JP2669820B2 - Method and fuel injector for controlling fuel distribution in a combustion chamber of an internal combustion engine - Google Patents

Method and fuel injector for controlling fuel distribution in a combustion chamber of an internal combustion engine

Info

Publication number
JP2669820B2
JP2669820B2 JP61504189A JP50418986A JP2669820B2 JP 2669820 B2 JP2669820 B2 JP 2669820B2 JP 61504189 A JP61504189 A JP 61504189A JP 50418986 A JP50418986 A JP 50418986A JP 2669820 B2 JP2669820 B2 JP 2669820B2
Authority
JP
Japan
Prior art keywords
fuel
pressure
gas
engine
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61504189A
Other languages
Japanese (ja)
Other versions
JPS63500324A (en
Inventor
レオナード マッケイ、マイクル
ロス アハーン、スティーブン
Original Assignee
オ−ビタル、エンジン、カンパニ−、プロプライエタリ、リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オ−ビタル、エンジン、カンパニ−、プロプライエタリ、リミテッド filed Critical オ−ビタル、エンジン、カンパニ−、プロプライエタリ、リミテッド
Publication of JPS63500324A publication Critical patent/JPS63500324A/en
Application granted granted Critical
Publication of JP2669820B2 publication Critical patent/JP2669820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D3/00Controlling low-pressure fuel injection, i.e. where the fuel-air mixture containing fuel thus injected will be substantially compressed by the compression stroke of the engine, by means other than controlling only an injection pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D7/00Other fuel-injection control
    • F02D7/02Controlling fuel injection where fuel is injected by compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/08Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/08Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by the fuel being carried by compressed air into main stream of combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の燃焼室の中に調量された量の燃料
を噴射する事に関するものである。 燃料効率と排気浄化のレベルを高めるためには、燃焼
室中の燃料噴霧の位置を制御する事が望ましい。燃料噴
霧の好ましい位置は一定でなく、特にエンジン負荷によ
って変動し、この負荷そのものがエンジンの回転速度に
関係している。2サイクルエンジンにおいて、燃料噴射
機関の少なくとも一部において完全に閉鎖されていない
排気口を通しての燃料損失を制限するため、燃料噴霧の
制御が特に重要である。 軽い負荷と、従って低い燃料供給率においては、燃焼
室中の空気との混合による燃料の希釈度を低下させるた
め、シリンダ中への燃料の進入度を制限しなければなら
ない。燃料の希釈は、点火の困難なまた燃料過給量が点
火するまで燃焼を保持する事の困難な稀薄な混合気を生
じる。しかし高負荷と高燃料過給率においては、より多
量の燃料をその完全燃焼を成すに十分な空気(オキシダ
ント)と接触させるために、燃料の進入度を増大しなけ
ればならない。 本発明の主目的は、燃料の効率的な燃焼を促進するた
めに燃料噴霧の位置を変動させるようにエンジンの燃料
過給を制御する方法を提供するにある。 この目的を達成するために、燃料が燃焼室の中に第1
距離進入する条件のもとに燃料をノズルを通して燃焼室
中に直接に噴射する段階と、所定値を超えたエンジン負
荷要求に対応して燃焼室内への燃料の進入距離を増大す
るために前記の条件を変動させる段階とを含む内燃機関
の燃焼室内部での燃料分布を制御する方法が提供され
る。 望ましくは、燃料の進入度を変更するために、ノズル
を通しての燃料の送出圧は単数または複数のエンジン負
荷要求レベルにおいて段階的に増大され、または単数ま
たは複数のエンジン速度または負荷範囲において燃料の
送出圧を斬進的に増大させる事ができる。 さらに詳細には、送入圧の調量された燃料とガスとを
混合する段階と、このようにして形成された燃料−ガス
混合気を混合気送入圧でノズルを通して燃料室中に直接
送入する段階と、燃料とガスとの差圧を調整してエンジ
ン負荷要求全体に亙って実質的に均一な差圧を保持する
段階と、燃焼室に送入中の燃料−ガス混合気の圧力が所
定値以上のエンジン負荷要求に対応して増大され、従っ
て燃焼室中への燃料の進入度が増大されるように、この
圧力を制御する段階とを含む内燃機関の燃焼室内部での
燃料分布を制御する方法が提供される。 燃料とガスとの間に定常差圧を保持する事は、制御手
続きにおいて差圧の変動を補償する必要がないので、燃
料調量の制御を簡単化する。 好ましくは、燃料進入度の制御は、燃料圧をエンジン
速度と共に変動させる事により、従って定常差圧を保持
するためガス圧を変動させる事により達成される。故
に、燃料圧の変動は、燃料−ガス混合気をノズルを通し
て燃焼室に送入する圧力を変動させる結果となる。 好ましくは圧力の増大は、正常運転速度範囲内におい
て単数または複数の選ばれたエンジン速度において実施
され、また多くのエンジン用途において中速範囲内での
圧力増大が十分である事が発見された。 ガスとその中に送入される燃料との差圧の調整に際し
て、制御関数としての燃料圧を変動させ、その結果とし
てガス圧を変動させて所定の差圧を保持するようにした
調整法によって特有の利益が得られる。 その利点の一つは、ガスが液体燃料より低粘性である
から、調整に際して制御されたガス圧が調整器中の流量
変動によって影響されない事である。その結果、この差
圧が燃料またはガスの流量の変動に対して鈍感になる。
これは、燃料とガスを吐出するポンプがエンジンによっ
て駆動され、その出力がエンジン速度に大幅に関連して
いる場合に特に有意義である。 従って本発明の他の目的は、特に圧下燃料およびガス
を使用する燃料噴射系に使用するに適した燃料−ガス調
整系を提供するにある。 この目的のため、調量圧下燃料がガスの中に送入され
て燃料−ガス過給混合気を成し、燃料圧が所定値に調整
され、ガス圧が燃料圧に対して調整されて、燃料調量中
に燃料とガスとの間に所定の差圧を保持するようにした
内燃機関用燃料噴射系が提供される。 望ましくは、燃料の調整圧は少なくとも2所定圧の間
において選択される。好ましくは、調整燃料圧の変動
は、エンジンの正常運転速度範囲内の所定速度で実施さ
れ、またこの変動はエンジン速度が所定値を超えるに従
って増大される。エンジン速度が所定値以下に落ちたと
きに、これに対応して燃料圧を低下させる。好ましくは
燃料圧は大気圧に対して所定差圧に調整される。 本発明の他の観点によれば、エンジン燃料系におい
て、所定の燃料出力圧を生じるように設定された燃料圧
調整器と、特定のエンジン状態に対応して前記燃料圧を
所定量変動とさせる手段とが提供される。 望ましくは所定の燃料出力圧は、設定度まで予応力を
掛けられた弾性手段によって設定され、また前記の出力
圧変動手段がこの弾性手段に対する応力度を調整する。
好ましくは前記弾性手段は、所望の基本燃料圧を設定す
るに必要な負荷を生じる程度に弾発されまたは圧縮され
ている。バネの圧縮度または緊張度はエンジンが所定負
荷に達した時に燃料出力圧を増大するために増大され、
次にエンジン速度が所定負荷以下に落ちたときに減少さ
れる。 この明細書においては、エンジン負荷要求の特定の変
化に対応して、燃焼室中への燃料の送入圧を調整する事
により燃料噴霧の進入度を変動させる場合について述
べ、このエンジン負荷要求は種々の方法によって検出す
る事ができる。多くのエンジンの用途においては、大抵
の運転状態におけるエンジン速度がエンジン負荷を示し
ている。特に船外エンジンのような場合、エンジンは特
定の速度範囲内で運転される。従って、エンジン速度が
容易に検出されまた比較的簡単なセンサを必要とするの
で、エンジン速度を検出して、燃料進入度の変更を実施
すべき負荷変動の発生を検出する事ができる。 以下において、燃料噴射系の中に組み込まれた燃料/
空気圧調整系の実施例を示す付図について本発明を説明
する。 付図において、 第1図は直噴型燃料噴射系を有する2サイクルエンジ
ンの軸方向断面図、 第2図は第1図のエンジンと共に使用するに適した燃
料調量噴射系の部分断面を示す立面図、 第3図は第2図に示す燃料調量噴射系と共に使用され
る複合型燃料/空気圧調整系の断面図および燃料噴射器
のそのたの要素と結合を示す図である。 第1図について述べれば、内燃機関109は全体として
通常構造の単シリンダ2工程内燃機関であって、シリン
ダ110と、クランクケース111と、シリンダ110中を往復
運動するピストン112とを有する。ピストン112は連接棒
113によってクランク軸114に連結されている。クランク
ケース111は、通常のリード弁119を備えた吸気口115を
有し、また3本の分配路116(その1本のみを示す)が
クランクケースをそれぞれの分配口とを連通し、2つの
分配口117と118のみが示され、分配口117と同等の分配
口が分配口118の反対側にある。 分配口はそれぞれシリンダ110の壁体中に形成され、
それぞれの上縁がシリンダの同一直径面の中に配置され
ている。排気口120は中心分配口118にほぼ対向してシリ
ンダの壁体中に形成されている。 着脱自在のシリンダヘッド121は燃料キャビティ122を
有し、その中に点火プラグ123が突入している。キャビ
ティ122はシリンダの軸腺に対して実質的に対称的に配
置され、点火プラグはこの軸線上に配置されている。燃
料噴射器124は分配口とシリンダヘッドの間においてシ
リンダ110の壁体の中に配置されている。図示の構造に
おいては、噴射ノズル124は中心分配口118の直上にあ
る。 燃料噴射器124は燃料調量噴射系の一部を成し、これ
によって空気に同伴された燃料が給気圧により内燃機関
の燃焼室の中に直接に噴射される。第2図に示す型の燃
料調量噴射系は、本発明による燃料/空気圧調整系を適
用する事のできる代表的な型の燃料調量噴射系である。 第2図の燃料調量噴射ユニットは自動型絞り弁燃料噴
射器などの適当な調量装置130を含み、この調量装置
は、保持室132を有する燃料噴射器本体131に連結されて
いる。燃料が燃料ポンプ(図示されず)から燃料導入口
133を通して調量装置130に送られ、この調量装置が内燃
機関の燃料要求度に対応して保持室132の中への一定量
の燃料を調量する。調量装置に送られた余分の燃料は燃
料戻し口134を通して燃料タンクに戻される。燃料調量
装置130の特定の構造が本発明にとって重要なのではな
く、任意適当な装置を使用する事ができる。 運転に際して、保持室132は、空気導入口145を通して
本体131の中に給気された空気によって加圧される。噴
射弁143が作動されて、調量された量の燃料を圧搾空気
によって保持室132から噴射ノズル142を通して内燃機関
の燃料室中に排出させる。噴射ノズルの噴射弁143は、
燃焼室の内部に向かって、すなわち保持室から外部に向
かって開くポペット弁構造である。 噴射弁143は、保持室132を通る弁軸144を介して、本
体131内部に配置されたソレノイド147の電機子141に連
結されている。弁143はディスクバネ140によって閉鎖位
置に弾発され、またソレノイド147を生かす事によって
開かれる。ソレノイド147の磁化は、燃料を保持室132か
ら燃料室に送るようにエンジンサイクルと調時的に制御
される。 第2図に図示のような保持室を含む燃料調量噴射系の
動作の詳細はオーストラリヤ特許出願1984年第32132号
および対応の米国特許出願第740067号明細書に記載さ
れ、これらの文献を引例として加える。 燃料が保持室132の中に存在する空気の圧力に対抗し
て調量装置130によってこの保持室の中に送入される事
は理解されよう。従って、調量装置の燃料送入圧と保持
室内部の空気圧との差圧が保持室内部に送入される燃料
の量と関連している。燃料の節約と排気ガス浄化の観点
から燃料調量精度を高めるため、この差圧を確実に制御
する事が重要である。 第3図は第2図について述べた燃料調量噴射系と共に
