JP2669172B2 - 面内異方性の小さい高r値熱延鋼板の製造方法 - Google Patents

面内異方性の小さい高r値熱延鋼板の製造方法

Info

Publication number
JP2669172B2
JP2669172B2 JP8321191A JP8321191A JP2669172B2 JP 2669172 B2 JP2669172 B2 JP 2669172B2 JP 8321191 A JP8321191 A JP 8321191A JP 8321191 A JP8321191 A JP 8321191A JP 2669172 B2 JP2669172 B2 JP 2669172B2
Authority
JP
Japan
Prior art keywords
rolling
less
temperature range
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8321191A
Other languages
English (en)
Other versions
JPH04293731A (ja
Inventor
常昭 長道
和俊 国重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8321191A priority Critical patent/JP2669172B2/ja
Publication of JPH04293731A publication Critical patent/JPH04293731A/ja
Application granted granted Critical
Publication of JP2669172B2 publication Critical patent/JP2669172B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、面内異方性が小さく
高いランクフォ−ド値(r値)を有するところの、深絞
り性に優れた熱延鋼板を工業的に安定して製造する方法
に関するものである。
【0002】
【従来技術とその課題】近年、多方面からの鋼材コスト
低減の要望があり、これと熱延鋼板の製造技術の向上と
が相俟って、従来は冷延鋼板が使用されていた分野にも
熱延鋼板の使用が試みられるようになってきた。なぜな
ら、冷延鋼板は、周知の通り熱間圧延で得た熱延板を酸
洗→冷延→焼鈍→調質圧延というプロセスを経て製造さ
れるもので、優れた加工性、特に優れた深絞り性を必要
とされる用途に使用されてきたが、その製造プロセスか
ら明らかなように、熱延鋼板に比較すれば製造コストが
格段に嵩むという不利を余儀無くされていたからであ
る。しかも、上述したように、加工性(特に深絞り性)
面で劣っているため上記冷延鋼板や溶接鋼管等の素材と
して製造されることが多く、それ自体として使用はそれ
ほど高い加工性を必要としないところに限られていた熱
延鋼板に関し、その加工性を向上させる製造技術が幾つ
か提案されたことも、熱延鋼板への代替を促す大きな推
力となっている。
【0003】加工性が改善された熱延鋼板の製造手段と
しては、例えば特開昭61−3844号や特開昭61−
3845号として提案された技術を挙げることができ
る。これらの技術の特徴は高温域で大圧下の熱間圧延を
行ってから比較的低温域で潤滑圧延を行う点にあり、こ
れによってr値:1.0以上の熱延鋼板が得られると報告さ
れている。しかし、実際には、上記方法によっても鋼板
全体に面内異方性(0°,45°,90°の各方向のr値で
あるr0 ,r45,r90のうちの最大値のrmax と最小値
のrmin との差)を小さくし、均一な高いr値を安定し
て付与することは難しく、冷延鋼板に匹敵する加工性を
実現するには至っていない。
【0004】熱延鋼板の加工性を向上させる他の試みと
して、微量のTi又はNbを添加した極低炭素鋼の鋼片をA
r3点以上の温度域で粗圧延した後、800℃以下のフェ
