202A (en) Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus
JPS61100932A (en) Exposure equipment
JPH0333645A (en) Surface state inspecting apparatus
US6521889B1 (en) Dust particle inspection apparatus, and device manufacturing method using the same
JPH06103272B2 (en) Method for inspecting foreign matter on mask of X-ray exposure mask
JPS6345541A (en) Method and instrument for inspection
JP3102493B2 (en) Foreign matter inspection method and apparatus
JPS63103951A (en) Dust inspection device
JPH0746079B2 (en) Foreign object detection method and apparatus
JP4521548B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
KR20090072808A (en) Inspection apparatus of photomask and mathod for fabricating using the same
JP2677982B2 (en) Exposure method
JPH04344447A (en) Detecting device for defect in transparent glass substrate
JPH07128250A (en) Foreign matter inspection device for photomask for manufacturing semiconductor device
JPS59117117A (en) Frame for pellicle protecting film
KR200229420Y1 (en) Reticle Inspection Device for Semiconductor Devices
JP4883817B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JPS63289814A (en) Detection of foreign matter on x-ray exposure mask
JPH08159979A (en) Surface inspecting apparatus
JPH10274840A (en) Defect inspection device for mask