使用するに適した燃料/空気圧調整系を含む燃料噴射器
に関するものである。しかしこの第3図について記述す
る燃料/空気圧調整系は他の燃料調量噴射系についても
使用できるものであって、第2の記載の燃料調量噴射系
に限定されるものではない事を了解されたい。 第3図において、燃料噴射器は燃料調量噴射系5を含
み、この燃料調量噴射系5に対して空気と燃料がそれぞ
れコンプレッサー2と燃料タンク6から燃料/空気圧調
整系10を通して送入される。燃料は燃料タンク6から低
圧リフトポンプ3によって高圧ポンプ7まで、燃料/空
気圧調整系10中の通路18を通して送られる。 燃料/空気圧調整系10は燃料圧調整部9と空気圧調整
系11とを一体構造として含む。燃料調整室12の一方の壁
体はその外周に沿って固着された可撓性ダイヤフラムか
ら成る。このダイヤフラム13に対して弁要素14が固着さ
れ、この要素は燃料調整室のダイヤフラム13と反対側の
壁体17中のポートと協働する。このポート15は低圧燃料
通路18と連通し、この通路18は低圧ポンプ3の吐出側と
高圧ポンプ7の吸引側とに連通している。 高圧燃料導入通路20が燃料調整室12を高圧燃料ポンプ
7の吐出側と連通している。通路18と調整室12との間の
一方弁21は軽度に予負荷されているので、始動時に低圧
燃料が通路18から燃料調整室12を流通して、高圧燃料回
路と燃料調量噴射系5から空気を排除する ダイヤフラム13は、弁14がポート15を常態において閉
鎖するようにバネ25によって弾発されている。バネ背板
24は、燃料/空気圧調整系の端壁26上に備えられたスト
ッパ19に常態において当接している。このバネ背板は、
制御キャビティ28を分割したダイヤフラム27に固着され
ている。ダイヤフラム27のバネ側の制御キャビティ部分
29がポート22によって大気に接続されているのに対し
て、ダイヤフラム27の反対部分30はポート31とソレノイ
ド弁49とを通して調整された空気源と選択的に連通され
る。ポート31を通して空気圧が制御キャビティ28の部分
30に加えられた時、ダイヤフラム27とバネ背板24が図に
おいて右側に移動されて、バネ25をさらに圧縮する。背
板24の右側移動は、この背板24の縁バンド32が燃料/空
気圧調整系の環状ショルダ33と接触する事によって制限
される。 調整室12の中の燃料圧が調整圧を超えた時、ダイヤフ
ラム13がバネ25の作用に対抗して移動され、弁要素14が
ポート15から離脱され、燃料をポート15から通路18の中
に流通させ、これにより調整室12の中の圧を所要値まで
低下させる。 このようにして、制御空気キャビティ28の部分30に対
して制御空気を加えればダイヤフラム13に対するバネ圧
が所定量だけ増大され、これが弁要素14の解除圧を増大
し、従って高圧ポンプ7によって燃料調量噴射系5に送
入される燃料圧がこれに対応して増大される。 制御キャビティ28の部分30の中に導入される空気の所
要圧を低下させるため、バネ25に部分的に対抗するよう
に背板24と端壁26との間にバネ(図示されず)を配備す
る事ができる。 エンジン速度が所定値に達した時にスイッチを作動す
るように適当なエンジン速度センサを配置する事によ
り、燃料送入圧を増大するためにソレノイド弁49を作動
する事ができる。スイッチが作動された時、ソレノイド
弁49を生かし、調整空気源から燃料調量噴射系5への空
気の一部が制御キャビティ28の部分30の中に導入され
る。この空気がダイヤフラム27に圧力を加える事により
背板24を移動させ、縁バンド32がショルダ33を当接し
て、バネ25がダイヤフラム33に加える負荷を一定量増大
させる。 燃料圧を増大するためのソレノイド弁49と制御キャビ
ティ28の動作が調整燃料圧の一回以上の増大を生じるよ
うに構成する事ができる。あるいは調整のために電気作
動装置を使用する事ができる。この装置に加えられる電
流を変動させて、ダイヤフラム運動を調整する事ができ
る。 交代する燃料圧間の「ハイティング」を防止するた
め、ソレノイド弁49の動作の中に適当なヒステリシス機
能を含ませる事ができる。 第3図について上述した複合型燃料/空気圧調整系10
の燃料圧調整部9は、運転中に調整圧を変動させる事の
できる独立の燃料圧調整器として構成する事ができる。
燃料室内への燃料の進入度を変動させる手段として噴射
圧の調整の可能性が望ましい事を前述したが、これは液
体燃料のみが噴射される燃料噴射器についても同様であ
る。従って燃料圧制御部9は、液体燃料のみを噴射する
燃料噴射系の可変圧調整器として使用する事ができる。 第3図に図示の複合型燃料/空気圧調整系の説明を続
ければ、燃料室12は通路35を通して、空気調整部11の中
の室36と連通し、またこの燃料室12は空気圧室37からダ
イヤフラム38によって分離されている。この空気圧室37
はコンプレッサー2から来る空気と通路39を通して連通
し、排気通路40が空気室37から燃料調量噴射系5に達す
る。ダイヤフラム38は弁41を担持し、この弁はポート42
と協働し、このポートは空気バイパス通路43と連通す
る。 弁41を常態において開放状態に保持するためバネ45が
ダイヤフラム38に対して圧力を加える。従って空気室38
の中の空気圧とバネ45の作用の合計がダイヤフラム38に
対する室36の中の燃料圧の生じる応力を超えている時、
弁41がポート42を開く。従って、空気圧は燃料圧より
も、バネ45がダイヤフラム38に加える応力分だけ常に低
い事が理解されよう。 前述の燃料/空気圧調整系はその使用中にポンプ7に
よって燃料調量噴射系5に送られる燃料圧を大気圧に対
して調整し、また燃料調量噴射系5に対する空気圧を燃
料圧に対して調整するので、燃料調量噴射系の作動中
に、燃料圧と空気圧との間に所定の差圧を生じる。さら
に、制御キャビティ28の部分30に対して空気圧を加える
事により、調整燃料圧が所定分だけ増大され、従って空
気圧も同一割合で増大されるので、燃料調量噴射系に対
する燃料圧と空気圧の間に同一の差圧が保持される。故
に、燃料の調量に関して調節または修正する事なく、燃
料噴霧進入度を変更する事ができる。 燃料室に対して燃料/空気混合気を送るための空気圧
の変更度は、そのエンジンのゼオメトリ、および負荷ま
たは速度の変動に対応する所要の燃料進入度に依存して
それぞれのエンジンについて実験的に選択される。燃料
室当たり0.4の排気量を有する2サイクルエンジンに
ついての実際例においては、エンジンの中速範囲の2500
PPMにおいて空気圧は250KPAから500KPAまで増大され
る。 前述の燃料圧調整器および複合型燃料/空気圧調整系
を第2図に記載の、また出願人の同時係属出願オースト
ラリア特許出願1984年32132号に記載の燃料調量噴射系
と結合して使用する事ができ、また出願人の同時係属出
願オーストラリヤ特許出願第PH01559、PH1991およびPH3
344号明細書、並びにこれらの特願の優先権を主張する
特願に記載された2サイクルエンジンの燃料送入に使用
する事ができる。前記の特願の明細書の開示を引例と含
む。 付図についての前述の説明においては、本発明の2サ
イクル火花点火型往復動ピストンに使用する場合につい
て述べたが、本発明は4サイクル型の火花放電エンジン
および/またはロータリピストンなどのその他のピスト
ンにも適用できるものと了解されたい。本発明はあらゆ
る用途の内燃機関に応用され、特に自動車、モータサイ
クル、船外エンジンを含むボートなどのエンジンにおい
て燃料の節約と排気浄化のための特に有効である。
The present invention relates to injecting a metered amount of fuel into a combustion chamber of an internal combustion engine. To increase the level of fuel efficiency and exhaust purification, it is desirable to control the position of the fuel spray in the combustion chamber. The preferable position of the fuel spray is not constant but varies depending on the engine load, and the load itself is related to the engine speed. In a two-stroke engine, control of fuel spray is especially important because it limits fuel loss through exhaust ports that are not completely closed in at least a portion of the fuel injection engine. At light loads and therefore at low fuel rates, the degree of penetration of fuel into the cylinder must be limited in order to reduce the dilution of the fuel by mixing with the air in the combustion chamber. Fuel dilution results in a lean mixture that is difficult to ignite and difficult to maintain combustion until the fuel charge is ignited. However, at high loads and high fuel supercharging rates, the fuel penetration must be increased in order to bring more fuel into contact with sufficient air (oxidant) to complete its combustion. It is a primary object of the present invention to provide a method of controlling fuel supercharging of an engine to vary the position of the fuel spray to promote efficient combustion of fuel. To this end, fuel is first introduced into the combustion chamber.
Injecting fuel directly into the combustion chamber through a nozzle under the condition of distance approach, and in order to increase the distance of entry of fuel into the combustion chamber in response to engine load demand exceeding a predetermined value, Varying the conditions including controlling the fuel distribution within the combustion chamber of the internal combustion engine. Desirably, the delivery pressure of the fuel through the nozzle is stepped up at one or more engine load demand levels, or the delivery of fuel at one or more engine speeds or load ranges, to modify the fuel penetration. The pressure can be increased progressively. More specifically, the step of mixing the fuel and the gas whose feed pressures are adjusted and the fuel-gas mixture thus formed are directly fed into the fuel chamber through the nozzle at the mixture feed pressure. Injection, adjusting the fuel-gas differential pressure to maintain a substantially uniform differential pressure over the entire engine load demand, and the fuel-gas mixture being fed into the combustion chamber. Controlling the pressure so that the pressure is increased in response to an engine load requirement above a predetermined value, and thus the fuel penetration into the combustion chamber is increased. A method of controlling fuel distribution is provided. Maintaining a steady differential pressure between the fuel and gas simplifies fuel