ライト(以降“α”と略示する)域で合計圧下率73%
の仕上げ圧延を行う方法も報告されている{鉄と鋼,74
(1988)1617〜1624頁}。しかしながら、本発明者等の検
討結果によると、この方法によっては確かに薄鋼板での
プレス成形性(深絞り性)は確保されるものの、薄鋼板
とした場合の面内異方性はやはり 0.5以上と非常に大き
くて冷延鋼板なみの性能を期待できるものではなかった
【0005】この原因は、得られた薄鋼板に特定の方向
を向いた結晶が優先的に存在するため、この結晶の方向
と変形方向との関係により変形状態が変化してしまうた
めであると考えられる。そのため、かかる方法により製
造した薄鋼板は各方向におけるr値の平均であるr値
{(r0 +2r45 +r90 )/4で定義される}に代表
されるプレス成形性は優れているが鋼板の面内異方性
{(rmax −rmin )の絶対値}は劣悪な値となってし
まい、任意の方向に均一な伸びや強度が要求されるプレ
ス加工用薄鋼板としては要求される性能を十分満足しな
いことになる。
【0006】ところで、面内異方性の小さい高r値熱延
鋼板を得るには、再結晶処理後のαの{111}集合組
織を発達させることが望ましい。{111}集合組織は
α粒界から生じるが、そのためには再結晶処理前の加工
α粒径を小さくしα粒界面積を大きくする必要がある。
そして、それにはオ−ステナイト(以降“γ”と略示す
る)からαに変態する前のγ粒径を微細化しておくこと
が好ましいと言える。
【0007】ここで、γ粒径を微細化する手段を求めて
長年にわたり続けられてきた研究の成果として、 i) 制御圧延, ii) 制御圧延+加速冷却, iii) 大圧下圧延(例えば特開昭62−253733号
公報,特開昭63−145720号公報を参照),等の組
織微細化技術が生み出されるに至っている。しかしなが
ら、これらの各技術にも次のような問題が指摘されてい
た。即ち、制御圧延技術では、“制御圧延”という熱間
加工によって作り出されるγ粒は或る程度まで微細にな
ると実際上もはやそれ以上に微細化することができず、
そのため制御圧延のみでは前記γから変態するαの粒径
が10mm程度の“均一な微細組織”を得ることさえ困難
である。そして、上記制御圧延に加速冷却を組み合わせ
た技術をもってしても、上述したように制御圧延により
十分なγ組織の微細化が達成されないことから、その後
の加速冷却によって無理やり微細なαを変態生成させよ
うとしても限界があり、従ってやはりα粒径が10μm
を下回る程に微細化された均一組織を得るのは極めて困
難なことであった。ましてや、α粒径が5μm以下(Gr
ain Size No.で12以上)といったような超微細で均一な
組織を得ることなど、既知の既述では到底不可能であっ
た。一方、大圧下圧延による組織微細化技術は、γ未再
結晶温度域で1パス当りの圧下率30%以上の大圧下を
加えてγ粒を“変形帯を粒内に含む加工硬化γ”とし、
その後γ→α変態を生じさせて組織の微細化を図るもの
であるが、この方法では“γ→α変態前のγ粒”は大圧
下圧延により単に伸長しているだけで等方的な微細粒と
なっていないことから、やはり組織微細化に限界があ
り、そのため変態後のα粒径が5μmを下回る程の均一
超微細組織の実現は叶わなかった。
【0008】このように、面内異方性の小さい高r値熱
延鋼板に必要な{111}集合組織を発達させるべく再
結晶処理前の加工α粒径を小さくしようにも限界があ
り、従ってこれが冷延鋼板なみの加工性を有する熱延鋼
板を製造する上での大きな障害になっていると考えられ
た。
【0009】そこで、本発明が目的としたのは、熱延鋼
板に従来法では実現が困難であった“超微細でしかも等
方的な均一組織”を安定して現出させることができる工
業的手段を見出し、これを基にして従来の冷延材に代え
て使用できる“延性が良好で面内異方性の小さい高r値
熱延鋼板”の製造手段を確立することであった。
【0010】
【課題を解決するための手段】そして、上記目的を達成
すべく様々な観点に立って鋭意研究を重ねた本発明者等
は、次のような知見を得ることができたのである。 a) Ti又はNbの1種以上を含み、C含有量が0.08%以下
の低炭素アルミキルド鋼の連続鋳造鋳片又はインゴット
等(ここでは“鋼片”と総称する)を素材にすると共
に、その熱間圧延に際して温度調整によりαを含む組織
を前以って現出しておき、該組織に所定圧下率の圧延を
施してから急速昇温して上記αをγへと逆変態させる
か、或いは素材鋼のγ粒径が200μm以上となる場合
には“αを現出させる前の素材鋼”にγ温度域で一旦所
定圧下率の圧延を施してから上記工程の加工熱処理を施
してαをγへと逆変態させると、現れるγ組織は従来の
制御圧延等では到底得られないような超微細組織とな
る。 b) そこで、この超微細γ組織に更に圧延加工を施して
から冷却すると、変態生成するαは超微細γ組織を基に
しているためやはり極めて微細なものとなり、従来は実
現が極めて困難であったα粒径10μmを遙に下回る等
方的な均一微細α組織が得られる。 c) この組織を基に、更にα未再結晶温度域で圧下率が
80〜97%の高潤滑圧延を行うと再結晶処理後に{1
11}集合組織が十分発達するようになり、面内異方性
が小さくr値の高い熱延鋼板の安定した製造が可能とな
る。
【0011】本発明は、上記知見事項等を基に完成され
たものであり、 「C:0.08%以下(以降、 成分割合を表す%は重量%と
する),Mn:0.05〜0.40%, Si: 0.3%以下, so
l.Al:0.01〜0.08%,N:0.01%以下, Ti又はNb
の1種以上:合計で0.015 〜0.350 %を含有するか、 更
には B:0.0001〜0.0050% をも含むと共に残部がFe及び不可避的不純物から成る熱
鋼片をそのまま冷却するか、 或いは前記熱鋼片をそのま
ま又は一旦加熱炉に挿入してから最終パスが圧下率30
%以上でAr3点以上の温度域にて行われる圧延を施した
後に冷却し、 1) Ar3点以下の温度域で合計圧下率30%以上の圧延
を施す, 2) Ac3点〜〔Ac3点+100℃〕の温度域に10℃/se
c以上の加熱速度で昇温し、 フェライトからオ−ステナ
イトへの逆変態を生じさせる, 3) 該オ−ステナイト相温度域で合計圧下率10%以上
の圧延を施す, 4) オ−ステナイト相温度域から冷却し、 〔Ar3点−1
50℃〕〜450℃の温度域にて潤滑により摩擦係数を
0.18以下に抑えつつ圧下率80〜97%で圧延を行う, 5) 再結晶処理を行う, なる工程に従って順次加工・熱処理することにより、 加
工性に優れた面内異方性の小さい高r値熱延鋼板を安定
して製造し得るようにした点」 に大きな特徴を有している。
【0012】続いて、本発明において素材鋼の成分組成
並びにその加工・熱処理条件を前記の如くに限定した理
由をその作用と共に詳述する。
【作用】A) 素材鋼の成分組成 Cは鋼板の加工性に大きな影響を及ぼす元素であり、そ
の含有量が0.08%を超えると所望の加工性が実現できな
くなることから、C含有量は0.08%以下と定めた。
【0013】Mn Mnには、鋼中のSをMnSとして固定し鋼板の加工性を向
上する作用があるが、その含有量が0.05%未満では鋼中
のSを固定し切れずに単体のSを残してしまい加工性を
損なう。一方、0.40%を超えてMnを含有させると、鋼の
強度が高くなり過ぎて加工性を悪くする。従って、Mn含
有量は0.05〜0.40%と定めた。
【0014】Si Siは、加工性の面からは少ないほど好ましい元素であ
り、Si含有量が特に 0.3%を超えると鋼板が脆くなると
同時に、スケ−ル性状を劣化させて製品品質を著しく損
なうようになる。従って、Si含有量は 0.3%以下と定め
た。
【0015】Al Alは鋼の脱酸剤として有効な成分であり、sol.Alとして
0.01%以上含有されないと脱酸不足の恐れがある。しか
し、sol.Alで0.08%を超えるような量は不必要である。
従って、sol.Al含有量を0.01〜0.08%と定めた。
【0016】 Nは鋼中に侵入型固溶元素として存在する不純物元素で