metering control because it is not necessary to compensate for differential pressure variations in the control procedure. Preferably, control of the degree of fuel penetration is accomplished by varying the fuel pressure with engine speed, and thus varying the gas pressure to maintain a steady differential pressure. Fluctuations in fuel pressure therefore result in fluctuations in the pressure of the fuel-gas mixture through the nozzle into the combustion chamber. Preferably, the pressure increase is carried out at a selected engine speed or speeds within the normal operating speed range and it has been found that in many engine applications the pressure increase in the medium speed range is sufficient. When adjusting the differential pressure between the gas and the fuel fed into it, the fuel pressure as a control function is varied, and as a result, the gas pressure is varied to maintain a predetermined differential pressure. Unique benefits are obtained. One of its advantages is that since the gas has a lower viscosity than liquid fuel, the controlled gas pressure during regulation is not affected by flow rate fluctuations in the regulator. As a result, this differential pressure becomes insensitive to fluctuations in the flow rate of fuel or gas.
This is particularly significant if the pumps that deliver fuel and gas are driven by the engine and its output is significantly related to engine speed. Accordingly, another object of the present invention is to provide a fuel-gas conditioning system that is particularly suitable for use in fuel injection systems that use reduced fuel and gas. For this purpose, fuel under metered pressure is introduced into the gas to form a fuel-gas supercharged mixture, the fuel pressure is adjusted to a predetermined value, the gas pressure is adjusted with respect to the fuel pressure, Provided is a fuel injection system for an internal combustion engine, which maintains a predetermined differential pressure between fuel and gas during fuel metering. Desirably, the regulated pressure of the fuel is selected between at least two predetermined pressures. Preferably, the fluctuations in the regulated fuel pressure are carried out at a predetermined speed within the normal operating speed range of the engine, and the fluctuations are increased as the engine speed exceeds a predetermined value. When the engine speed drops below a predetermined value, the fuel pressure is correspondingly reduced. Preferably, the fuel pressure is adjusted to a predetermined differential pressure with respect to atmospheric pressure. According to another aspect of the present invention, in an engine fuel system, a fuel pressure regulator that is set to generate a predetermined fuel output pressure, and the fuel pressure is changed by a predetermined amount according to a specific engine state. And means are provided. Desirably, the predetermined fuel output pressure is set by elastic means prestressed to a set degree, and the output pressure varying means adjusts the degree of stress on this elastic means.
Preferably, the elastic means is resilient or compressed to the extent that it produces the load necessary to set the desired base fuel pressure. The compression or tension of the spring is increased to increase the fuel output pressure when the engine reaches a given load,
It is then reduced when the engine speed drops below a predetermined load. In this specification, in response to a specific change in the engine load requirement, the case where the fuel spray pressure is adjusted by adjusting the fuel feed pressure into the combustion chamber is described. It can be detected by various methods. In many engine applications, engine speed under most operating conditions is indicative of engine load. Especially in the case of an outboard engine, the engine is operated within a certain speed range. Therefore, since the engine speed is easily detected and a relatively simple sensor is required, it is possible to detect the engine speed and to detect the occurrence of load fluctuation in which the change of the fuel penetration degree should be performed. In the following, the fuel incorporated in the fuel injection system /
The present invention will be described with reference to the accompanying drawings showing an embodiment of an air pressure adjusting system. In the attached drawings, FIG. 1 is an axial sectional view of a two-cycle engine having a direct injection type fuel injection system, and FIG. 2 is a partial sectional view of a fuel metering injection system suitable for use with the engine of FIG. FIG. 3 is a cross-sectional view of a hybrid fuel / pneumatic pressure regulation system for use with the fuel metering injection system shown in FIG. 2 and the other elements and connections of the fuel injector. Referring to FIG. 1, the internal combustion engine 109 is a single-cylinder two-step internal combustion engine having a general structure as a whole, and includes a cylinder 110, a crankcase 111, and a piston 112 that reciprocates in the cylinder 110. Piston 112 is a connecting rod
It is connected to the crankshaft 114 by 113. The crankcase 111 has an intake port 115 with a normal reed valve 119, and three distribution passages 116 (only one of which is shown) connect the crankcase to each distribution port and two Only dispensing ports 117 and 118 are shown, and a dispensing port equivalent to dispensing port 117 is on the opposite side of dispensing port 118. The distribution ports are respectively formed in the wall of the cylinder 110,