あるが、鋼板の加工性を劣化させることから出来るだけ
少なく抑えるのが望ましい。しかし、その含有量が0.01
%までであると前記悪影響が顕著でないことから、N含
有量は0.01%以下と定めた。
【0017】Ti及びNb Ti及びNbには、鋼中のCやNと結合して析出し、固溶
C,Nを減少させると共に、その析出物によって結晶粒
を微細化する作用があるので単独又は複合で添加される
成分である。しかし、これらの合計含有量が 0.015%よ
りも少ないと前記作用による所望の効果が得られず、一
方、合計含有量が0.350%よりも多いと強度が上昇し過
ぎて加工用の鋼板として適さなくなると共に、経済的に
も不利となる。従って、Ti又はNbの含有量は合計で 0.0
15〜 0.350%と定めた。なお、Ti,Nbの添加は固溶Cを
5ppm 以下に抑えるように行うのが望ましい。その理由
は、固溶Cが5ppm を超えると圧延時に変形帯や剪断帯
等の強変形領域が形成されやすくなり、圧延後、焼鈍処
理しても強変形領域からは深絞り性に好ましい{11
1}再結晶集合組織が発達し難いからである。しかも、
固溶Cが5ppm を超えると転位の運動が困難となり、焼
鈍すると{111}再結晶集合組織となる{112}<
110>圧延安定方位への集積が弱くなる。ところで、
固溶Cを5ppm 以下に調整するには、下記 (1)式を満足
するようにTi,Nbの添加を行えば良い。 ここで、Ti* は有効Ti量であり、有効Ti量は下記 (2)
式で表される。
【0018】 Bは、絞り加工部品で問題となる“たて割れ”を防止す
る作用を有しているので必要により添加されるが、その
含有量が0.0001%未満では前記作用による所望の効果が
得られず、一方、0.0050%を超えて含有させてもその効
果が飽和し、経済的に不利となることから、B含有量は
0.0001〜0.0050%と定めた。
【0019】B) 加工・熱処理条件 熱間圧延に供する上記組成から成る素材鋼片は、インゴ
ットから分解圧延により製造されたものであっても良
く、連続鋳造により製造されたものであっても良い。ま
た、素材鋼片は分解圧延又は連続鋳造後の冷鋼片を所定
温度に加熱してから熱間圧延に供しても良く、直送圧延
と称される分塊圧延又は連続鋳造のラインから高温のま
ま送られてくる鋼片をそのまま、或いは多少の補助加熱
を施して熱間圧延に供する方法を採用しても良い。
【0020】(a) 鋼片を熱片から冷却してAr3点以下の
温度域で合計圧下率30%以上の圧延を施す理由 熱鋼片を一旦Ar3点以下に冷却して圧延を施すのは、本
発明の方法が“αを含む組織に塑性加工を加えてからα
相をγ相に逆変態させること”を主要な要件としている
からであり、そのためにはα相の生成を必要とするから
である。この際の冷却温度についてはAr3点以下であれ
ば格別に制限されるものではないが、現実的な操業性の
面からすると、Ar3点未満近傍のなるべく高温の領域
{Ar3点〜〔Ar3点−100℃〕}にすることが好まし
いと言える。しかしながら、αを含む組織に塑性加工を
加えてからα相をγ相に逆変態させるに当って、塑性加
工時におけるαの体積率が多いほど逆変態後のγ粒が微
細になることから、製品性能面からすればαの体積率を
増大させるべく前記冷却温度はAr1以下とするのが望ま
しい。
【0021】そして、Ar3点以下の温度域で施す圧延加
工の合計圧下率を30%以上としたのは、この際の圧下
率が30%以上となった場合に初めて逆変態による微細
γ粒の安定形成が達成できるからである。即ち、Ar3
以下の温度域で圧延加工を施すと、この圧延によってα
が加工硬化しγへの逆変態が増加する。そして、この逆
変態核の数が極度に多ければその後のγ域への急速昇温
で極めて微細なγ粒が生成する訳である。しかるに、上
記逆変態核数は圧下率が合計で30%以上となった時に
初めて顕著な急増傾向を示し、所望の超微細γ粒の安定
生成が叶うことから、Ar3点以下での合計圧下率を30