The upper edges of each are located in the same diameter surface of the cylinder. The exhaust port 120 is formed in the wall of the cylinder substantially opposite to the center distribution port 118. The removable cylinder head 121 has a fuel cavity 122 into which a spark plug 123 protrudes. The cavity 122 is arranged substantially symmetrically with respect to the axis of the cylinder, and the spark plug is arranged on this axis. The fuel injector 124 is located in the wall of the cylinder 110 between the distribution port and the cylinder head. In the structure shown, the injection nozzle 124 is directly above the central distributor 118. The fuel injector 124 forms part of a fuel metering injection system, whereby fuel entrained in the air is directly injected into the combustion chamber of the internal combustion engine by the air pressure. The fuel metering injection system of the type shown in FIG. 2 is a typical fuel metering injection system to which the fuel / air pressure adjusting system according to the present invention can be applied. The fuel metering injection unit of FIG. 2 includes a suitable metering device 130, such as an automatic throttle valve fuel injector, which is connected to a fuel injector body 131 having a holding chamber 132. Fuel from fuel pump (not shown) to fuel inlet
It is sent to the metering device 130 through 133, and this metering device meters a fixed amount of fuel into the holding chamber 132 according to the fuel demand of the internal combustion engine. Excess fuel sent to the metering device is returned to the fuel tank through the fuel return port 134. The particular construction of the fuel metering device 130 is not critical to the invention, and any suitable device may be used. During operation, the holding chamber 132 is pressurized by the air supplied into the body 131 through the air inlet 145. The injection valve 143 is actuated to expel a metered amount of fuel from the holding chamber 132 through the injection nozzle 142 into the fuel chamber of the internal combustion engine by compressed air. The injection valve 143 of the injection nozzle,
A poppet valve structure that opens toward the inside of the combustion chamber, that is, from the holding chamber to the outside. The injection valve 143 is connected to an armature 141 of a solenoid 147 arranged inside the main body 131 via a valve shaft 144 passing through the holding chamber 132. The valve 143 is repelled to the closed position by the disc spring 140 and opened by utilizing the solenoid 147. The magnetization of solenoid 147 is timed with the engine cycle to direct fuel from holding chamber 132 to the fuel chamber. Details of the operation of a fuel metering injection system including a holding chamber as shown in FIG. 2 are described in Australian Patent Application 1984 32132 and corresponding US Patent Application 740067, which are incorporated by reference. Add as. It will be appreciated that fuel is pumped into the holding chamber 132 by the metering device 130 in opposition to the pressure of the air present in the holding chamber. Therefore, the differential pressure between the fuel feed pressure of the metering device and the air pressure inside the holding chamber is related to the amount of fuel fed into the holding chamber. It is important to control this differential pressure reliably in order to improve the fuel metering accuracy from the viewpoint of fuel saving and exhaust gas purification. FIG. 3 relates to a fuel injector including a fuel / air pressure regulation system suitable for use with the fuel metering injection system described with reference to FIG. However, it is understood that the fuel / air pressure adjusting system described in FIG. 3 can be used for other fuel metering injection systems, and is not limited to the fuel metering injection system described in the second. I want to be done. In FIG. 3, the fuel injector includes a fuel metering injection system 5, to which air and fuel are respectively sent from a compressor 2 and a fuel tank 6 through a fuel / air pressure adjusting system 10. It Fuel is delivered from the fuel tank 6 to the high pressure pump 7 by the low pressure lift pump 3 through a passage 18 in the fuel / air pressure regulation system 10. The fuel / air pressure adjusting system 10 includes the fuel pressure adjusting unit 9 and the air pressure adjusting system 11 as an integral structure. One wall of the fuel adjustment chamber 12 is formed of a flexible diaphragm fixed along its outer periphery. Affixed to this diaphragm 13 is a valve element 14, which cooperates with a port in the wall 17 of the fuel control chamber opposite the diaphragm 13. The port 15 communicates with a low pressure fuel passage 18, which communicates with the discharge side of the low pressure pump 3 and the suction side of the high pressure pump 7. A high-pressure fuel introduction passage 20 communicates the fuel adjustment chamber 12 with the discharge side of the high-pressure fuel pump 7. Since the one-way valve 21 between the passage 18 and the adjusting chamber 12 is slightly preloaded, the low-pressure fuel flows from the passage 18 through the fuel adjusting chamber 12 at the time of starting, and the high-pressure fuel circuit and the fuel metering injection system 5 The diaphragm 13 is urged by a spring 25 so that the valve 14 normally closes the port 15. Spring back plate
24 normally abuts a stopper 19 provided on the end wall 26 of the fuel / air pressure regulation system. This spring backboard is
It is fixed to a diaphragm 27 that divides the control cavity 28. Control cavity on the spring side of diaphragm 27
While 29 is connected to the atmosphere by port 22, the opposite portion 30 of diaphragm 27 is selectively in communication with a regulated air source through port 31 and solenoid valve 49. Air pressure through port 31 is part of control cavity 28
When added to 30, the diaphragm 27 and spring back plate 24 are moved to the right in the figure to further compress the spring 25. The rightward movement of the back plate 24 is limited by the contact of the edge band 32 of the back plate 24 with the annular shoulder 33 of the fuel / air pressure regulation system. When the fuel pressure in the regulating chamber 12 exceeds the regulating pressure, the diaphragm 13 is moved against the action of the spring 25, the valve element 14 is disengaged from the port 15 and the fuel is pumped from the port 15 into the passage 18. The pressure in the adjusting chamber 12 is lowered to a required value by circulating the liquid. In this way, application of control air to the portion 30 of the control air cavity 28 will increase the spring pressure on the diaphragm 13 by a predetermined amount, which will increase the release pressure of the valve element 14 and thus the fuel control by the high pressure pump 7. The fuel pressure delivered to the quantity injection system 5 is correspondingly increased. A spring (not shown) is placed between the back plate 24 and the end wall 26 to partially oppose the spring 25 to reduce the required pressure of the air introduced into the portion 30 of the control cavity 28. You can do it. By arranging a suitable engine speed sensor to activate the switch when the engine speed reaches a predetermined value, the solenoid valve 49 can be activated to increase the fuel delivery pressure. When the switch is activated, a portion of the air from the regulated air source to the fuel metering injection system 5 is introduced into the portion 30 of the control cavity 28, utilizing the solenoid valve 49. This air applies pressure to the diaphragm 27 to move the back plate 24, the edge band 32 contacts the shoulder 33, and the load applied to the diaphragm 33 by the spring 25 increases by a certain amount. The operation of solenoid valve 49 and control cavity 28 to increase fuel pressure can be configured to cause one or more increases in regulated fuel pressure. Alternatively, an electric actuator can be used for adjustment. The current applied to this device can be varied to regulate diaphragm movement. A suitable hysteresis function can be included in the operation of the solenoid valve 49 to prevent "hetting" between alternating fuel pressures. Hybrid fuel / air pressure regulation system 10 described above with reference to FIG.
The fuel pressure adjusting unit 9 can be configured as an independent fuel pressure adjuster that can change the adjusting pressure during operation.
Although it has been described above that the possibility of adjusting the injection pressure is desirable as a means for varying the degree of entry of fuel into the fuel chamber, this also applies to fuel injectors that inject only liquid fuel. Therefore, the fuel pressure control unit 9 can be used as a variable pressure regulator of a fuel injection system that injects only liquid fuel. Continuing with the description of the hybrid fuel / pneumatic pressure regulation system shown in FIG. 3, the fuel chamber 12 communicates with the chamber 36 in the air regulating section 11 through the passage 35, and the fuel chamber 12 also extends from the pneumatic chamber 37. Separated by diaphragm 38. This pneumatic chamber 37
Communicates with the air coming from the compressor 2 through the passage 39, and the exhaust passage 40 reaches the fuel metering injection system 5 from the air chamber 37. The diaphragm 38 carries a valve 41, which is in port 42.
And the port communicates with the air bypass passage 43. A spring 45 applies pressure to the diaphragm 38 to keep the valve 41 normally open. Therefore the air chamber 38
When the sum of the air pressure in and the action of the spring 45 exceeds the stress produced by the fuel pressure in the chamber 36 on the diaphragm 38,
Valve 41 opens port 42. Therefore, it will be appreciated that the air pressure is always lower than the fuel pressure by the amount of stress exerted by the spring 45 on the diaphragm 38. The above-mentioned fuel / air pressure adjusting system adjusts the fuel pressure sent to the fuel metering injection system 5 by the pump 7 to the atmospheric pressure during its use, and the air pressure for the fuel metering injection system 5 to the fuel pressure. Because of the adjustment, a predetermined pressure difference is generated between the fuel pressure and the air pressure during the operation of the fuel metering injection system. Further, by applying air pressure to the portion 30 of the control cavity 28, the adjusted fuel pressure is increased by a predetermined amount, and therefore the air pressure is also increased at the same rate, so that the pressure between the fuel pressure and the air pressure for the fuel metering injection system is increased. The same differential pressure is maintained at. Therefore, the fuel spray penetration can be changed without adjusting or modifying the fuel metering. The degree of change in air pressure to deliver the fuel / air mixture to the fuel chamber is determined experimentally for each engine depending on the engine's geometry and the required fuel penetration to accommodate load or speed variations. To be selected. In a practical example for a two-stroke engine with a displacement of 0.4 per fuel chamber, the engine's mid-speed range of 2500
At PPM the air pressure is increased from 250KPA to 500KPA. The aforementioned fuel pressure regulator and hybrid fuel / air pressure regulation system are used in combination with the fuel metering injection system described in FIG. 2 and in Applicant's co-pending Australian patent application 1984 32132. Applicant's co-pending application Australian Patent Applications No. PH01559, PH1991 and PH3
It can be used for fueling a two-cycle engine as described in the specification No. 344 and the patent applications claiming priority of these patent applications. The disclosure of the specification of the above-mentioned Japanese Patent Application is included by reference. In the above description of the attached drawings, the case where the present invention is applied to the two-cycle spark ignition type reciprocating piston is described. Please understand that the above can also be applied. INDUSTRIAL APPLICATION This invention is applied to the internal combustion engine of every use, and is especially effective in fuel saving and exhaust gas purification in engines, such as a motor vehicle, a motorcycle, and a boat including an outboard engine.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−60069(JP,A) 特開 昭58−155269(JP,A) 実開 昭60−97371(JP,U) 米国特許1149321(US,A) 米国特許1166937(US,A)   ────────────────────────────────────────────────── ─── Continuation of front page                   (56) References Japanese Patent Laid-Open No. 59-60069 (JP, A)                 JP-A-58-155269 (JP, A)                 Showa 60-97371 (JP, U)                 US Patent 1149321 (US, A)                 US Patent 1166937 (US, A)