%以上と定めたが、望ましくは50%以上とするのが良
い。
【0022】ただ、連続鋳造或いはインゴット鋳造した
鋼片のγ粒径が200μm以上となっているような場合
には、その熱鋼片をそのままAr3点以下に冷却して圧延
後、逆変態を起こさせても所望の均一超微細組織が得ら
れない恐れがある。しかし、このような場合でも、上記
熱鋼片を冷却する前に、そのまま乃至は一旦加熱炉へ挿
入後、最終パスの圧延をAr3点以上の温度域でかつ最終
パスの圧下率を30%以上とする圧延を行うことによ
り、γ粒を再結晶により微細化(γ粒径:200μm未
満)し、更にγ粒に加工歪を導入することができるた
め、α粒の析出サイトを増加することができ、次の冷却
過程でα粒を微細化することができる。好ましくは最終
パスの圧下率を45%以上とする。なお、最終パスの圧
下率が30%未満であるとγが再結晶細粒化しないばか
りか加工歪も小さいため、次の冷却工程でα粒が微細化
しない。また、最終パスの圧延がAr3点より低い温度に
なると、α相が混合するようになり、加工歪が柔らかい
α相に集中しγ相に加工歪が蓄積されず、次の冷却工程
でγ→α変態により生成するα粒が微細化されない。こ
の一次圧延は1パス以上実施し、そのうちの最終パスを
上記の条件で行うのが良い。最終パス前の圧延は特に条
件を限定する必要はなく、通常の圧延でもかまわない。
【0023】(b) Ac3点〜〔Ac3点+100℃〕の温度
域まで10℃/sec以上の加熱速度で昇温する理由 Ac3点以上に昇温するのは「加工硬化したαから逆変態
により非常に微細なγ粒が生成する」という本発明に係
わる方法での特徴的な作用・効果を十分に発揮させるた
めである。この場合、昇温温度の上限を〔Ac3点+10
0℃〕としたのは、この温度を超えて昇温するとγが粒
成長してしまって最終的に所望の均一超微細組織鋼板が
得られず、従って所望の強度及び加工性を確保すること
ができなくなることによる。そして、Ac3点〜〔Ac3
+100℃〕の温度域まで昇温する際の加熱速度が10
℃/sec未満であると逆変態核導入の原因となる加工によ
る歪がα→γ逆変態に先立って開放されてしまい、所望
の微細γ粒組織を実現できなくなる。このようなことか
ら、上記加熱速度を10℃/sec以上と定めた。なお、昇
温の手段としては“加工熱の利用”又は“外部からの積
極的加熱(通電加熱等)"、或いは両者の併用等、何れの
方法を採用しても良い。
【0024】(c) γ相温度域で合計圧下率10%以上の
圧延を施す理由 逆変態により生じるγ粒を更に微細とし、その後の冷却
によって生成するα含有組織を所望の超微細組織とし優
れた特性を確保するためには、前記γ相温度域にまで急
速昇温した鋼に圧下率の合計が10%以上(好ましくは
30%以上)の圧延加工を加える必要があり、この時の
合計圧下率が10%未満であると所望の均一超微細組織
を安定して実現することができない。そして、上述した
加工熱処理を施して板材とされた鋼を任意手段によって
冷却することにより、α粒径が10μm以下、更には5
μm以下の等方的な均一超微細組織が得られる。
【0025】なお、Ar3点〜〔Ar3点−150℃〕にお
ける温度域を5℃/sec以上の冷却速度で冷却することが
望ましい。これによりγ域での加工によって再結晶組織
を微細化し、かつ加工歪の蓄積したγから多数のα発生
核を生じさせ、微細なα粒を得ることができる。次工程
の圧延前にα粒を微細化することにより、α粒界の面積
を増加することができ、α粒界から生じr値の向上に好
ましい{111}再結晶集合組織を発達させることがで
きる。この条件で冷却することにより、ASTMの粒度
番号で6以上の微細なα粒が得られる。
【0026】(d) 〔Ar3点−150℃〕〜450℃の温
度域を80〜97%の圧下率で摩擦係数が0.18以下とな
るように潤滑しつつ圧延を行う理由 この圧延は、次の再結晶処理工程でr値の向上と面内異
方性の最小化に好ましい{111}集合組織を発達さ
せ、それらに好ましくない{100}集合組織の形成を