Claims (1)

(57)【特許請求の範囲】 1.調量された燃料量を加圧ガスに同伴させて燃料・ガ
ス混合気を形成するとともに、 前記燃料量が、燃料が送られて加圧ガスに同伴させられ
る際に、エンジン負荷に対応して調量され、 燃料・ガス混合気が加圧ガスの圧力によって決定される
噴射圧力でノズルを通して燃焼室内へ直接噴射され、こ
れによって燃料が前記噴射圧力に依存する第1の距離に
わたって燃焼室内へ進入するとともに、エンジンがエン
ジン速度とエンジン負荷のうち少なくとも一つが予め定
められた値以下で運転されているときには、ある噴射圧
力で噴射され、 エンジン速度とエンジン負荷のうちいずれかが前記予め
定められた値を超えたとき、これに応答して燃料ガス混
合気の噴射圧力を増加させ、これによってエンジン速度
とエンジン負荷のうちいずれかが前記予め定められた値
を超えた状態で燃料を前記第1の距離より大きな第2距
離だけ燃焼室内へ進入させ、かつエンジン速度とエンジ
ン負荷のうち少なくとも一方の全体にわたって燃料・ガ
ス混合気中の燃料部分を加圧ガス部分よりも高い圧力に
維持することを特徴とする火花点火式内燃機関の燃焼室
内の燃焼分布を制御する方法。 2.前記加圧ガスの圧力がノズルを通して燃料の送りを
行う請求項1に記載の方法。 3.前記噴射圧力が予め定められた値を越える速度で運
転されるエンジンに応答して変化する請求項1記載の方
法。 4.燃料の圧力が前記予め定められた値を越える少くと
も1のエンジン速度とエンジン負荷に応答して増加させ
られる請求項1または2に記載の方法。 5.燃料送り圧力で送られた調量された燃料量とガスと
を組合わせ、燃料・ガス混合気送り圧力で形成された燃
料・ガス混合気をノズルを通して直接燃焼室内へ噴射さ
せ、 エンジン負荷にわたってほぼ均一の圧力差を維持するよ
うに燃料とガスとの間の圧力差を調整し、燃焼室内への
燃料・ガス混合気を送っている間は燃料・ガス混合気の
圧力を制御して燃料・ガス混合気の圧力が予め定められ
た値以上のエンジン負荷に応答して増加させられ、よっ
て、燃料の燃焼室内への進入の範囲を増す、内燃機関の
燃焼室内の燃料分布を制御する方法。 6.燃料の圧力が前記予め定められた値以上のエンジン
負荷に応答して増加するように調整される請求項5に記
載の方法。 7.エンジン負荷の前記予め定められた値が予め定めら
れた速度を達成するエンジンを決めることにより決定さ
れる請求項1または5に記載の方法。 8.内燃機関の燃料噴射装置を作動させるのに使われる
請求項1または5に記載の方法。 9.自動車の内燃機関の燃料噴射装置を作動させるのに
使われる請求項1または5に記載の方法。 10.内燃船外舶用機関に使われる請求項1または5に
記載の方法。 11.燃料がガス内に調量され、ガスの圧力によりエン
ジン内に送られる燃料噴射装置における燃料・ガス圧力
結合調整装置が、燃料圧力を大気圧より高い第1予定圧
力に調整する第1装置と、ガス圧力を燃料圧力以下の予
め定められた値に調整する第2装置とからなる内燃機関
の燃料噴射装置。 12.前記第1装置が、可動壁で分離された燃料室と空
気室と、前記燃料室内の燃料導入ポートと燃料戻しポー
トと、前記可動壁の一方向への移動に応答して前記燃料
戻しポートを選択的に開く装置と、前記可動壁の前記一
方向への移動に抗する付勢装置と、前記空気室に設けら
れて前記空気室内に大気を通す通気口とを備え、前記付
勢装置と前記空気室内の大気とが、前記燃焼室内の燃料
の圧力が前記第1予定圧力以上であるときに前記可動壁
を移動させて、燃料戻しポートを開ける請求項11に記載
の燃料噴射装置。 13.前記第2装置が、間に設けられたもう一つの可動
壁で分離されたガス室ともう一つの燃料室とを備え、前
記もう一つの燃料室が前記第1の燃料室と連通し、前記
第2装置が、さらに、前記ガス室のガス導入ポートとガ
スバイパスポートと、前記もう一つの可動壁の一方向へ
の移動に応答して前記ガスバイパスポートを選択的に開
く装置と、前記もう一つの可動壁を前記一方向へ付勢す
るもう一つの付勢装置とを備え、前記もう一つの付勢装
置と前記ガス室内の圧力とが前記もう一つの可動壁を移
動させて前記ガス室内の圧力が前記予定値以上のときに
前記ガスバイパスポートを開く請求項12に記載の燃料噴
射装置。 14.前記付勢装置により与えられた付勢力を選択的に
増して燃料の前記第1予定圧力を上昇する装置をさらに
備えた請求項11,12あるいは13のいずれか1項に記載の
燃料噴射装置。 15.燃料量がガス加圧下で調量されて燃料・ガス混合
気を形成する内燃機関の燃料噴射装置において、燃料圧
力が予め選択された値に調整され、調整された燃料圧力
が少なくとも二つの予め定められた値の間で選択可能で
あり、ガス圧力が燃料圧力に相対的に調整されて燃料の
調量の間に燃料とガス間の予め定められた圧力差を維持
する燃料噴射装置。 16.調整された燃料圧力が前記予め定められた値を越
えて増加するエンジン負荷要求に応答して増加させる請
求項15に記載の燃料噴射装置。 17.調整された燃料圧力が前記予め定められた値を越
えて増加するエンジン速度要求に応答して増加される請
求項15に記載の燃料噴射装置。 18.内燃機関の構成要素である請求項11,12,13,15あ
るいは16のいずれか1項に記載の燃料噴射装置。 19.2サイクル内燃機関に使用される請求項11,12,1
3,15あるいは16のいずれか1項に記載の燃料噴射装置 20.自動車内燃機関に使用される請求項11,12,13,15
あるいは16のいずれか1項に記載の燃料噴射装置。 21.内燃船外舶用機関の構成要素である請求項11,12,
13,15あるいは16のいずれか1項に記載の燃料噴射装
置。
(57) [Claims] A fuel-gas mixture is formed by entraining the metered fuel amount with the pressurized gas, and the fuel amount corresponds to the engine load when fuel is sent and entrained with the pressurized gas. Metered, wherein a fuel-gas mixture is injected directly into the combustion chamber through the nozzle at an injection pressure determined by the pressure of the pressurized gas, whereby fuel enters the combustion chamber over a first distance dependent on said injection pressure. In addition, when the engine is operating at least one of the engine speed and the engine load at a predetermined value or less, the engine is injected at a certain injection pressure, and one of the engine speed and the engine load is set at the predetermined value. When the value is exceeded, in response, the injection pressure of the fuel gas mixture is increased, which causes either the engine speed or the engine load to reach the pre-determined value. A fuel that exceeds a predetermined value and enters the combustion chamber by a second distance greater than the first distance, and a fuel portion of the fuel-gas mixture over at least one of the engine speed and the engine load; Is maintained at a pressure higher than that of the pressurized gas portion, a method for controlling combustion distribution in a combustion chamber of a spark ignition type internal combustion engine. 2. The method of claim 1, wherein the pressure of the pressurized gas causes the delivery of fuel through a nozzle. 3. The method of claim 1 wherein said injection pressure changes in response to an engine operating at a speed exceeding a predetermined value. 4. A method as claimed in claim 1 or 2, wherein the fuel pressure is increased in response to an engine speed and engine load of at least 1 above said predetermined value. 5. The metered fuel amount and gas sent at the fuel feed pressure are combined, and the fuel / gas mixture formed at the fuel / gas mixture feed pressure is injected directly into the combustion chamber through the nozzle, and the fuel / gas mixture is substantially spread over the engine load. Adjust the pressure difference between the fuel and gas to maintain a uniform pressure difference, and control the pressure of the fuel / gas mixture while sending the fuel / gas mixture into the combustion chamber. A method for controlling fuel distribution in a combustion chamber of an internal combustion engine, wherein the pressure of the gas mixture is increased in response to an engine load greater than or equal to a predetermined value, thereby increasing the range of fuel entry into the combustion chamber. 