抑制するため、RD(圧延方向)/<110>繊維組織
を主とする圧延集合組織を発達させることを目的とす
る。従って、この二次圧延はα未再結晶温度域である
〔Ar3点−150℃〕以下で圧延することが望ましい。
しかし、450℃未満の温度域では変形抵抗の増大によ
って圧延に要するエネルギ−が大きくなり、経済的メリ
ットが少なくなる。
【0027】圧下率は、80%未満の場合には再結晶処
理を行っても{111}集合組織が十分に発達しないで
{100}集合組識が形成されるため、r値が低く、面
内異方性が大きくなる。一方、圧下率が97%を超える
場合は再結晶処理を行っても{111}集合組織が発達
しないで{001}<110>方位近傍の集合組織と {211}<011>方位近傍の集合組識が発達するた
め、r値が低く、面内異方性が大きくなる。〔Ar3点−
150℃〕〜450℃の温度域を80〜97%の 圧下率で二次圧延し、再結晶処理すると{111}集合
組識が発達するため、値が高く、面内異方性が小さく
なる。
【0028】そして、r値を更に向上させるには歪を板
厚方向で均一に分布させ板厚中心部と表層部の集合組織
の相違を小さくすることが重要になる。そのためには鋼
板と圧延ロ−ルの間の摩擦係数(μ)を0.18以下、好ま
しくは0.15以下となるように潤滑を施しながら圧延を行
うのが良い。また、圧延後再結晶処理した鋼板のr値、
換言すれば集合組織の形成に対して圧延時の歪速度も大
きく影響する。熱間圧延に関する実験結果から最終パス
における歪速度を100s-1以上とし、かつ圧下率を3
0%以上とすることにより、{111}集合組織の発達
と{100}集合組織の抑制が可能であることが判明し
た。
【0029】圧延のパスは1回以上、素材の板厚と製品
板厚とを勘案してパス回数を決めれば良い。この圧延で
も、上記潤滑大圧下圧延のみならず、通常の無潤滑圧延
を付け加えることは任意である。なお、前記 (a)項で説
明した圧延と前記 (b)〜 (d)項で説明した処理・圧延を
熱間圧延ラインの何処で行うかについては制約がない
が、前者を粗圧延工程で、後者を仕上げ圧延工程で行う
のが設備上有利である。
【0030】(e) 再結晶処理工程 再結晶処理は、圧延終了後の鋼板に優れた加工性を与え
るのに不可欠な工程である。熱間圧延終了後の冷却中或
いはコイルに巻取った状態での自己焼鈍により再結晶さ
せても良く、巻取り後に加熱して再結晶させても良い。
その処理方法は特に限定されない。このようにして製造
された熱延鋼板は、熱延鋼板であるにもかかわらず、従
来の冷延鋼板に匹敵する極めて優れた加工性を有する。
【0031】次に、本発明を実施例によって更に具体的
に説明する。
【実施例】表1に示す成分組成のアルミキルド鋼を50
kg真空溶解炉で溶製し、鋳造して20mm厚と60mm厚の
熱鋳片を得た。次いで、これらの熱鋳片を表2に示す条
件で熱間圧延し、冷却して巻取った。巻取り後は、80
0℃×2min の連続焼鈍(処理イ)又は750℃×5hr
のバッチ焼鈍(処理ロ)により再結晶処理を行った。そ
して、このようにして得られた熱延鋼板から試験片を切
出し、機械的性質を調査した。その結果を表3に示す。
【0032】
【表1】
【0033】
【表2】
【0034】
【表3】
【0035】表3に示される結果からも明らかなよう
に、本発明で規定される条件に従って製造された熱延鋼
板は優れたr値及び伸びを有しており、しかも面内異方
性が極めて小さいことが分かる。更に、降伏点は低目で
あり、加工性が非常に優れていることは明らかである。
これに対して、製造条件が本発明の規定を満たしていな
い場合には十分な微細α組織が発達せず、得られる鋼板
の特性が劣る結果となることが分かる。また、γ相温度
域から冷却して行う潤滑圧延での最終パスを100s-1
以上の歪速度で30%以上の圧下率で行ったものは、更
にこれらの機械的特性が向上していることも確認でき
る。即ち、試験番号5では、潤滑圧延の最終パス(歪速
度120s-1,圧下率35%)を除いた条件は試験番号