6. 6. The method of claim 5, wherein fuel pressure is adjusted to increase in response to an engine load greater than or equal to the predetermined value. 7. A method according to claim 1 or 5, wherein the predetermined value of engine load is determined by determining the engine that achieves the predetermined speed. 8. A method according to claim 1 or 5 used to operate a fuel injector of an internal combustion engine. 9. 6. The method according to claim 1, wherein the method is used to operate a fuel injection device of an internal combustion engine of a motor vehicle. 10. The method according to claim 1 or 5, which is used in an internal combustion outboard marine engine. 11. A first device for adjusting the fuel pressure to a first predetermined pressure higher than the atmospheric pressure, wherein a fuel-gas pressure combination adjustment device in the fuel injection device in which fuel is metered into the gas and sent into the engine by the pressure of the gas; A second device for adjusting the gas pressure to a predetermined value equal to or lower than the fuel pressure. 12. The first device includes a fuel chamber and an air chamber separated by a movable wall, a fuel introduction port and a fuel return port in the fuel chamber, and the fuel return port in response to a movement of the movable wall in one direction. A device that selectively opens, a biasing device that resists movement of the movable wall in the one direction, and a vent that is provided in the air chamber and allows the atmosphere to pass through the air chamber. 12. The fuel injection device according to claim 11, wherein when the pressure of the fuel in the combustion chamber is equal to or higher than the first predetermined pressure, the movable wall is moved to open a fuel return port. 13. The second device includes a gas chamber and another fuel chamber separated by another movable wall provided therebetween, wherein the another fuel chamber communicates with the first fuel chamber, A second device further comprising: a gas introduction port and a gas bypass port of the gas chamber; and a device for selectively opening the gas bypass port in response to movement of the other movable wall in one direction; Another urging device for urging one movable wall in the one direction is provided, and the other urging device and the pressure in the gas chamber move the other movable wall to cause the gas chamber to move. 13. The fuel injection device according to claim 12, wherein the gas bypass port is opened when the pressure is equal to or higher than the predetermined value. 14. 14. The fuel injection device according to claim 11, further comprising a device for selectively increasing the urging force provided by the urging device to increase the first predetermined pressure of the fuel. 15. In a fuel injector for an internal combustion engine in which the fuel quantity is metered under gas pressure to form a fuel-gas mixture, the fuel pressure is adjusted to a preselected value, and the adjusted fuel pressure is adjusted to at least two predetermined values. A fuel injection device selectable between a predetermined value and a gas pressure adjusted relative to the fuel pressure to maintain a predetermined pressure difference between the fuel and the gas during fuel metering. 16. 16. The fuel injection system of claim 15, wherein the regulated fuel pressure is increased in response to increasing engine load demand above the predetermined value. 17. 16. The fuel injector according to claim 15, wherein the regulated fuel pressure is increased in response to increasing engine speed demand above the predetermined value. 18. 17. The fuel injection device according to claim 11, which is a constituent element of an internal combustion engine. 19.2 Used in a two-cycle internal combustion engine
20. The fuel injection device according to any one of 3, 15, or 16. Claims 11, 12, 13, 15 for use in an automobile internal combustion engine
Alternatively, the fuel injection device according to any one of 16 above. 21. Claims 11, 12, which is a component of an internal combustion outboard marine engine.
The fuel injection device according to any one of 13, 15 and 16.
JP61504189A 1985-07-19 1986-07-18 Method and fuel injector for controlling fuel distribution in a combustion chamber of an internal combustion engine Expired - Fee Related JP2669820B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU1560 1985-07-19
AUPH156085 1985-07-19