4とほぼ同じであるが、試験番号4で得られた熱延板よ
りも試験番号5で得られた熱延板の方が加工性面からの
機械的特性に優れている。
【効果の総括】以上に説明した如く、この発明によれ
ば、自動車内外装のような複雑な部品等にも十分適用が
可能な、従来の冷延鋼板に匹敵する加工性を示す熱延鋼
板を工業的に安定して製造することができるなど、産業
上極めて有用な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明に係わる熱延鋼板の圧延・熱処理条件を
説明した線図である。
【図2】本発明に係わる熱延鋼板の圧延・熱処理条件の
別例を説明した線図である。

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 重量割合にて C:0.08%以下, Mn:0.05〜0.40%, Si: 0.3
    %以下,sol.Al:0.01〜0.08%, N:0.01%以下,
    Ti又はNbの1種以上:合計で0.015 〜0.350 %を含有す
    るか、更には B:0.0001〜0.0050% をも含むと共に残部がFe及び不可避的不純物から成る熱
    鋼片を冷却し、下記工程に従って順次加工・熱処理する
    ことを特徴とする、面内異方性の小さい高r値熱延鋼板
    の製造方法。 1) Ar3点以下の温度域で合計圧下率30%以上の圧延
    を施す, 2) Ac3点〜〔Ac3点+100℃〕の温度域に10℃/se
    c以上の加熱速度で昇温し、フェライトからオ−ステナ
    イトへの逆変態を生じさせる, 3) 該オ−ステナイト相温度域で合計圧下率10%以上
    の圧延を施す, 4) オ−ステナイト相温度域から冷却し、〔Ar3点−1
    50℃〕〜450℃の温度域にて潤滑により摩擦係数を
    0.18以下に抑えつつ圧下率80〜97%で圧延を行う, 5) 再結晶処理を行う。
  2. 【請求項2】 重量割合にて C:0.08%以下, Mn:0.05〜0.40%, Si: 0.3
    %以下,sol.Al:0.01〜0.08%, N:0.01%以下,
    Ti又はNbの1種以上:合計で0.015 〜0.350 %を含有す
    るか、更には B:0.0001〜0.0050% をも含むと共に残部がFe及び不可避的不純物から成る熱
    鋼片をそのまま或いは一旦加熱炉に挿入してから、最終
    パスが圧下率30%以上でAr3点以上の温度域にて行わ
    れる圧延を施した後に冷却し、更に下記工程に従って順
    次加工・熱処理することを特徴とする、面内異方性の小
    さい高r値熱延鋼板の製造方法。 1) Ar3点以下の温度域で合計圧下率30%以上の圧延
    を施す, 2) Ac3点〜〔Ac3点+100℃〕の温度域に10℃/se
    c以上の加熱速度で昇温し、フェライトからオ−ステナ
    イトへの逆変態を生じさせる, 3) 該オ−ステナイト相温度域で合計圧下率10%以上
    の圧延を施す, 4) オ−ステナイト相温度域から冷却し、〔Ar3点−1
    50℃〕〜450℃の温度域にて潤滑により摩擦係数を
    0.18以下に抑えつつ圧下率80〜97%で圧延を行う, 5) 再結晶処理を行う。
JP8321191A 1991-03-23 1991-03-23 面内異方性の小さい高r値熱延鋼板の製造方法 Expired - Lifetime JP2669172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8321191A JP2669172B2 (ja) 1991-03-23 1991-03-23 面内異方性の小さい高r値熱延鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8321191A JP2669172B2 (ja) 1991-03-23 1991-03-23 面内異方性の小さい高r値熱延鋼板の製造方法

Publications (2)

Publication Number Publication Date
JPH04293731A JPH04293731A (ja) 1992-10-19
JP2669172B2 true JP2669172B2 (ja) 1997-10-27

Family

ID=13795991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8321191A Expired - Lifetime JP2669172B2 (ja) 1991-03-23 1991-03-23 面内異方性の小さい高r値熱延鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP2669172B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157952A (ja) * 1994-12-05 1996-06-18 Nippon Steel Corp 成形性に優れた薄手鋼板の製造方法
US7117925B2 (en) * 2000-09-29 2006-10-10 Nucor Corporation Production of thin steel strip
CN114289523B (zh) * 2021-12-28 2023-09-22 华北理工大学 一种细化碳钢奥氏体的方法

Also Published As

Publication number Publication date
JPH04293731A (ja) 1992-10-19

Similar Documents

Publication Publication Date Title
CN103975082A (zh) 耐时效性和烧结硬化性优良的高强度冷轧钢板的制造方法
JPH11152544A (ja) 超微細粒を有する加工用熱延鋼板及びその製造方法並びに冷延鋼板の製造方法
JPH0823048B2 (ja) 焼付硬化性と加工性に優れた熱延鋼板の製造方法
JPH0713257B2 (ja) 圧延ままで表面異常相のない軟質線材の製造方法
JP3915460B2 (ja) 高強度熱延鋼板およびその製造方法
JP2669172B2 (ja) 面内異方性の小さい高r値熱延鋼板の製造方法
JP2781297B2 (ja) 耐2次加工脆性に優れ面内異方性の少ない冷延薄鋼板の製造方法
CN103975087A (zh) 耐时效性和烧结硬化性优良的高强度冷轧钢板
JP2000239786A (ja) 冷延用母板および面内異方性の小さい深絞り用冷延鋼板ならびにその製造方法
JP2776203B2 (ja) 常温非時効性に優れた冷延鋼板の製造方法
JP3212348B2 (ja) 細粒厚鋼板の製造法
JP2003034825A (ja) 高強度冷延鋼板の製造方法
JP3818025B2 (ja) 異方性の小さい冷延鋼板の製造方法
JP3362739B2 (ja) 深絞り性に優れた熱延鋼板の製造方法
KR100435466B1 (ko) 딥드로잉성이 우수한 p첨가 극저탄소 냉연강판의 제조방법
JP3366843B2 (ja) 超微細粒を有する加工用熱延鋼板及びその製造方法
JP2669231B2 (ja) 面内異方性の小さい高r値冷延鋼板の製造法
JP3596045B2 (ja) 成形性に優れる焼付硬化型冷延鋼板の製造方法
JPH0681045A (ja) 加工性および焼付硬化性に優れた冷延鋼板の製造方法
JP3593728B2 (ja) 成形性の優れた極低炭素冷延鋼板の製造方法
JPH05202424A (ja) 面内異方性の小さい高r値熱延鋼板の製造法
JP2669243B2 (ja) 面内異方性の小さい高r値冷延鋼板の製造法
JPH0665647A (ja) 深絞り性の極めて優れた冷延鋼板の効率的な製造方法
JP4332960B2 (ja) 高加工性軟質冷延鋼板の製造方法
JP2908641B2 (ja) 深絞り性に優れる薄鋼板の製造方法