Publications (2)

Publication Number Publication Date
JPS63500324A JPS63500324A (en) 1988-02-04
JP2669820B2 true JP2669820B2 (en) 1997-10-29

Family

ID=3771186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61504189A Expired - Fee Related JP2669820B2 (en) 1985-07-19 1986-07-18 Method and fuel injector for controlling fuel distribution in a combustion chamber of an internal combustion engine

Country Status (18)

Country Link
JP (1) JP2669820B2 (en)
KR (1) KR940001927B1 (en)
CN (1) CN1015277B (en)
AU (1) AU594357B2 (en)
BE (1) BE905149A (en)
BR (1) BR8606798A (en)
CA (1) CA1271948A (en)
DE (1) DE3690389C2 (en)
ES (1) ES2000700A6 (en)
FR (1) FR2585079B1 (en)
GB (1) GB2188369B (en)
IN (1) IN167833B (en)
IT (1) IT1197786B (en)
MX (1) MX174369B (en)
NL (1) NL8620298A (en)
PH (1) PH26109A (en)
SE (1) SE466864B (en)
WO (1) WO1987000578A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086661B2 (en) * 1988-07-01 1996-01-29 トヨタ自動車株式会社 Fuel injection device for internal combustion engine
DE69029419T2 (en) * 1989-04-13 1997-06-26 Yamaha Motor Co Ltd Internal combustion engine and fuel injection control method therefor
US4955350A (en) * 1989-06-21 1990-09-11 General Motors Corporation Fuel injection
EP0609311B1 (en) * 1991-10-21 1998-05-13 Orbital Engine Company (Australia) Pty. Ltd. A method and apparatus for metering fuels
JP3554167B2 (en) * 1997-12-02 2004-08-18 株式会社日立製作所 Control device for in-cylinder injection engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1149321A (en) 1912-03-30 1915-08-10 Charles Whiting Baker Method of and apparatus for delivering liquid fuel to oil-engines.
US1166937A (en) 1912-06-01 1916-01-04 Busch Sulzer Bros Diesel Engine Co Means for regulating combustion-engines.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE867327C (en) * 1940-10-31 1953-02-16 Nsu Werke Ag Mixture-compressing two-stroke engine with internal mixture formation and external ignition
DE916365C (en) * 1943-02-06 1954-08-09 Daimler Benz Ag Compressed air injection engine with external ignition
US2753217A (en) * 1952-11-08 1956-07-03 Texas Co Fuel injection nozzle for internal combustion engine
JPS58155269A (en) * 1981-12-31 1983-09-14 オ−ビタル・エンジン・カンパニイ・プロプライエタリ・リミテイツド Method and device for supplying engine with liquid fuel by gas pressure
JPS5960069A (en) * 1982-09-30 1984-04-05 Mitsubishi Motors Corp Fuel supplying device for engine
JPS59206672A (en) * 1983-05-11 1984-11-22 Toyota Motor Corp Fuel injection valve of internal-combustion engine
US4685432A (en) * 1983-10-31 1987-08-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Method and device for forming mixture gas in direct injection type internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1149321A (en) 1912-03-30 1915-08-10 Charles Whiting Baker Method of and apparatus for delivering liquid fuel to oil-engines.
US1166937A (en) 1912-06-01 1916-01-04 Busch Sulzer Bros Diesel Engine Co Means for regulating combustion-engines.

Also Published As

Publication number Publication date
GB2188369A (en) 1987-09-30
AU6147686A (en) 1987-02-10
GB8706101D0 (en) 1987-04-15
CN86105113A (en) 1987-03-18
SE8701143D0 (en) 1987-03-19
FR2585079A1 (en) 1987-01-23
NL8620298A (en) 1987-06-01
IN167833B (en) 1990-12-29
WO1987000578A1 (en) 1987-01-29
IT8621181A1 (en) 1988-01-18
DE3690389T1 (en) 1987-07-16
PH26109A (en) 1992-02-06
BE905149A (en) 1986-11-17
KR940001927B1 (en) 1994-03-11
CA1271948A (en) 1990-07-24
IT1197786B (en) 1988-12-06
GB2188369B (en) 1990-02-21
MX174369B (en) 1994-05-11
SE8701143L (en) 1987-03-19
JPS63500324A (en) 1988-02-04
ES2000700A6 (en) 1988-03-16
AU594357B2 (en) 1990-03-08
SE466864B (en) 1992-04-13
CN1015277B (en) 1992-01-01
IT8621181A0 (en) 1986-07-18
DE3690389C2 (en) 1996-08-29
BR8606798A (en) 1987-10-13
FR2585079B1 (en) 1991-06-21
KR880700153A (en) 1988-02-20

Similar Documents

Publication Publication Date Title
US4781164A (en) Fuel injection systems for internal combustion engines
EP0315328A1 (en) Pneumatic direct cylinder fuel injection system
JP2696446B2 (en) In-cylinder direct injection type injection valve assist air supply device
JP2671225B2 (en) 2 cycle engine
US7191768B2 (en) Gas fuel feed device
US4176641A (en) Aneroid for a turbocharged engine
US6374782B2 (en) Air-fuel mixture generating device
US4300515A (en) Apparatus for actuating an adjustment device acting upon a control apparatus for exhaust recirculation in internal combustion engines
GB2385377A (en) Low pressure direct injection engine system
US6065433A (en) Variable displacement metering pump
JP2669820B2 (en) Method and fuel injector for controlling fuel distribution in a combustion chamber of an internal combustion engine
US4993394A (en) Fuel injection internal combustion engines
US4150651A (en) Fuel system for internal combustion engine
JPH10502146A (en) Control of internal combustion engines
US4515128A (en) Fuel injection system
US6435165B1 (en) Regulation method for fuel injection system
US4326487A (en) Fuel injection system
EP0442261B1 (en) Air/fuel injector for an internal combustion engine
US5119793A (en) Fuel injection
US6431143B1 (en) Aneroid control for fuel injection pump
EP0392550B1 (en) Internal combustion engine and method for controlling fuel injection of same
JP2848316B2 (en) Fuel supply device for internal combustion engine
JP2791432B2 (en) Engine fuel supply
JPH10325382A (en) Fuel injection type spark ignition internal combustion engine
SE9101582D0 (en) BRAENSLEINSPRUTNINGSANORDNING

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees